The deblurring of flotation froth images significantly aids in the characterization of coal flotation and fault diagnosis. Images of froth acquired at a flotation site contain considerable noise and blurring, making feature extraction and segmentation processing difficult. We present an effective method for deblurring froth images based on disentangled representations. Disentangled representation is achieved by separating the content and blur features in the blurred image using a content encoder and a blur encoder. Then, the separated feature vectors are embedded into a deblurring framework to deblur the froth image. The experimental results show that this method achieves a superior deblurring effect on froth images under various conditions, which lays the foundation for the intelligent adjustment of parameters to guide the flotation site. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Deblurring
Feature extraction
Image quality
Image processing
Education and training
Image restoration
Gallium nitride