In recent years the application of nano-porous templates, such as anodic alumina and PTFE, in the production of cylindrical nanostructures has been vast. In our work we used porous alumina membranes to produce luminescent nanowires from polystyrene and silica. The silica wires were fabricated by infiltration of a TEOS derived sol-gel into 200 nm diameter porous alumina membranes with vacuum assistance followed by annealing at 400 °C. Polystyrene luminescent, magnetic nanowires have been fabricated using a similar technique. The wires were studied by optical, confocal and transmission electron microscopy. Silica nanowires demonstrated a broad luminescence spectrum due to interstitial carbon defect emission. Polystyrene nanowires have demonstrated strong emission and interesting magnetic behaviour. Both polystyrene and silica maghemite loaded nanowires show alignment to an external magnetic field. We believe that these silica and polystyrene nanowires might find potential applications in photonics, bio-sensing and biological imaging.
The synthesis of metal (Au,Ag) and semiconductor (PbS) nanoparticles of specific morphology and shape is reported. The shape of PbS nanoparticles has been varied from spherical to oval to cubic, by use of poly(vinyl alcohol) (PVA), DNA and ethylene glycol as stabilisers respectively. For the first time, a seeding method has been used to successfully prepare PVA stabilised gold and silver nanoparticles. Characterisation of the third order optical nonlinearity of the nanoparticles has been carried out using the Z-scan technique with values of Im ÷ (3) as large as 10-10. Modulation of the magnitude of the nonlinear optical response with morphology in the case of the PbS nanoparticles is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.