The lack of shortwave (SW, visible, and near-infrared) geostationary satellite data at night results in degradation of many weather forecasts and real-time diagnostic products. We present a method to extrapolate SW GOES-16 advanced baseline imager data through night using nighttime longwave (LW, infrared) observations and the relationships between LW and SW data observed during the previous day. The method is not a forecast since it requires LW nighttime observations but can provide continuity through day, night, and satellite terminator hours. To provide performance statistics, the algorithm is applied during the day so the SW extrapolations can be compared to observations. Typical mean absolute errors (MAEs) range from 1.0% to 12.7% reflectance depending on the SW channel. These MAEs can be predicted using a diagnostic metric called 0-h MAE which quantifies the quality of the algorithm’s input data. In addition to quantitative error statistics, three case studies are presented, including an animation of extrapolated imagery from dusk through dawn. Considerations for future improvements include use of convolutional neural networks and/or object-based extrapolations where mesoscale features are extrapolated individually.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.