Paper
18 May 2001 Theoretical and experimental analysis of transmission and enhanced absorption of frequency-selective surfaces in the infrared
Irina Puscasu, William L. Schaich, Glenn D. Boreman
Author Affiliations +
Abstract
A comparative study between theory and experiment is presented for transmission through lossy frequency selective surfaces (FSSs) on silicon in the 2 - 15 micrometer range. Important parameters controlling the resonance shape and location are identified: dipole length, spacing, impedance, and dielectric surroundings. Their separate influence is exhibited. The primary resonance mechanism of FSSs is the resonance of the individual metallic patches. There is no discernable resonance arising from a feed-coupled configuration. The real part of the element's impedance controls the minimum value of transmission, while scarcely affecting its location. Varying the imaginary part shifts the location of resonance, while only slightly changing the minimum value of transmission. With such fine-tuning, it is possible to make a good fit between theory and experiment near the dipole resonance on any sample. A fixed choice of impedance can provide a reasonable fit to all samples fabricated under the same conditions. The dielectric surroundings change the resonance wavelength of the FSS compared to its value in air. The presence of FSS on the substrate increases the absorptivity/emissivity of the surface in a resonant way. Such enhancement is shown for dipole and cross arrays at several wavelengths.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Irina Puscasu, William L. Schaich, and Glenn D. Boreman "Theoretical and experimental analysis of transmission and enhanced absorption of frequency-selective surfaces in the infrared", Proc. SPIE 4293, Silicon-based and Hybrid Optoelectronics III, (18 May 2001); https://doi.org/10.1117/12.426937
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Silicon

Absorption

Dielectrics

FSS based metamaterials

Infrared radiation

Resistance

Control systems

Back to Top