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Preface

An automatic target recognizer (ATR) is a real-time or near-real-time image/
signal-understanding system. An ATR is presented with a stream of data. It
outputs a list of the targets that it has detected and recognized in the data
provided to it. A complete ATR system can also perform other functions such
as image stabilization, preprocessing, mosaicking, target tracking, activity
recognition, multi-sensor fusion, sensor/platform control, and data packaging
for transmission or display.

In the early days of ATR, there were fierce debates between proponents of
signal processing and those in the emerging field of computer vision. Signal
processing fans were focused on more advanced correlation filters, stochastic
analysis, estimation and optimization, transform theory, and time-frequency
analysis of nonstationary signals. Advocates of computer vision said that
signal processing provides some nice tools for our toolbox, but what we really
want is an ATR that works as well as biological vision. ATR designers were
less interested in processing signals than understanding scenes. They proposed
attacking the ATR problem through artificial intelligence (Al), computational
neuroscience, evolutionary algorithms, case-based reasoning, expert systems,
and the like. Signal processing experts are interested in tracking point-like
targets. ATR engineers want to track a target with some substance to it,
identify what it is, and determine what activity it is engaged in. Signal
processing experts keep coming up with better ways to compress video. ATR
engineers want more intelligent compression. They want the ATR to tell the
compression algorithm which parts of the scene are more important and hence
deserving of more bits in the allocation. ATR, in and of itself, can be thought
of as a data reduction technique. The ATR takes in a lot of data and outputs
relatively little data. Data reduction is necessary due to bandwidth limitations
of the data link and workload limits of the time-strapped human operator.
People are very good at analyzing video until fatigue sets in or they get
distracted. They don’t want to be like the triage doctor at the emergency ward,
assessing everything that comes in the door, continually assigning priorities to
items deserving further attention. Pilots and ground station operators want a
machine to relieve their burden as long as it rarely makes a mistake. Trying to
do this keeps ATR engineers employed. As often told to the author, pilots and

XV
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image analysts are not looking for machines to replace them entirely.
However, such decisions will be made higher up in the chain of command as
ATR technology progresses.

The human vision system is not “designed” to analyze certain kinds of
data such as rapid step-stare imagery, complex-valued signals that arise in
radars, hyperspectral imagery, 3D LADAR data, or fusion of signal data with
various forms of precise metadata. ATR shines when the sustained data rate is
too high or too prolonged for the human brain, or the data is not well suited
for presentation to humans. Nevertheless, most current ATRs operate with
humans-in-the-loop. Humans, at present, are much better than ATRs at tasks
requiring consultation, comprehension, and judgement. Humans still make
the final decision and determine the action to be taken. This means that ATR
output, which is statistical and multi-faceted by nature, has to be presented to
the human decision makers in an easily understood form. This is a difficult
man-machine interface problem. Marching toward the future, more autono-
mous robotic systems will necessarily rely more on ATRs to substitute for
human operators, possibly serving as the “brains” of entire robotic platforms.
We leave this provocative topic to the end of the book.

Systems engineers took notice once ATRs became deployable. Systems
engineers are grounded in harsh reality. They care little about the debate
between signal processing and computer vision. They don’t want to hear
about an ATR being brain-like. They are not interested in which classification
paradigm performs 1% better than the next. They care about the concept of
operations (ConOps) and how it directs performance and functionality. They
care about mission objectives and mission requirements. They want to identify
all possible stakeholders, form an integrated product team, determine key
performance parameters (KPPs), and develop test and evaluation (T&E)
procedures to determine if performance requirements are met. Self-test is the
norm for published papers and conference talks. Independent test and
evaluation, laboratory blind tests, field tests, and software regression tests are
the norm for determining if a system is deployable. The systems engineer’s
focus is broader than ATR performance. Systems engineers want the entire
system, or system of systems, to work well, including platform, sensors, ATR,
and data links. They want to know what data can be provided to the ATR and
what data the ATR can provide to the rest of the system. They want to know
how one part of the system affects all other parts of the system. Systems
designers care a lot about size, weight, power, latency, current and future
costs, logistics, timelines, mean time between failure, and product repair and
upgrade. They want to know the implications of system capture by the enemy.

At one time, ATR was the sole charge of the large defense electronics
companies, working closely with the Government labs. Only the defense
companies and Government have fleets of data collection aircraft, high-end
sensors, and access to foreign military targets. Although air-to-ground has been



Preface XVii

the focus of much ATR work, ATR actually covers a wide range of sensors,
operating within or between the layers of space, air, ocean/land surface, and
undersea/underground. Although the name ATR implies recognition of targets,
ATR engineers have broader interests. ATR groups tackle any type of military
problem involving the smart processing of imagery or signals. The Government
(or Government-funded prime contractor) is virtually the only customer. So,
some of the ATR engineer’s time is spent reporting to the Government,
participating in joint data collections, taking part in Government-sponsored
tests, and proposing new programs to the Government.

Since the 1960s, the field of ATR has advanced in parallel with similar
work in the commercial sector and academia, involving industrial automa-
tion, medical imaging, surveillance and security, video analytics, and space-
based imaging. Technologies of interest to both the commercial and defense
sector include low-power processors, novel sensors, increased system
autonomy, people detection, robotics, rapid search of vast amounts of data
(big data), undersea inspection, and remote medical diagnosis. The bulk of
funding in some of these areas has recently shifted from the defense to the
commercial sector. More money is spent on computer animation for
Hollywood movies than for the synthesis of forward-looking infrared (FLIR)
and synthetic aperture radar (SAR) imagery. The search engine companies are
investing much more in neural networks compared to the defense companies.
Well-funded brain research programs are investigating the very basis of
human vision and cognitive processing. The days of specialized military
processors (e.g., VHSIC) are largely over. Reliance is now on chips in high-
volume production: multi-core processors (e.g., Intel and ARM), FPGAs
(e.g., Xilinx and Intel/Altera), and GPUs (e.g., Nvidia and AMD). Highly
packaged sensors (visible, FLIR, LADAR, and radar) combined with
massively parallel processors are advancing rapidly for the automotive
industry to meet new safety standards (e.g., Intel/MobilEye). Millions of
systems will soon be produced per year. Current advanced driver assistance
systems (ADAS) can detect pedestrians, animals, bicyclists, road signs, traffic
lights, cars, trucks, and road markers. These are a lot like ATR tasks. The
rapid advancement of ADAS will lead to driverless cars.

Some important differences between ATRs and commercial systems are
worth noting. ATRs generally have to detect and recognize objects at much
longer ranges than commercial systems. Enemy detection and recognition are
non-cooperative processes. Although a future car might have a LADAR,
radar, or FLIR sensor, it won’t have one that can produce high-quality data
from a 20,000-ft range. An ADAS will detect a pedestrian but won’t report if
he is carrying a rifle. Search engine companies need to search large volumes of
data with an image-based search, but they don’t have the metadata to help the
search, such as is available on military platforms. That being said, the cost
and innovation rate of commercial electronics can’t be matched by military
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systems. The distinction between commercial and military systems is starting
to blur in some instances. Cell phones now include cameras, inertial
measurement units, GPS, computers, algorithms, and transmitters/receivers.
Slightly rugged versions of commercial cell phones and tablet computers are
starting to be used by the military, even with ATR apps. “Toy” drones are
approaching the sophistication of the smallest military unmanned air vehicles.
They are now produced in volumes of a million per year. ATR engineers are
in tune with advances in the commercial sector and their applicability to
ATR. Even their hobbies tend to focus on technology, e.g., hobbies such as
quadcopters, novel cameras, 3D printers, computers, phone apps, robots, etc.

ATR 1is not limited to a device; it is also a field of research and
development. ATR technology can be incorporated into systems in the form
of self-contained hardware, FPGA code, or higher-level language code. ATR
groups can help add autonomy to many types of systems. ATR can be viewed
very narrowly or very broadly, borrowing concepts from a wide variety of
fields. Papers on ATR are often of the form: “Automatic Target Recognition
using XXX,” where the XXX can be any technology such as super-resolution,
principal component analysis, sparse coding, singular value decomposition,
Eigen templates, correlation filters, kinematic priors, adaptive boosting,
hyperdimensional manifolds, Hough transforms, foveation, etc. In the more
ambitious papers, the XXX is a mélange of technologies, such as fuzzy-rule-
based expert systems, wavelet neural genetic networks, fuzzy morphological
associative memory, optical holography, deformable wavelet templates,
hierarchical support vector machines, Bayesian recognition by parts, etc.
Get the picture? Nearly any type of technology, everything but the kitchen
sink, can be thrown at the ATR problem, with scant large-scale independent
competitive test results to indicate which approach really works best,
supposing that “best” can be defined and measured. This book is not a
comprehensive survey of every technology that has ever been applied to ATR.
This book covers some of the basics of ATR. While some of the topics in this
book can be found in textbooks on pattern recognition and computer vision,
this book focuses on their application to military problems as well as the
unique requirements of military systems.

The topics covered in the book are organized in the way one would design
an ATR. The first step is to understand the military problem and make a list of
potential solutions to the problem. A key issue is the availability of sufficiently
comprehensive sets of data to train and test the potential solutions. This
involves developing a sound test plan, specifying procedures and equations, and
determining who is going to do the testing. Testing isn’t open ended. Exit
criteria are needed to determine when a given test activity has been successfully
completed. The next steps in ATR design are choosing the detector and
classifier. The detector focuses attention on the regions-of-interest in the
imagery requiring additional scrutiny. The classifier further processes these



Preface Xix

regions-of-interest and is the decision engine for class assignment. It can operate
at any or all levels of a decision tree, from clutter rejection to identifying a
specific vehicle or activity. Detected targets are often tracked. Target tracking
has historically been treated as a separate subject from ATR, mainly because
point-like targets contain too little information to apply an ATR. However, as
sensor resolution improves, the engineering disciplines of target tracking and
ATR are starting to merge. The ATR and tracker can be united for efficiency
and performance. The fifth chapter covers the basics of multisensory fusion.
Then it broadens the topic to a variety of other forms of fusion. A strawman
design is provided for a more advanced ATR, but with no claim that this is the
only way to construct a next-generation ATR. The strawman design should be
thought of as a brainstormed simple draft proposal intended to generate
discussion of its advantages and disadvantages, and to trigger the generation of
new and better proposals. Future ATRs will have to combine data from
multiple sources. The seventh chapter points out how primitive current ATRs
really are, as compared to biological systems. It suggests ways for measuring the
intelligence of an ATR. This goes far beyond the basic performance
measurement techniques covered in Chapter 1. The final chapter examines
the role of ATR in its ultimate embodiment—that being lethal autonomous
robots. These are air, land, or sea weapons that detect, track, recognize, and
attack targets on their own. There is no human-in-the-loop to control the
attack; instead, the weapon itself decides when and what to strike, based on
guidelines provided to it. Such weapons can come in the form of unmanned
ground vehicles, unmanned undersea vehicles, or swarms of mini-drones. The
chapter covers legal, moral, ethical, and technical issues, as well as what can go
wrong. The first appendix lists the many resources available to the ATR
engineer. Many of the listed agencies supply training and testing data, perform
blind tests, and sponsor research into compelling new sensor and ATR designs.
The second appendix advances the notion that a problem that is well described
is half solved. The third appendix explains the acronyms and abbreviations used
in the book.

CHAPTER 1: ATR technology has benefited from a significant investment
over the last 50 years. However, the once-accepted definitions and evaluation
criteria have been displaced by the march of technology. The first chapter
updates the language for describing ATR systems and provides well-defined
criteria for evaluating such systems. This will advance collaboration between
ATR developers, evaluators, and end-users.

ATR is used as an umbrella term for a broad range of military technology
beyond just the recognition of targets. In a more general sense, ATR means
sensor data exploitation. Two types of definitions are included in the first
chapter. One type defines fundamental concepts. The other type defines basic
performance measures. In some cases, definitions consist of a list of
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alternatives. This approach enables choices to be made to meet the needs of
particular programs. The important point to keep in mind is that within the
context of a particular experimental design, a set of protocols should be
adopted to best fit the situation, applied, and then kept constant throughout
the evaluation. This is especially important for competitive testing.

The definitions given in Chapter 1 are intended for evaluation of end-to-
end ATR systems as well as the prescreening and classifier stages of the
systems. Sensor performance and platform characteristics are excluded from
the evaluation. It is recognized that sensor characteristics and other
operational factors affect the imagery and associated metadata. A thorough
understanding of data quality, integrity, synchrony, availability, and timeline
are important for ATR development, test, and evaluation. Data quality
should be quantified and assessed. However, methods for doing so are not
covered in this book. The results and validity of ATR evaluation depend on
the representativeness and comprehensiveness of the development and test
data. The adequacy of development and test data is primarily a budgetary
issue. The ATR engineer should understand and be able to convey the
implications of limited, surrogate, or synthetic data. The ATR engineer
should be able to damp down naive proposals centered around the use of an
oft-the-shelf deep-learning neural network as a miraculous cure to the alleged
ATR affliction.

Chapter 1 formalizes definitions and performance measures associated
with ATR evaluation. All performance measures must be accepted as ballpark
predictions of actual performance in combat. More carefully formulated
experiments will provide more meaningful conclusions. The final measure of
effectiveness takes place in the battlefield.

CHAPTER 2: Hundreds of simple target detection algorithms were tested on
mid- and longwave FLIR images, as well as X-band and Ku-band SAR
images. Each algorithm is briefly described. Indications are given as to which
performed well. Some of these simple algorithms are loosely derived from
standard tests of the difference of two populations. For target detection, these
are typically populations of pixel grayscale values or features derived from
them. The statistical tests are often implemented in the form of sliding triple-
window filters. Several more-elaborate algorithms are also described with
their relative performances noted. These algorithms utilize neural networks,
deformable templates, and adaptive filtering. Algorithm design issues are
broadened to cover system design issues and concepts of operation.

Since target detection is such a fundamental problem, it is often used as a
test case for developing technology. New technology leads to innovative
approaches for attacking the problem. Eight inventive paradigms, each with
deep philosophical underpinnings, are described in relation to their effect on
target detector design.



Preface XXi

CHAPTER 3: Target classification algorithms have generally kept pace with
developments in the academic and commercial sectors since the 1970s.
However, most recently, investment into object classification by Internet
companies and various large-scale projects for understanding the human brain
has far outpaced that of the defense sector. The implications are noteworthy.

There are some unique characteristics of the military classification problem.
Target classification is not solely an algorithm design problem, but is part of a
larger system design task. The design flows down from a ConOps and KPPs.
Required classification level is specified by contract. Inputs are image and/or
signal data and time-synchronized metadata. The operation is often real-time.
The implementation minimizes size, weight, and power (SWaP). The output
must be conveyed to a time-strapped operator who understands the rules of
engagement. It is assumed that the adversary is actively trying to defeat
recognition. The target list is often mission dependent, not necessarily a closed
set, and can change on a daily basis. It is highly desirable to obtain sufficiently
comprehensive training and testing data sets, but costs of doing so are very
high, and data on certain target types are scarce or nonexistent. The training
data might not be representative of battlefield conditions, suggesting the
avoidance of designs tuned to a narrow set of circumstances. A number of
traditional and emerging feature extraction and target classification strategies
are reviewed in the context of the military target classification problem.

CHAPTER 4: The subject being addressed is how an automatic target tracker
(ATT) and an ATR can be fused so tightly and so well that their
distinctiveness becomes lost in the merger. This has historically not been the
case outside of biology and a few academic papers. The biological model of
ATTUATR arises from dynamic patterns of activity distributed across many
neural circuits and structures (including those in the retinae). The information
that the brain receives from the eyes is “old news” at the time that it receives
it. The eyes and brain forecast a tracked object’s future position, rather than
relying on the perceived retinal position. Anticipation of the next moment—
building up a consistent perception—is accomplished under difficult
conditions: motion (eyes, head, body, scene background, target) and
processing limitations (neural noise, delays, eye jitter, distractions). Not
only does the human vision system surmount these problems, but it has innate
mechanisms to exploit motion in support of target detection and
classification. Biological vision doesn’t normally operate on snapshots.
Feature extraction, detection, and recognition are spatiotemporal. When
scene understanding is viewed as a spatiotemporal process, target detection,
target recognition, target tracking, event detection, and activity recognition
(AR) do not seem as distinct as they are in current ATT and ATR designs.
They appear as similar mechanisms taking place at varying time scales. A
framework is provided for unifying ATT, ATR, and AR.
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CHAPTER 5: Predatory animals detect, stalk, recognize, track, chase, home
in on, and if lucky, catch their prey. Stereo vision is generally their most
important sensor asset. Most predators also have a good sense of hearing.
Some predators can smell their prey from a mile away. Most creatures
combine data from multiple sensors to eat or avoid being eaten. Different
creatures use different combinations of sensors, including sensors that detect
vibration, infrared radiation, various spectral bands, polarization, Doppler,
and magnetism. Biomimicry suggests that a combination of diverse sensors
works better than use of a single sensor type. Sensor fusion intelligently
combines sensor data from disparate sources such that the resulting
information is in some ways superior to the data from a single source.
Chapter 5 provides techniques for low-level, mid-level, and high-level
information fusion. Other forms of fusion are also of interest to the ATR
engineer. Multifunction fusion combines functions normally implemented by
separate systems into a single system. Zero-shot learning (ZSL) is a way of
recognizing a target without having trained on examples of the target. ZSL
provides a vivid description of a detected target as a fusion of its semantic
attributes. The commercial world is embracing multisensor fusion for
driverless cars. New sensor and processor designs are emerging with
applicability to autonomous military vehicles.

CHAPTER 6: Traditional feedforward neural networks, including multilayer
perceptrons (MLPs) and the newly popular convolutional neural networks
(CNNp&s), are trained to compute a function that maps an input vector to an
output vector. The N-element output vector can convey estimates of the
probabilities of N target classes. Nearly all current ATRs perform target
classification using feedforward neural networks. These can be shallow or
deep. The ATR detects a candidate target, transforms it to a feature vector,
and then processes the vector unidirectionally, step by step; the number of
steps is proportional to the number of layers in the neural network. Signals
travel one way from input to output. A recurrent neural network (RNN) is an
appealing alternative. Its neurons send feedback signals to each other. These
feedback loops allow RNNs to exhibit dynamic temporal behavior. The
feedback loops also establish a type of internal memory. While feedforward
neural networks are generally trained in a supervised fashion by
backpropagation of output error, RNNs are trained by backpropagation
through time.

Although feedforward neural networks are said to be inspired by the
architecture of the brain, they do not model many abilities of the brain, such
as natural language processing and visual processing of spatiotemporal data.
Feedback is omnipresent in the brain, endowing both short-term and long-
term memory. The human brain is thus an RNN—a network of neurons with
feedback connections. It is a dynamical system. The brain is plastic, adapting
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to the current situation. The human vision system not only learns patterns in
sequential data, but even processes still frame (snapshot) data quite well with
its RNN, jerking the eyes in saccades to shift focus over key points on a
snapshot, turning the snapshot into a movie.

An improved type of RNN, called long short-term memory (LSTM), was
developed in the 1990s by Jiirgen Schmidhuber and his former Ph.D. student
Sepp Hochreiter. LSTM and its many variants are now the predominant
RNN. LSTM is said to be in use in billions of commercial devices.

Brains don’t come in a box like a desktop computer or supercomputer. All
natural intelligence is embodied and situated. Many military systems, such as
unmanned air vehicles and robot ground vehicles, are embodied and situated.
The body (platform) maneuvers the sensor systems to view the battlespace
from different situations. An ATR based on an RNN, that is embodied and
situated [ES], adaptive and plastic [Pl], and of limited precision (e.g., 16-bit
floating point), will be denoted by the model M = ES-PI-RNN(Qjg).
A recurrent ATR is more powerful in many ways than a standard ATR.
Both computationally more powerful and biologically more plausible than
other types of ATRs, an RNN-based ATR understands the notion of events
that unfold over time. Its design can benefit from ongoing advances in
neuroscience.

Professor Schmidhuber has made an additional improvement to his
model. He tightly couples a controller C to a model M. Both can be RNNs or
composite designs incorporating RNNs. Following Schmidhuber’s lead, we
propose a strawman ATR that couples a controller C to our model M=ES-PI-
RNN(Qy¢) to form a complete system (C U M) that is more powerful in many
ways than a standard ATR. C U M can learn a never-ending sequence of tasks,
operate in unknown environments, realize abstract planning and reasoning,
perform experiments, and retrain itself on-the-fly. This next-generation ATR
is suitable for implementation on two chips: a single custom low-power chip
(<1 W) for effecting M, hosted by a standard processor serving as the
controller C. A heterogeneous chip design incorporating high-speed 1/O,
multicore ARM processors, logic gates, GPU, codec, and neural section is
also appropriate. This next-generation ATR is applicable to various military
systems, including those with extreme size, weight, and power constraints.

CHAPTER 7: ATRs have been under development since the 1960s. Advances
in computer processing, computer memory, and sensor resolution are easy to
evaluate. However, the time horizon of the truly smart ATR seems to be
receding at a rate of one year per year. One issue is that there has never been a
way to measure the intelligence of an ATR. This is fundamentally different
from measuring detection and classification performance. The description of
what constitutes an ATR, and in particular a smart ATR, keeps changing.
Early ATRs did little more than detect fuzzy bright spots in first-generation
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FLIR video or ten-foot-resolution SAR data. Sensors are getting better,
computers are getting faster, and the ATR is expected to take over more of the
workload. With unmanned systems there is no human onboard to digest
information. The ATR is compelled to transmit only the most important
information over a limited-bandwidth data link. The ATR or robotic system
can be viewed as a substitute for a human. What constitutes intelligence in
artificial humans has long been debated, starting with stories of golems,
continuing to the Turing test, and including current dire predictions of super-
intelligent robots superseding humans. Chapter 7 provides a Turing-like test
for judging the intelligence of an ATR.

CHAPTER 8: Automation has advanced unceasingly for hundreds of years.
The final chapter of this book reflects on the clash of automation and human
values. At the forefront of this clash is the Lethal Autonomous Robot (LAR).
LARs are defined as mobile, fully autonomous, offensive mechanized
platforms that adapt their behavior to meet prescribed goals within a
constantly changing environment. LARs are intelligent machines that detect,
classify, track and kill their targets without human intervention. ATR is the
essential component of the LAR. Unlike existing ATRs, which are generally
just aided target recognizers, humans will be out of the immediate kill chain in
LARSs. The machine will determine what gets destroyed, and who gets killed,
according the target list and rules of engagement provided to it. This places a
heavy burden on the ATR to distinguish between combatants and
noncombatants, military and civilian objects. However, even a smart ATR
combined with smart decision-making software is deemed intolerable by
many human rights organizations and some nation states. They are
demanding that a human be in the loop with final control over an attack.
They want to ban fully autonomous LARs altogether (or under the majority
of circumstances), as has been done with chemical weapons, blinding lasers,
cluster munitions, napalm, biological weapons and conventional anti-
personnel mines.

However, the borderline between LARs and weapons controlled by
humans is indistinct. If the ATR in a LAR can detect and recognize targets
better than the humans in the loop, the humans will inevitably defer to the
targeting decisions of the ATR. Then the humans will just be in the loop for
ethical cover. But, the humans will lengthen the kill chain, making systems
under human control slower and less effective than true LARs. Robotic
aircraft, ground and undersea vehicles, and swarms of small craft of all types
will be so cheap and so effective, that giving them more autonomy—including
to kill—may well prove irresistible to nation states and non-state actors. This
will be particularly true when one’s powerful adversaries are relying on them.
This is the real crux of the issue. As many countries are now racing to develop
LARs, ethical issues will crash into realpolitik in the coming years.
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Humans are better suited for leadership and command than robots. Robots
are better suited for quick reaction and operation in dangerous situations like
enemy fire, minefields, radioactive contamination and chemical attack. Human
lives are precious. Robot “lives” not so much. Thus far, in the history of
mankind, nothing has stopped automation. Nevertheless, robots will not replace
humans in the larger loop of engineering and design, negotiating and treaty
making, voting and political decisions, command and control. Robotic overlords
subjugating humankind remain the stuff of science fiction and doomsayers.

LARs will be considered a success by some if their decisions to engage or
not engage, kill or not kill, are speedier, and in some sense, superior to that of
humans. Taking this several steps further, for LARs to be revolutionary war
machines, the ATR at the heart of leading-edge LARs will need to be
“brainier” than current ATRs in all the ways covered in Chapter 7. They will
have to be able to operate alone or as part of human/robot teams. LA Rs will
need to be easily understood and trusted by humans. They will have to
analyze and explain their observations and how these observations led to their
actions. LARs will need to draw rational conclusions (deduction), make
plausible assumptions (abduction), and generalize from observations (induc-
tion). To reach this point, a LAR will require sufficient background
knowledge, experience, adaptability, discernment and statistical thinking to
turn incoming data into actions. All of this will be difficult to achieve. Al,
neural networks, and ATR are often marketed as brain-like. However, no one
knows enough about the brain to reverse engineer neural functioning. Beyond
general human intelligence lies super-intelligence. LARs, let alone super-
intelligent LARs, do not yet exist in any meaningful sense. Rudimentary
LARs are under development for narrowly defined conditions and missions.
But, LARs as smart and as capable, or smarter and more capable, than a well-
trained soldier, sailor or pilot, are not imminent.

APPENDIX 1: The first appendix lists the many resources available to the
ATR engineer and includes a brief historical overview of the technologies
involved in ATR development.

APPENDIX 2: A successful project starts with a clear description of the
problem to be solved. However, a well-defined ATR problem is surprisingly
hard to come by. The second appendix provides some questions to pose to a
customer to help get a project going.

APPENDIX 3: The third appendix defines all of the acronyms and
abbreviations used in this book.
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Chapter 1
Definitions and Performance
Measures

1.1 What is Automatic Target Recognition (ATR)?

ATR is often used as an umbrella term for the entire field of military image
exploitation. ATR Working Group (ATRWG) workshops cover a wide range
of topics, including image quality measurement, geo-registration, target
tracking, similarity measures, and progress in various military programs. In a
narrower sense, ATR refers to the automatic (unaided) processing of sensor
data to locate and classify targets. ATR can refer to a set of algorithms, as
well as software and hardware to implement the algorithms. As a hardware-
oriented description, ATR stands for automatic target recognition system or
automatic target recognizer. ATR can also refer to an operating mode of a
sensor or system such as a radar. Several similar terms follow:

AiTR: Aided target recognition. This term emphasizes that a human is in
the decision-making loop. The function of the machine is to reduce the
workload of the human operator. Most ATR systems can be viewed as AiTR
systems in the broader context.

¢ ATC/R: Aided target cueing and recognition.
ATD/C: Automatic target detection and classification.
ATT: Automatic target tracking.

ISR: Intelligence, surveillance, and reconnaissance.

e NCTR: Non-cooperative target recognition.

* PED: Processing, exploitation, and dissemination.

e SDE: Sensor data exploitation.

¢ STA: Surveillance and target acquisition.

This chapter sets the stage for the rest of the book. It defines the terms and
evaluation criteria critical to ATR design and test. However, every ATR
project is different. The terms and criteria presented here will need to be
modified to meet the unique circumstances of individual programs. Consider a
competition to choose an ATR for a particular military platform. Multiple
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Target: Any object of military interest.

Traditional targets are strategic and tactical military craft. This will be the case
in point used in this text. However, today, the list can also include improvised
explosive devices (IEDs), enemy combatants, human activities, muzzle flashes,
fixed sites, commercial vehicles, land minefields, tunnels, undersea mines, and
technicals (commercial vehicles modified to contain armament).

Image truth target location or region: A single reference pixel on target or set
of pixels on target (target region) as estimated by an image analyst, using
ground truth when available.

Bounding box: Rectangle around all of the target or the main body of the
target.

For forward-looking imagery, the bounding box is generally rectilinearly
oriented (Fig. 1.3). For down-looking imagery, the bounding box will be at an
angle with respect to the axes of the image (Fig. 1.4).

For forward-looking imagery, the ground truth target location will
generally be pinned to the ground surface rather than at the center of the
grayscale mass of the vehicle. This is because the range to the point that the
target touches the ground is different from the range along the view-ray
through the target center to the ground. This truth will have an associated
target location error (TLE) in geographical and pixel coordinates. The TLE
for database targets can only be specified statistically. The truthing process
might indicate the set of pixels on the target, known as the target region. These
pixels can match the shape of the target, or be more crudely specified as a
rectangular (as in Fig. 1.3) or elliptical region. The target region is generally,
but not always, contiguous. A target region can even be smaller than a single
pixel, as in the case of low-resolution hyperspectral imagery.

Target report: Report output by ATR generally providing, as a minimum:
location in the image of detection (by its reference pixel), the equivalent
location as latitude and longitude on an earth map, various categories of
classification assigned to the target, and associated probability estimates.

(b)
Figure 1.3 lllustrations of a bounding box (a) around the entire target and (b) around the
main body of the target.
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Figure 1.4 Boxes around targets in overhead imagery can be at any angle.

The information contained in the target report can be quite extensive, but
only parts of it can be disseminated due to mission and bandwidth. A popular
protocol is MITRE’s Cursor-on-Target (CoT). The CoT event data model
defines an XML data schema for exchanging time-sensitive positions of
moving objects between systems: “what, “when,” and “where” information.

Target location and/or region as reported by ATR: Estimated target reference
pixel p4rr or region R, 7x as provided in an ATR’s report.

The ATR will report a target location. This can be the target’s geometric
center, the center of grayscale mass, the center of the rectangle about the
target, the brightest point on the target, or a point where the target touches the
ground. The ATR might estimate the pixels on target through a segmentation
process. ATR engineers should understand the scoring process and end-user
requirements so as to know how best to report a target.

Target detection: Correct association of target location p 47 or target region
R rr, as reported by the ATR, with the corresponding target location p, or
target region R, in the truth database.

Detection criterion: The rule used to score whether an ATR’s reported target
location or region sufficiently matches the location or region given in the truth
database.

Note that the truth database can contain mitigating circumstances for
which the ATR is given a pass if it doesn’t detect particular targets. Such
circumstances can be: target out of range, not discernable by eye, mostly
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1.3 Detection Criteria

It is quite challenging to precisely and unambiguously stipulate what is meant
by target detection. Let us first consider some relevant terms:

|R| = cardinality of R = the number of pixels in region R.
Let R, = region on target as indicated by truth data.
R 47 = region on target as reported by the ATR.
p:.= point (or reference pixel) on target according to the truth data,
i.e., the target reference pixel.
parr = point (or reference pixel) on target as reported by the ATR.
|la — b|| = distance between points a and b.

First, let us suppose that the ATR outputs a single detection point per
object and the truth database contains a single detection point per target. Let

A= {p,rr} denote the set of detection points output by the ATR, and
T = {p,} denote the set of detection points in the truth database.

The set C of correct detections output by the ATR is such that each
detection in C matches a target in the truth database 7 according to some
match criterion. Here, we will define several common detection criteria,
illustrated in Fig. 1.6.

Minimum distance criterion: If the minimum distance between an ATR-
reported target point and the nearest target point in the truth database is less
than a preselected value d, then the ATR has detected a valid target, as
defined by

p, € Ciff min|prp —p/l =d.
pEeT

Minimum Distance Criterion Region Intersection Criterion

Detection, d < d, No Detection, d > d, Detection |R,NR,x|>7 No Detection |[R NR,|=<7|
C9 COC D®
1 [
RI I"RA’I'R
Minimum Distance to Image Truth Minimum Distance to Reported Target
Reference Pixel Criterion Region Reference Pixel Criterion

Detection, d < d,4 No Detection, d > d, Detection, d < d, No Detection, d > d,

Parr
d d d d
[ 1 1 =

Figure 1.6 lllustration of several detection criteria.



Chapter 2
Target Detection Strategies

2.1 Introduction

An automatic (or aided) target recognizer (ATR) consists of two essential
stages: detection and recognition. This chapter covers detection algorithms for
literal imagery and ground targets, which are the most basic cases. There are a
large number of other cases that aren’t covered. Other sensor types (such as
vibrometer, high-range-resolution radar, ground-penetrating radar, LADAR,
sonar, magnetometer, etc.) and other target types (such as buried landmines,
ballistic missiles, aircraft, underground facilities, hidden nuclear material, etc.)
require detection algorithms specific to those circumstances. However, the
basic strategy covered here still applies.

Several hundred target detection algorithms were evaluated. They were
tested on tens of thousands of images of the following types:

¢ longwave forward-looking infrared (FLIR),

e midwave FLIR,

¢ Ku-band synthetic aperture radar (SAR), and
¢ X-band SAR.

Several more-complex algorithms were also designed and tested. Each
algorithm is briefly described. The ones that performed best on FLIR imagery
are noted. Some insights are shared on target detection with SAR imagery.

Detection approaches with deeper philosophical underpinnings are
referred to as grand paradigms. Eight grand paradigms are reviewed. In the
early days of ATR, there were great debates on the benefits of one paradigm
versus another: pattern recognition versus artificial intelligence, model-based
versus neural networks, signal processing versus scene analysis, etc. Money
flowed to develop the paradigms whose proponents could stimulate the most
excitement. Paradigms now generating considerable interest include
approaches based on multiscale architectures, biologically inspired designs,
and quantum imaging. Each novel paradigm has something to offer. Once the
fervor for a new approach dies down, it or its components become additional
tools in the ATR system designer’s toolbox.

35
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2.1.5 Methodology for algorithm evaluation

The following discussion is based on extensive testing. Test data consisted of
target and clutter-blob ROI images, as well as full-sized images. Targets were
tracked and wheeled military vehicles. About 30,000 ROIs were used each for
LWIR and MWIR tests. ROIs were given approximately constant spatial
scaling, taking into account typical range error. The data was from high-end
FLIR sensors of the type used on military helicopters and unmanned air vehicles.
LWIR imagery was a mixture of data from second-generation scanning sensors
and staring sensors. MWIR data was from staring sensors. Depression angles
were from 0 deg to 60 deg, with the majority of data from low grazing angles.

Algorithm evaluation was performed in multiple steps. Two equally
weighted evaluation criteria were used: parametric and nonparametric.

We recorded each detector’s response to target ¢ and clutter ¢ objects.
A simplified T-test was used to measure the distance between the two
populations of responses:

T = @2.1)

\/0%+0'3’

where X, — X is the difference of the mean scores on targets and clutter, and
o? + o2 is the sum of the variances of the scores.

We also examined the tails of the two distributions. The criterion was the
percent of clutter blobs that passed through when 90% of targets were
detected. Detection algorithms that survived this initial screening were tested
on full-frame images. The final evaluation criterion was the list length
necessary to detect 90% of targets.

Sufficient data can’t be collected to test algorithms against targets and
backgrounds in all of their potential diversity. It is more constructive to report
on which algorithms tend to perform well than it is to pick out a most
excellent algorithm. Algorithms that tested adequately on FLIR data are
enclosed in solid boxes in the text.

2.1.5.1 Evaluation criteria for production systems

Algorithm performance is only one of many considerations in algorithm
selection for production systems. The software cost of an algorithm is usually
determined by the SLOC count required to implement it. Coding and
documentation of the code are quite expensive with a coding standard such as
SEI Level 5 [or implementation on a field-programmable gate array (FPGA)].
This weighs in favor of simpler algorithms. One must also consider the
sustainability of the ATR long after its original developers have retired or
moved on to other endeavors. When an ATR enters production, there may
not be a contract in place to keep its original design crew intact, analyzing
ATR performance year after year, fixing malfunctions, and adapting the
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statistics of a region near the detector, smaller than the image as a whole,
should be used in place of global image statistics. The region should be wider
than it is high since background statistics vary with range:

X, —-X X, —-X X, —-X
T10:| 1 . 2| T, =2 27 _ X 2”
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To reduce computations, simple tests can be designed based only on sample
means. In FLIR, these are called tests of temperature difference. Two tests of
this type are given, followed by several variations. Note that test 75, would
not have been a top performer if the test database had a higher percentage of
cold targets against warmer backgrounds. Test results must be viewed in
relation to operational considerations. Is a cold vehicle a farget? So, although
test T»3 performed worse than 75, on this test set, it is more robust to target
polarity and should be considered if operational considerations so warrant.
Also note that a 2D difference of Gaussian (DoG) or 2D symmetric Gabor
filter can be viewed as a smoothed version of triple-window filter 75,:

X X v v (X| — X)) X -X
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To compare the behavior in the central portion of two independent samples of
equal size, the difference of the arithmetic means is divided by the inner- and
outer-window grayscale ranges R; and R, respectively. This provides two test
statistics similar to the T-test. They are attributed to F. M. Lord (see Ref. 7,
pp. 276-277). We also provide four variations:
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Target Classifier Strategies

3.1 Introduction

A target classifier receives image or signal data about a detection point. It
infers the category of the object portrayed by the data. The classification
decision can benefit from a host of other available information; the more
information the better.

ATR often involves a client—contractor relationship. The contractor is
committed to providing a quality product to the customer. Yet, target
classification is sometimes viewed in a naive fashion. The customer throws
data “over the fence.” The contractor is asked to classify the “targets.” Little
thought is given to the breadth and scope of the problem. The usual
“solution” involves showing that the contractor’s favorite classifier outper-
forms several alternatives.

However, the true nature of the target classification problem is more
complex. Ironically, choice of a classification paradigm may be the least
important aspect of target classification. We will outline the issues involved in
target classification. This will be followed by a review of a number of different
types of classifiers.

3.1.1 Parables and paradoxes

If no prior assumptions are made about the exact nature of the
classification problem, is any reasonable classifier superior to any other?
The answer is NO according to the No Free Lunch theorem.' Self-
deception results from choosing a favorite classifier a priori or with limited
testing, without a deep understanding of the problem and a well-vetted
test plan.

In the absence of encompassing assumptions, is there a best set of
features to use for target classification? The answer is NO according to the
Ugly Duckling theorem.? A good set of features results from understanding
the true nature of the problem. Choice of features always biases classifier
decisions.

77
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Figure 3.2 Many target types have articulated parts. An ATR must recognize them in all of
their variations. The Scud launcher shown here is most dangerous when its missile is in the
launch position. (Photo from defense.gov.)

Military vehicles often share components with other similar vehicles or
sometimes quite different vehicles. Some vehicle types use the exact same top
structure, but the bottom chassis is completely different (e.g., tracked versus
wheeled). More commonly, the bottom chassis is the same for a large number
of vehicle types, but the top structure is different. In these cases, it is
impossible to distinguish the vehicle types when only the common part of the
vehicle is observable. Some military aircraft have commercial counterparts.

In the thermal IR part of the spectrum, various parts of a vehicle can
appear quite different depending on which parts are turned on or have been
recently used, such as engine, exhaust pipe, bogey wheels, driveshaft, internal
heaters, or lights.

The critical issue in classifying a target with EO/IR imagery is scale.
Without accurate scale information, it is not known whether the target is
smaller than a single pixel or larger than the whole image. Is it a hummingbird
or a helicopter? What are the sources of scale or, equivalently, range
information?

Classifiers must be robust to target variation and varying appearance
under different conditions. It needs to be understood that under some
conditions and aspect angles, certain vehicle types cannot be discriminated
from each other (Fig. 3.3).

3.2.5 Issue 5: Platform issues

The nature of the platform in which the ATR resides affects the target
classification problem. Platform vibration is a major issue. Vibration may be
dampened by the sensor system, but there is always residual vibration.
Vibration is much worse under some circumstances, such as after a missile is
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Figure 3.6 Examples of several feature types for an IR image of a jeep and a visible image
of a Predator-B UAV. Feature types from left to right are: raw grayscales, edge image,
Laplacian image, histogram, and Fourier magnitude. (Jeep image from NVESD.Army.mil.
UAYV image from Grandforks.af.mil.)

i

Figure 3.7 Difference-of-Gaussians pyramid. (Tank photo by Sgt. Chad Menegay,
www.Army.mil/NewsArchives.)

moments p,q of order p + ¢ for image region or segmented blob f(x, y) are
defined as

szf’y‘ffxy
ZZ Py =) (%) pg=012....., (3.1

where X = Z—é‘é = ﬁ—g(') , and (X, ) is the center of grayscale mass of the region.

Features can be formed from combinations of moments.® Some of these
features are insensitive to translation, rotation, and affine transforms. Other
types of moments have been proposed, including ridgelet, Zernike, Gaussian—
Hermite, Legendre, Fourier—Mellin, geometrical, and complex.

Features can be obtained by partitioning an image into overlapping
blocks and then extracting features local to each block. Popular features of
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Figure 3.9 (a) Feature vectors from two linearly separable classes. The five support
vectors have dark perimeters. (b) The best separating hyperplane, according to SVM, is the
one with the most margin, shown here as a dashed line.

Hy:X-Witb=+l,
HyX-W+b=—1. (3.4)

According to the SVM method, the hyperplane H provides the best
separation between the two sets of points. The distance between hyperplanes
H, and H, is 2/||W||. Minimizing ||W/|| maximizes the margin. The following
constraint is added:

X, - W+ b = +1forX,of the first class Y; = +1,
X, W+ b = —1forX,of the second class Y; = —1. (3.9)

The two equations can be combined to yield
Y;(X;- W+ b)=1 for all i, where Y, e{—1, +1}. (3.6)

This is a constrained optimization problem that can be solved by the
Lagrangian multiplier method. The objective is to find the hyperplanes that
maximize the margin by minimizing ||W||?> such that the discrimination
boundary is conformed:

. 1
Minimize P TETE] such that
2||W||

The problem is formulated in a dual form as



Chapter 5
Multisensor Fusion

5.1 Introduction

Suppose that you are visiting your Aunt Florence. You get hungry and
meander into the kitchen. Sitting on the table is a plate of fish. It looks
appealing, but something is a bit funky about it. So you poke it, smell it, and
taste a tiny bit. It is tasty, but still doesn’t seem quite right. Then comes the
clincher. Your aunt yells from the next room: “Don’t eat the fish!” The human
brain is an excellent example of a multisensor fusion system. Fusion of data
from your five senses kept you from eating the spoiled fish (Fig. 5.1).

But how did all five senses focus on the same object? This is called the
binding problem.! All of the features and traits of the fish, in all of the sensor
data, must have been segregated from all of the properties of other nearby
objects and the background. Then the features must have been associated with
the concept of “fish.” Binding occurs in many different parts of the brain.
There is no single algorithmic solution. Binding is a class of problems: binding
over visual space, segregating one sound from others, cross-modal binding

¢
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9
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">

Figure 5.1 All five senses are used to determine whether the fish is too far gone to eat.
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classification decision is maximized. The sensor selection problem is often
formulated in terms of information theory.

The mutual (shared) information between variables X = (x, x5, ..., X,,)
and Y = (y1,),...,),) is given by

= 3 3 p(xy,) log 2200 (5.1)
P’

X, €X y,€Y

where p(x,y) = p(r,x) = p(x)p(y|x) = p(y)p(x|y) is the joint probability
density function of X and Y, and p(x) and p(y) are the marginal probability
density functions of X and Y, respectively.

The entropy of random variable X is given by

H(x) =) _p(x)logp(x). (52)

X

H(x) can be thought of as the expected information learned from one instance
of the random variable X. The mutual information between variables X and Y
can be expressed in terms of entropy:

I(X;Y)=H(X)— H(X|Y)=H(Y)— H(Y|X)=I(Y;X). (5.3)
This is illustrated in the form of a Venn diagram (Fig. 5.14).
The mutual information between class vector C = (cy, ..., ¢,) and feature
vector V = (vy,..., ) can also be expressed in terms of entropy:
¢ (cilv;)
=> > ple ,,,log ’ =33 ple vy log? 69
c;eCvev c,eCv,ev p(

Adding a sensor S, to a baseline sensor S; should improve the
classification decision. But that is not the whole story. In order to decide
whether it is worthwhile to add the second sensor, one must take into account
(1) the redundancy in the features derived from the two sensors and (2) the

H(X) H(Y)

(@) (b)
Figure 5.14 (a) The mutual information /(X;Y) of random variables X and Y is a measure of
the mutual dependence between the two variables. H(X) and H(Y) are the individual
entropies of X and Y, respectively. (b) Two independent variables X and Y have no mutual
information.
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N
Pleclx) = 5 Ple)] [] Pileclx). (5.17)
i=1

where B is a normalizing constant that is used so that the resulting
probabilities sum up to one.

The reason that the optimal Bayes decision rule is seldom used for ATR is
that if one classifier outputs a zero probability for a particular class ¢, then it
doesn’t matter how high a score the other classifiers give it. The product rule is
said to suffer from the veto problem in that one classifier can veto the good
work of all of the other classifiers.

5.4.2.2 Bayes belief integration

Now suppose that an open test set is available. The N classifiers can be run on
the open test set. Each classifier’s performance can be reported in the form of
a confusion matrix (see Table 5.1), where sg denotes the number of open test
set samples from class ¢; that were assigned to class ¢; by the k™ classifier,
k=1,...,r. This is done in advance, offline.

Now for online operation, let ¢ denote the classification decision from the
k™ classifier. The belief in class ¢; is obtained with a product rule,

[Ty P e)
[Ty P

where P(¢¥|c;) = P(¢%|x € ¢;) is the probability that the &' classifier output is
¢* given that the unknown x was really in class ¢, Now using the pre-

. . . 3
determined confusion matrices sg-,z

Bel(c;) = P(c;) (5.18)

Si

P = ¢lle) = < (5.19)
D i1 i
rosk
P(eF =¢) == (5.20)
i=1 Zl:l Sfcl

Table 5.1 Confusion matrix for the k' classifier.

Reported by k™ classifier
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Chapter 8

ATR and Lethal Autonomous
Robots

8.1 Introduction

The term autonomous stems from the Greek autos (self) and nomos (law).
Autonomous implies reduced human control as compared to automatic
(or automated) control.! An automated car will be less intelligent and
independent than an autonomous car. It will be less able to learn, understand,
and adapt to new situations. Driverless and autonomous are nearer to
synonyms, as are self-driving and automated. When developed, a truly
driverless car will not require a human to take control in difficult situations. It
will be able to deliver packages without any humans onboard. Virtually all
current automatic (a.k.a. aided) target recognizers (ATRs) leave decisions
about weapons delivery to humans. A future autonomous platform could
have an embedded ATR, but no humans in direct control. That is the premise
of this chapter.

The term robot stems from the Czech word robota meaning “slave labor.”
Robots perform labor otherwise done by humans. As we describe them,
robots are more mobile than, for instance, robot arms used in manufacturing.
Robots are embodied in an engineered structure and situated within the
environment. They perform tasks that manipulate the environment and alter
their situation within the environment.

A fully autonomous robotic system will change its behavior in response to
environmental context and unanticipated events. Doing so will require both
dexterity and intellect. An (artificially) intelligent autonomous robotic
platform will perform tasks otherwise requiring human intelligence. It will
have goals to strive for in the course of its operation. Autonomous robotic
machines will be capable of course plotting, navigation, and travel. They will
be built from an assemblage of different technologies, including sensors,
actuators, motors, computers, and communication devices. Autonomous
robots will store energy and use it to initiate and control movement
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8.4 LARs and the OODA Loop

The OODA loop is based on the acronym for the cycle of observe, orient,
decide, and act (Fig. 8.1). This loop is U.S. Air Force Colonel John Boyd’s
time-honored model of mental processes.?’ It originally referred to how the
brains of fighter pilots are supposed to process information and make
decisions. It is analogous to the perception—action cycle known to
psychology.?® The term loop indicates that the process is cyclical. The first
three parts of the loop are preparation for correct action. Military advantage
is obtained by processing the loop very quickly. The objective is to cycle
through the loop faster and more skillfully than one’s adversary. This should
be possible if you are a robot and your adversary is human.

Consider the elements of the OODA loop as it would be implemented by a
LAR (Fig. 8.2).

Observe Orient

OODA
Loop

Ac Decide

t
Figure 8.1 The OODA loop is a four-step process: Observe — Orient — Decide — Act.

Sense Observe Orient Decide Act
(Sense Situation) (Perceive Situation)  (Interpret Situation)  (Plan New Situation)  (Control Situation)

: . ATR Intelligent
Active & Passive (fuse, detect, Preparation of Task Orders, Rules Navigate
Sensors track, infer) Battlespace of Engagement
(Evolve Operational
Picture)

Proprioceptive Detect Roads, Select Best Control Sensors
Sensors Obstacles Course of Action
Localize & Map
Positioni
ositioning Detect Plan Behavior Control Weapons
Sensors Landmarks Monitor Own
Health

Determine S
: Learn, Adapt ctuators

All Models

Data Packagi
Executive Control ata Fac agmg External Communications
Data Logging

Figure 8.2 A LAR’s OODA loop.




ATR and Lethal Autonomous Robots 303

class of x, by classt.,. = t*. Let t denote a specific incorrect target label, such
as “clutter” when the detected object is actually something else like a T-80
tank. The aim of a targeted adversarial attack is to find an input x’ such that
f(x") =t, and for x and x’ to appear very similar to each other. The adversary
will have been paricularly successful if the difference between x and x’ is
inperceptible to the human eye. The untargeted adversarial attack does not
specify any particular target label t. That is, t can be clutter, car, cow, or
anything but the correct label.

The attacker’s goal is to produce an adversarial example x’' =x + 8x =
x +e. The general problem of constructing an adversarial example can be
formulated as:

Given a clean input x,

minimize distortion D(e)
subject to f(x +¢&) =t; x+¢e € [0,1]"

Distortion D(g) is measured by a norm:

n I/p
D(e) = |x - x|, = (Z i — x;-rp) .
i=1

Different norms define different types of attacks.

p =0: The Ly norm measures the number of mismatched feature elements
between x and x'.

p=1: The L; norm measures the sum of the absolute values of the
differences between x and x'.

p =2: The L, norm measures the Euclidean distance between x and x'.

p =0 The L, norm measures the maximum difference between x; and
X, Vi.

One possible goal of the attacker is to develop adversarial examples that
minimize D(e), per the chosen norm, to make the adversarial examples
undetectable to human vision, but still to fool a classifier. Several approaches
have been proposed to find adversarial examples. These approaches are often
referred to by their acronyms: BFGS, Deep Fool, FGSM, BIM, JSMA,
Carlini-Wagner, etc.

8.8.8 Ways to mitigate adversarial attack against a LAR (particularly
its ATR component)

1. Develop the ATR in a secure environment with cleared personnel.

2. Do not let anyone (without clearance and need to know) borrow or
even see the training data, test data, data collection plan, or T&E
documents. Do not let anyone (without clearance and need to know)





