Paper
29 March 2006 Development of new resist materials for 193-nm dry and immersion lithography
Author Affiliations +
Abstract
We earlier developed new monocyclic fluoropolymers (FUGU) for F2 resist materials. But, it is necessary for FUGU to improve of their characteristics, especially the dry-etching resistance, in order to apply for ArF lithography at fine design rules. We have tried to combine FUGUs with Adamntyl methacrylates based conventional ArF resist polymer. In this paper, we have investigated the role of cyclic fluorinated unit, FUGU, in 193 nm resist polymers by analyzing the dissolution behavior. We found that FGEAM showed high sensitivity and good dissolution contrast, compared with acrylate based conventional samples at low PEB temperature (100oC). And this difference of sensitivity was clearly found when weak acidity PAGs were used. From the dissolution behaviors of FGEAM, FUGU unit can work to improve the resist sensitivity in acrylate based ArF resist polymers. And we also found that FGEAM showed long acid diffusion length on PEB process, compared with Conventional samples. These result show that FUGU unit has a unique characteristics of the sensitivity with 193nm exposure and the acid diffusion behavior. We also investigated a new series of fluorinated copolymers for 193-nm lithography, combination of FUGU monomer and acrylate units which are used in conventional ArF resist. Six ter-polymers of FUGU, combination of FUGU monomers and EAdMA, GBLMA and HAdMA were prepared. We found that FUGU ter-polymers had a good dry etching resistance keeping high transparency at 193nm. And FUGU ter-polymers showed high sensitivity toward 193nm exposure. FUGU ter-polymers also had a high hydrophobic properties compared conventional type ArF resist polymers. So we also expect FUGU ter-polymers to be useful for ArF dry and immersion lithography.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Takashi Sasaki, Naoko Shirota, Yoko Takebe, and Osamu Yokokoji "Development of new resist materials for 193-nm dry and immersion lithography", Proc. SPIE 6153, Advances in Resist Technology and Processing XXIII, 61530E (29 March 2006); https://doi.org/10.1117/12.656141
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polymers

Diffusion

Fluorine

Lithography

Resistance

Immersion lithography

Dry etching

Back to Top