FDG-PET is increasingly used for the evaluation of dementia patients, as major neurodegenerative disorders, such as
Alzheimer's disease (AD), Lewy body dementia (LBD), and Frontotemporal dementia (FTD), have been shown to
induce specific patterns of regional hypo-metabolism. However, the interpretation of FDG-PET images of patients with
suspected dementia is not straightforward, since patients are imaged at different stages of progression of
neurodegenerative disease, and the indications of reduced metabolism due to neurodegenerative disease appear slowly
over time. Furthermore, different diseases can cause rather similar patterns of hypo-metabolism. Therefore, classification
of FDG-PET images of patients with suspected dementia may lead to misdiagnosis. This work aims to find an optimal
subset of features for automated classification, in order to improve classification accuracy of FDG-PET images in
patients with suspected dementia. A novel feature selection method is proposed, and performance is compared to
existing methods. The proposed approach adopts a combination of balanced class distributions and feature selection
methods. This is demonstrated to provide high classification accuracy for classification of FDG-PET brain images of
normal controls and dementia patients, comparable with alternative approaches, and provides a compact set of features
selected.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.