The new deployable tertiary mirror for the Keck I telescope (K1DM3) at the W. M. Keck Observatory has been assembled, tested and shipped to the telescope site, and is currently being installed. The mirror is capable of reflecting the beam to one of six positions around the telescope elevation ring or to retract out of the way to allow the use of Cassegrain instruments. This new functionality is intended to allow rapid instrument changes for transient event observations and improve telescope operations. This paper presents the final as-built design. Additionally, this paper presents detailed information about our alignment approach in the attempt to duplicate the instrument pointing orientation of the existing M3.
KEYWORDS: Mirrors, Telescopes, Astronomy, Calibration, Sensors, Distortion, Data modeling, Spectroscopy, James Webb Space Telescope, Magnetic resonance imaging
Motivated by the ever increasing pursuit of science with the transient sky (dubbed Time Domain Astronomy or TDA), we are fabricating and will commission a new deployable tertiary mirror for the Keck I telescope (K1DM3) at the W.M. Keck Observatory. This paper presents the detailed design of K1DM3 with emphasis on the opto- mechanics. This project has presented several design challenges. Foremost are the competing requirements to avoid vignetting the light path when retracted against a sufficiently rigid system for high-precision and repeatable pointing. The design utilizes an actuated swing arm to retract the mirror or deploy it into a kinematic coupling. The K1DM3 project has also required the design and development of custom connections to provide power, communications, and compressed air to the system. This NSF-MRI funded project is planned to be commissioned in Spring 2017.
The University of California Observatories will design and construct a deployable tertiary mirror (named K1DM3) for the Keck 1 telescope, which will complement technical and scientific advances in the area of time-domain astronomy. The K1DM3 device will enable astronomers to swap between any of the foci on Keck 1 in under 2 minutes, both to monitor varying sources (e.g. stars orbiting the Galactic center) and catch rapidly fading sources (e.g. supernovae, flares, gamma-ray bursts). In this paper, we report on the design development during our in-progress Preliminary Design phase. The design consists of a passive wiffle tree axial support system and a diaphragm lateral support system with a 5 arcminute field-of-view mirror. The mirror assembly is inserted into the light path with an actuation system and it relies on a kinematic mechanism for achieving repeatable, precise positioning. This project, funded by an NSF MRI grant, aspires to complete by the end of 2016.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.