
Chapter 4

Airy Functions

4.1 Introduction

Airy functions are named after the English astronomer George Biddell Airy
(1801–1892). Airy’s first mathematical work was on the diffraction phenom-
enon, namely, the Airy disk—the image of a point object by a telescope—
which is familiar to all of us in optics. The name Airy is connected with many
physical phenomena and includes, besides the Airy disk, the Airy spiral, an
optical phenomenon visible on quartz crystals, and the Airy stress function in
elasticity.

Airy was very interested in optics and in fact studied the formation of
rainbows. A good qualitative summary of the rainbow is given by Adam.40 In
this paper Adam shows how the optical rainbow can be studied at many levels:
(i) geometrical optics (rays), (ii) the Airy approximation, (iii) Mie scattering,
(iv) complex angular momentum, and (v) catastrophe theory. Airy’s analysis is
approximate but applies well to large raindrops that make up the common
rainbow (for small drops, catastrophe theory has been used). Details of Airy’s
analysis can be found in the chapter on the optics of raindrops in the book
by van de Hulst41 (see also Berry42). Airy also analyzed the intensity of light
near a caustic wavefront. During his investigation utilizing the scalar
diffraction integral, he introduced a function W(m) defined by the integral

WðmÞ ¼
Z̀
0

cos
�
p

2
ðv3 �mvÞ

�
dv (4.1)

as a solution of the differential equation

d2W
dv2 þ p2

12
mW ¼ 0: (4.2)

Jeffreys43 introduced the modern notation currently used:

AiðxÞ ¼ 1
p

Z̀
0

cos
�
t3

3
þ xt

�
dt: (4.3)
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Equation (4.3) is referred to as the Airy integral and can be shown to be the
solution to a homogeneous differential equation of the type

d2y
dx2

¼ xy: (4.4)

This equation is generally known as the Airy equation or the Airy differential
equation. However, caution must be exercised in differentiating Eq. (4.3)
under the integral, since the integral would become indeterminate as t!`.
For a rigorous proof of this solution, we need to use complex variable
techniques. Here, we show a simple intuitive technique. Let’s define a function
Fs(x) as follows:

FsðxÞ ¼
Zs

0

cos
�
txþ 1

3
t3
�
dt, (4.5)

where s is a large but finite number. Substituting this Fs for y in Eq. (4.4), we
obtain

d2Fs

dx2
� xFsðxÞ ¼ � 1

p

Zs

0

ðt2 þ xÞ cos
�
tx� 1

3
t3
�
dt ¼ � 1

p
sin

�
sxþ 1

3
s3

�
:

(4.6)

As s! `, the function oscillates rapidly between � 1
p and þ 1

p. Therefore, we
can set the mean value of the function equal to zero and show that Fs is a
solution of Eq. (4.4) in the limit s!`. In this limit Fs becomes the Airy
integral [Eq. (4.3)].

4.2 Ai(x) and Bi(x) Functions

Ai(x) can be given by a power series expansion

AiðxÞ ¼ 1
32∕3Gð23Þ

�
1þ 1

3!
x3 þ ð1Þð4Þ

6
x6 þ ð1Þð4Þð7Þ

9!
x9 · · ·

�

� 1
31∕3Gð13Þ

�
xþ 2

4!
x4 þ ð2Þð5Þ

7!
x7 þ ð2Þð5Þð8Þ

10!
x10 · · ·

�
: (4.7)

The Airy differential equation [Eq. (4.4)] is a second-order differential
equation; it must, therefore, have a second independent solution. This is
denoted as Bi(x) and is given by

BiðxÞ ¼ 1
p

Z̀
0

�
exp

�
� 1
3
t3 þ xt

�
þ sin

�
1
3
t3 þ xt

��
dt: (4.8)
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The power series expansion of Bi(x) is given as

BiðxÞ ¼
ffiffiffi
3

p

32∕3Gð23Þ
�
1þ 1

3!
x3 þ ð1Þð4Þ

6!
x6þ · · ·

�

þ
ffiffiffi
3

p

31∕3Gð13Þ
�
xþ 2

4!
x4 þ ð2Þð5Þ

7!
x7þ · · ·

�
: (4.9)

Functions Ai(x) and Bi(x) are the Airy functions.
These functions are available as airy in scipy.special in Python. This

function returns four arrays, Ai, Ai 0, Bi, and Bi 0 in that order. Figure 4.1
shows the plots of Airy functions Ai and Bi.

As is usual, let us write a power series solution of the form

yðxÞ ¼ a0 þ a1xþ a2x2þ · · · (4.10)

to solve the Airy equation. Substituting Eq. (4.10) in Eq. (4.4) and simplifying,
we obtain

2a2 þ ð3Þð2Þa3xþ ð4Þð3Þa4x2þ · · · þnðn� 1Þanxn�2þ · · ·

¼ a0xþ a1x2 þ a2x3þ · · · þan�3xn�2þ · · · : (4.11)

Figure 4.1 The Airy functions Ai(x) (solid line) and Bi(x) (dotted line).
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Equating coefficients, we find that

a2 ¼ 0,

a3 ¼
a0

ð2Þð3Þ ,

a4 ¼
a1

ð3Þð4Þ
..
.

an ¼
an�3

nðn� 1Þ , (4.12)

and consequently, we obtain for the solution,

yðxÞ ¼ a0

�
1þ x2

ð2Þð3Þ þ
x6

ð2Þð3Þð5Þð6Þ þ · · ·
�

þ a1

�
xþ x4

ð3Þð4Þ þ
x7

ð3Þð4Þð6Þð7Þ þ · · ·
�
, (4.13)

where a0 and a1 are the two arbitrary constants that need to be fixed applying
the appropriate boundary conditions. If we were to write

f ðxÞ ¼ 1þ 1
3!
x3 þ ð1Þð4Þ

6!
x6 þ ð1Þð4Þð7Þ

9!
x9þ · · · (4.14a)

gðxÞ ¼ xþ 2
4!
x4 þ ð2Þð5Þ

7!
x7 þ ð2Þð5Þð8Þ

10!
x10þ · · · , (4.14b)

we notice that Eq. (4.13) could be written as

y ¼ a0

�
1þ 1

3!
x3 þ ð1Þð4Þ

6!
x6 þ ð1Þð4Þð7Þ

9!
x9þ · · ·

�

þ a1

�
xþ 2

4!
x4 þ ð2Þð5Þ

7!
x7 þ ð2Þð5Þð8Þ

10!
x10þ · · ·

�
: (4.15)

If we set

a0 ¼
1

32∕3G
�
2
3

� ¼ 0.35503 (4.16a)

a1 ¼
1

31∕3G
�
1
3

� ¼ 0.25882, (4.16b)
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we obtain the series expansion Ai(x) [Eq. (4.7)] and Bi(x) [Eq. (4.9)] as

AiðxÞ ¼ a0f ðxÞ � a1gðxÞ (4.17a)

BiðxÞ ¼
ffiffiffi
3

p
½a0f ðxÞ þ a1gðxÞ�: (4.17b)

Equations (4.17a) and (4.17b) are the ways these two functions Ai(x) and Bi(x)
are traditionally written. It is easy to show, from Eqs. (4.15) and (4.17), that

Aið0Þ ¼ a0, Ai 0ð0Þ ¼ �a1,

Bið0Þ ¼
ffiffiffi
3

p
a0, Bi 0ð0Þ ¼

ffiffiffi
3

p
a1, (4.18)

where the prime ( 0) is used to denote the derivative, and f 0(0) is a short form
for df

dxjx¼0. For higher derivatives we can show that

AiðnÞð0Þ ¼ ð�1Þncn sin
�
pðnþ 1Þ

3

�
(4.19a)

BiðnÞð0Þ ¼ cn

	
1þ sin

�
pð4nþ 1Þ

6

�

(4.19b)

with

Cn ¼
1
p
3ðn�2Þ∕3G

�
nþ 1
3

�
: (4.20)

Here, the superscript n denotes the n-th derivative. We can get the ascending
series of the derivatives by differentiating f(x) and g(x) in Eq. (4.17) term by
term, as shown below:

Ai 0ðxÞ ¼ a0f 0ðxÞ � a1g 0ðxÞ
Bi 0ðxÞ ¼

ffiffiffi
3

p
½a0f 0ðxÞ þ a1g 0ðxÞ�

f 0ðxÞ ¼ x2

2
þ 1
ð2Þð3Þ

x5

5
þ 1
ð2Þð3Þð5Þð6Þ

x8

8
þ · · ·

g 0ðxÞ ¼ 1þ 1
ð1Þð3Þ

x3

3
þ 1
ð1Þð3Þð4Þð6Þ

x6

6
þ 1
ð1Þð3Þð4Þð6Þð7Þð9Þ

x9

9
þ · · · : (4.21)

4.3 Relationship with Bessel Functions

In Sec. 2.2, we mentioned that the beta function could be written in terms of
the Bessel function. Similarly, through Eqs. (3.77), we related the Fresnel
integral to the Bessel functions. In a similar way, we deal with the Bessel
function before it makes its appearance in this book (see Ch. 5). This is
because Ai(x) and Bi(x) can be expressed in terms of the Bessel function, and
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using the asymptotic forms of the Bessel function, it is possible to get the
asymptotic form of the Airy function. Readers may choose to skip this section
and come back to it after working through Ch. 5.

Consider Eq. (4.4),

d2yðxÞ
dx2

� xyðxÞ ¼ 0 (4.22)

in the region x, 0. Let us define z¼�x. Therefore, for z. 0, we obtain

d2yðzÞ
dz2

þ zyðzÞ ¼ 0: (4.23)

Let y(z)¼ z1/2f(z). The above equation, therefore, becomes

z1∕2
d2f

dz2
þ z�1∕2 df

dz
þ
�
� 1
4
z�3∕2 þ z3∕2

�
fðzÞ ¼ 0: (4.24)

Now, we make another transformation of the variable z ¼ 2
3 z

3∕2. This results
in the following transformations of the derivatives:

z ¼ 2
3
z3∕2 (4.25a)

df
dz

¼ df
dz

dz
dz

¼ z1∕2
df
dz

(4.25b)

d2f

dz2
¼ z1∕2

d
dz

�
df
dz

�
dz
dz

þ 1
2
z�12

df
dz

¼ z
d2f

dz2
þ 1

2
z�1∕2 df

dz
: (4.25c)

Substituting these expressions for the derivatives into Eq. (4.24) and
simplifying, we end up with

z3∕2
d2f

dz2
þ 3
2
df
dz

þ
�
� 1
4
z�3∕2 þ z3∕2

�
f ¼ 0: (4.26)

Using the transformation z ¼ 2
3 z

3∕2, we can simplify the above equation to
obtain

z2
d2f

dz
þ z

df
dz

þ
�
z2 � 1

9

�
f ¼ 0: (4.27)

As will be seen in Ch. 5 [Eq. (5.1)], the solution of the differential equation

x2
d2y
dx2

þ x
dy
dx

þ ðx2 � n2Þy ¼ 0 (4.28)
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is the Bessel function of the order n. Therefore, Eq. (4.27) represents a Bessel
differential equation of the order 1

3. Since it is a second-order differential
equation, it has two solutions, namely Bessel functions of the order � 1

3. The
two independent solutions of the equation are

y ¼ jxj1∕2J1∕3ðzÞ,
and

y ¼ jxj1∕2J�1∕3ðzÞ,

where z ¼ 2
3 z

3∕2 ¼ 2
3 jxj3∕2. The appropriate linear combinations of the Airy

functions for x, 0 are, therefore,

A1ð�xÞ ¼ 1
3

ffiffiffi
x

p ½J�1∕3ðzÞ þ Jþ1∕3ðzÞ�, (4.29a)

and B1ð�xÞ ¼
ffiffiffi
x
3

r
½J�1∕3ðzÞ � Jþ1∕3ðzÞ�, (4.29b)

with the understanding that z ¼ 2
3 jxj3∕2.

We can do a similar analysis for the region x. 0 and obtain as two
independent solutions,

y ¼ x1∕2I1∕3z,

and

y ¼ x1∕2I�1∕3ðzÞ,
where In represents the modified Bessel function (see Sec. 5.6). As above, the
Airy functions then become

AiðxÞ ¼
ffiffiffi
x

p
3

½I�1∕3ðzÞ � Iþ1∕3ðzÞ� (4.30a)

BiðxÞ ¼
ffiffiffi
x
3

r
½I�1∕3ðzÞ þ Iþ1∕3ðzÞ�: (4.30b)

Airy functions are thus Bessel functions or linear combinations of these
functions of the order 1

3. Jeffreys
44 makes an interesting observation about this

relationship between the Bessel functions and the Airy functions:

“Bessel functions of order 1
3 seem to have no application except to

provide an inconvenient way of expressing this [Airy] function.”
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