Features of the hadronic interactions of cosmic ray particles that make it difficult to measure their energies and identities precisely also provide tools by which these limitations can be partially overcome, if the detector in question is properly instrumented. I review a growing body of experimental and theoretical work to demonstrate methods by which calorimetry of cosmic rays using thin calorimeters may be optimized, and performance improved, by the use of multiple methods to read out the energy deposited by the developing shower. Examples are given using scintillating fiber, Cherenkov readout of quartz optical fiber, and silicon dE/dx information.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.