Chapter 1
Complex and Hypercomplex
Numbers

The theory of complex numbers is well developed; complex numbers have
been used in science and engineering for a long time and are still being used
for solving many new problems. The arithmetic of these numbers generalizes
the arithmetic of real numbers in the sense that, together with the operations
of addition and multiplication by real numbers, the inverse number and the
division are defined. Such a complete arithmetic exists for other numbers,
which are called quaternions and octonions. Quaternions were first discovered
by Hamilton in 1843 [6]. More recently, quaternions have been employed in
bioinformatics, navigation systems [7], and image and video processing [8, 9].
Octonions, which are defined as doubled quaternion numbers [34], have been
used in signal and image processing, and we believe that they can also be used
effectively for parallel processing many images.

Recently, the theory of quaternion algebra has been used in the applica-
tion of color science that processes the three color channels simultaneously
[1]-[13]. Quaternion numbers found interesting applications in color image
processing, such as image enhancement [19, 31], watermarking [32], adaptive
filtering [33], and prostate cancer Gleason grading [16]. The quaternion can be
considered as a four-dimensional number with one real part and three
imaginary parts. The imaginary dimensions are represented as i,j, and k,
which are orthogonal to each other and to 1. In many cases, it is useful to
transfer the calculations from the real space of signals and images to complex
space, analyze and solve problems by using methods of the complex analysis
(arithmetic), and then transfer the solution back to the real space. The
transformation to the space of quaternions is also promising. Quaternion
algebra for color imaging was first used by Pei and led to the description of
new tools, such as the quaternion Fourier transforms and correlations for
image processing by representing the red, green, and blue values at each pixel
in the color image as single pure quaternion-valued pixels [10]. There are a
number of studies on quaternions and quaternion operations and systems in
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color image processing [11]-[19]. These color-processing systems use pure
complex quaternion representation, not the complete quaternion components.

It is natural to ask how to use the complete quaternion representation, or
more precisely, how to use the “real” scalar number information in different
color image-processing applications, or what the advantage is of using the
complete representation model over the pure complex quaternion model,
particularly in color image processing. The demand by the consumer to run
multiple applications on a mobile platform is increasing every day and is
presenting a greater challenge to develop efficient computation tools and
proficient energy resources [8]. For example, the users want their cell phones
to work on different communication standards with multiple office or home-
related applications showing real-time performance.

1.1 Complex and Hypercomplex Numbers

In this section, we present the basics of the complex and hypercomplex
numbers, namely quaternions, and describe the main operations and properties
of such numbers. Complex numbers are considered as points on a two-
dimensional plane, where one coordinate is real and another one is measured
along the imaginary vertical, as shown in Fig. 1.1 for the point (3, 2i). The first
coordinate, 3, of this point is measured along the real axis, and the unit on the
vertical is denoted by 14, or simply i. This unit measure i is called the imaginary
unit and will be described in the next sub-section.

1.1.1 Complex arithmetic

We first go back to the sixteenth century, when the formal and not real
solution of the simple quadratic equation

241=0, or 22=—1, (1.1)

was denoted by z = v/—1 by two Italian mathematicians Rafael Bombelli and
Gerolamo Cardano [34]. Another solution of this equation is z = —v/—1.
Figure 1.2(a) shows the graph of the parabola y = x*> + 1, which does not
intersect the horizontal line, i.e., there is no solution of Eq. (1.1) in real
arithmetic. Solutions to this equation can be found in other arithmetics that
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Figure 1.1 The point on a two-dimensional plane.
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Figure 1.2 (a) Parabola and (b) the unit circle with four unit points on it.

will be described in a moment; in fact, these two solutions are on the unit
circle shown in Fig. 1.2(b). There are four unit points on this circle. Two
points are on the horizontal line, +1, and they are the solutions of the
equation z2 — 1 = 0, which can be written as x> — 1 with real numbers x. The
graph of the parabola y = x> — 1 is also shown in Fig. 1.2(a). Two other
points of the circle, which are on the vertical line, are the solutions of the
equation z2 + 1 = 0. These are the points z; = v/—1 and z, = —/—1.
Given a real number y # 0, the solutions of the equation

2
24+32=0, or G) r1=0, (1.2)

can be written as z/y = +v—1, z = £yv/—1, or z = £(v/—1)y. If for a given
real number x we consider the quadratic equation

(z—x)*+)* =0, (1.3)

then, one can see that z — x = +yv/—1 and the solutions of this equation are

the numbersz = x + yv—1 =x+ (V—-1)yandz=x — yv—-1=x— (V-1)y.

In the eighteenth century, Euler denoted this imaginary number or symbol
V—1 by i, ie., i=+—1and i = —1. This symbol represents an imaginary

unit, and in the engineering community it is denoted by j, since the letter “i” is
used for the electrical current.

The number z = x + iy = x + yi is called a complex number. Numbers x
and y are real, and x is called the real part of z and y is the imaginary part of z.
These two parts are denoted by x = Re (z) and y = Im(z), or x = R(z) and
¥ = S§(z). The concept of the complex number generalizes the real numbers
that can be considered as the complex numbers with zero imaginary parts,
i.e., when y = 0. Arithmetical operations also are generalized in complex
arithmetic, and we consider the main operations over complex numbers.
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Given complex numbers z; = x; +iy; and z, = x, + iy,, the following
properties for operations of addition and multiplication are valid:
Loz +z =[x +iy] + [+ ] = (X1 +x2) +i(y1 + 1),
2. kzy = klxy + iy = (kxy) + i(kyy),
for any real number k. One can note that z; + z, = z, 4+ z;. The operation of
subtraction is defined as z; — z, = z; + (—1)z:
3. zi—znp = tin = [t = (= x) il — )

The most important operation of complex numbers is multiplication,
z = z;2,, which is calculated directly as

2122 = [X1 4 ivi][x2 + 2] = X1 X0 4 X1y + iv1x0 + Py
Considering the definition, i = —1, we obtain the following:
4. z1zp = (x1x0 — y1y2) + (X2 +y1%2).

Thus, the multiplication of two complex numbers z; and z, is the com-
plex number z = x + iy with the real and imaginary parts defined by
X = XXy, —y1y, and y = x1), + y1X,, respectively. When the numbers z;
and z, are real, i.e., y; =0 and y, = 0, this operation is reduced to the
multiplication of real numbers, z;z, = x;X,. The set of complex numbers is
denoted by C.

Example 1.1
If z; =14 2i and z, = 2 — 3i, then the multiplication proceeds as
212, =2-2(-3)] +i[-3+2(2)]=8+1.

The operation of multiplication together with the operations of addition
and subtraction is commutative, i.e.,

5. 2z = (X1 — yoyy) +i(xoy) + X)) = 2125

It is not difficult to see that for any real numbers k; and k, and complex
numbers z;, z,, and z3, the following holds:

Sa.  (kiz1)(kazy) = (kika)(z122),
Sb 21(22+23) :ZIZZ+ZIZ3.

For a complex number z; = x| + iy, the number z, = x; — iy, is called
the complex conjugate and denoted by Z,. It is clear that Z; = z, for any com-
plex number, and Z; = z;, if only the number z; is real. The operation of
conjugation z — Z is a linear operation, namely,
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6. Z1 +k22 = 21 —|—k22,

for any real number & and complex numbers z; and z,.
The module |z;| of the complex number z; is defined as the multiplication
2121, which according to multiplication can be written as

6a. zZ; = (xyx1 + yiy1) + i(=x1p +yixy) = X7 + 3]

and denoted as |z|*. Therefore, |z;| = {/x? + y} and it is positive if z; # 0,

and it is clear that |z;| > |x;| and |z{| > |y;|. The number |z,| also is called the
length of z;.

In the general case, the following holds for the complex conjugate of the
multiplication:

6b. 712, = (XX — y1)2) — i(x102 + y1X2) = 215
The following equalities hold for multiplication:
1212, = (2122)(2122) = (2122)(2122) = (2121)(2222) = |71 ]2z

Therefore, the length of the product of two complex numbers equals the
product of their lengths:

6c. |z122| = |z1]|z].

Example 1.2

For the complex number z; = 3 + 4i, the length of the number is

lz) = V3 +42=v9+16=5.

The complex conjugate number Z; = 3 — 4i has the same length:

2] =1/3*+ (—-4)?*=V9+16=5.
The property of triangle inequality holds for the complex numbers
6d. |z1+z2| <[z + |z

The equality holds for the cases when one of the complex numbers is zero, or
z; = kz, when k is real.

When z; is an imaginary number, i.e., x; = 0, the square of the number is
z3 = (iy,)? = —y} and therefore,

6e. z3=—|z|%.
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Example 1.3

For the complex number z; = 4i, the length of the number is
|21’ =V 42 = 4, |Zl|2 — 16, and Z% — (41)2 — 1612 — _16.

From the equation z;Z; = |z;|?, the inverse number 1/z, is defined as

1 _
7. (21)7] :Z:WZI’ when Z #+0.

Indeed, one can verify that (z;)!(z;) = (z;)(z;)~! = 1. Therefore, the opera-
tion of division of the complex numbers z, and zy, if only z; # 0, is defined as

8. Z—zzzz(zl)*l zzzlzzz—l Z :—1 257 _ i )
21 Z |Zl|2 |Zl|2 |21 |2
Example 1.4

For the complex numbers z; = 3 — 4i and z, = 2 + i, we have the following:

1o o 34
L - 3 di) =~ (34 4i) = o 4 ie
Py i Eonye S TI G TR T

and
T I 2.
2_3_41__25(24—1)(3—1—41)—25(2+111)—25+125.

In complex arithmetic [35, 36], we can solve Egs. (1.1) to (1.3). For that,
we first consider the complex numbers z on the imaginary line, i.e., z = iy.
The solution of equation z> 4 1 =0, which for such complex numbers is
—?+1=0, are z=i(+1) =i and z = i(—1) = —i. Figure 1.3(a) shows a
graph of the parabola z>+1 = (iy)>+ 1, when iy runs the interval of
imaginary numbers [—2i,2i]. One can see that this parabola intersects the
horizontal at points +i and —i. Another parabola (z — 1)> + 2 is shown in
Fig. 1.3(b). It should be noted that the graph of this parabola is calculated for
the complex numbers z = 1 + iy when the imaginary components y run the
interval [—2,2]. Therefore, the plot is shown versus these complex numbers
z=1+4iy. This parabola intersects the horizontal line at two points,

zi=14+i/2and z, = 1 —iV/2.
1.1.1.1 Geometry of complex numbers

Every complex number z = x + iy can uniquely be presented as the point
(x,y) on the real plane R?. In fact, this is another form of representing the
complex number. We denote this point by P = P(z), which has the Cartesian
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Figure 1.3 Graphs of (a) the parabola z? 4 1 and (b) the parabola (z — 1)? + 2.

coordinates (x,y). The expression P = x + iy relates to complex arithmetic.

The distance between the original and P is d(P) = |z| = v/x> + »°. So, the
point P lies on the circle of radius r = d(P).

In the specific case where r = 1, when point P lies on the unit circle, we
can write P as

P =P(0) = (x,y) = (cos 0, sin ) = cos 6 + i sin 6,

where the imaginary unit i> = —1. The cosine and sine functions are
calculated by the known Taylor series,
92 94 66 98 910
S I
cos(6) FTRP T TR TR T TR
63 95 97 69 ell

Similarly, the point P = P(—0), which represents the complex conjugate
number Z, can be written as

P = P(—0) = (x, —y) = (cos 0, — sin ) = cos 6 — i sin 0.

Both points P and P are on the same circle of radius r = d(P) = d(P).
Therefore,

P(6) + P(—0) =2 cos 6,
P(6) — P(—6) = i2 sin 6.

The function P(6) is denoted by ¢ in honor of Euler, who used this function
and founded the above relations for the real and imaginary parts of e’

e+ e =2cos 0, (1.4)

% _— ¢7 =2 sin 0. (1.5)

e
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The point on the unit circle is completely described by the angle 6. The
unit circle intersects the axes at the points

1= i=i', —-1=72 —i=P)i=4¢.

b

The points P(0) on the unit circle with 6 =, w/2, /3, and /4 are the
following:

€™ = cos(m) +isin(m) = -1 +i0 = —1,
e™? = cos(mw/2) +isin(m/2) =0+ il = li =i,

. ) 3
™3 = cos(m/3) + i sin(m/3) = 0.5 + i% = 0.5+ 0.8660i,
, 2 2
e'™/* = cos(mw/4) + i sin(mw/4) = \/7— + i% =0.7071 + 0.7071i.
Since " = (—1)" and "' = (-1)"i for integers n=0,1,2, ..., the

Taylor series for the complex exponential function exp(i6) can be obtained as

. o @0 (@8t (@8)° (@8 @9
cos(0) + i sin(0) =1+ St et q + ot

(10)°  (10)° ()7 (0 (O
T TR TR TR TR N

+ 10 +
(ie)n

n!

]

k3

I
[

, (considering 0! = 1).

i
o

In the general case, when point P lies on the circle of radius r, the point
can be represented as (r,60). This is the so-called polar form of representation
of P (as shown in Fig. 1.4) instead of P = (x,y) = (rcos®6,rsin6),

A

ix 1y
_____________ P(r.0)=re®
rsin(¢) T ;
o |
rcos(®) |t T X

Figure 1.4 Point P(r,6) on the complex plane C.
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P = P(r,0) =re",

or we can simply write P = (r,0). Here, the radius and angle are calculated as

r=4/x>+y* and 0 = arctan? = tan—12
X X

and 6 = arccos(y) = £m/2, if x = 0. This angle 6 is also called the argument
of z and denoted by 6 = arg(z). If point P lies in the left semi-plane,
calculation of angle 6 should be corrected by adding angle +m depending on
the sign of the imaginary part y.

Example 1.5

The complex number z = 3 + 4i as the point P(z) = (3,4) is described in the
polar form as (r,0) = (5,0.9273). Indeed,

4
r=v32+4>=5 and 0= arctang = 0.9273 rad,

or

0= @ X arctani = 53.1301°.
o 3

The polar form for the complex conjugate z = 3 — 4i is P(Z) = (5, —0.9273),

4
r=14/32+(-4)?*=5 and 0= arctan —- = —0.9273 rad,

or = —53.1301°.

Now, we describe the geometry of the multiplication of two complex
numbers z; = x; + iy, and z, = x, + iy,. Considering these numbers as two-
dimension vectors

X X
zZ] = (xlayl)T = (yl) and Zy = (Xz,yz)T = (y;)’

the complex number z = x + iy = z;z, can be calculated in vector form as
==(3)=2(G) =G )G
Y 2 Y1 X1 2

The determinant of the matrix A is det(A) = x7 + y7 and we consider the case
when det(A) # 0. This matrix multiplication also can be written as

_ Y1
e () = /22 VxR Vi X2
- ¥ - 1 yl V1 X1 Vs ’
VAt Vad
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(X — || cos 0; —sin 8, X
“\y/) "U\sin®, cos#, v )

Angle 6, is defined from the equations

or

cos 0, = N and sin 6, = L.
VA X+
The matrix
_ _ cos O; —sin 6,
A=Al 0) =n (sin 0, cos 61>

is the matrix of rotation by angle 6, around the circle of radius amplified by a
factor of r| = |z;|. Thus, when multiplying the complex number z, by z;, the
point (x,,y,) is rotated by angle 8; on a circle of radius r, = |z,| and then is
moved along its angle to another circle of radius rr,. The result of multiplication
is the same if point (x,, y,) is first moved along angle 6, = tan~!(y,/x,) to the
circle of radius 7, and then rotated by angle 6, on this new circle.

Example 1.6

Consider the multiplication of two complex numbers z; = 2 + i and z, = 3 — 4i.
The product z =z;z, = (2:3+1-4) +i(—4-2+1-3) = 10 — 5i. In this case,
rp=v22+1=+/5=2.2360, and angle 6, = 0.4636 rad (or 26.5651°). The
second complex number is on the circle of radius r, = /3> + 4* = 5 along the

ray at angle 6, = —0.9273 rad (or —53.1301°) to the horizontal axis. The
two points representing complex numbers z; and z, are shown in Fig. 1.5(a).

=5t

-10

-5 0

(a)

5t 5
ar
or 0

=5

at

-10

S0
(b)

5 10

Figure 1.5 Geometry of multiplication of two complex numbers: (a) rotation of the point z,

and (b) moving to another circle.
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The second point with the coordinate (3, —4) is rotated counter-clockwise
to the point (4.4720, —2.2360), which is denoted by z} in the figure and cal-
culated by

44720\ [ cos 8; —sin 6, 3\ [0.8944 —0.4472 3
—2.2360 )  \sin6®;  cos 6, —4 ) 04472  0.8944 -4 )

Then, this new point is moved along the angle 6 = 6, + 6, = —0.4636 rad
(or —26.5651°) to the new circle of radius r = ryr, = 11.1803, by multiplying

the coordinates of the point by r; = v/5, as shown in Fig. 1.5(b). This new
point can be calculated as

pes =5 _442) - (1),

Therefore, z;z, = 10 — 5i and, indeed, r = |z,z,| = v/10* + 5% = 11.1803. All
numbers in the above calculations are given with a precision of four digits
after the point.

Example 1.7

Consider the multiplication of the complex number z, = x, + iy, by the
complex number z; = x; +iy; =1+i. In this case, x; =y, =1 and the
complex number z = z;z, = x + iy can be calculated as

=260 ( D6

with the determinant of the matrix A equal to det(A) = 2x,y; = 2. This
binary matrix A is well-known as a basic 2 x 2 matrix of the Hadamard

and Fourier transformations. In this case, radius r; = v/2 and angle
0; = arctan(1) = /4. The matrix

B B (mw/4) —sin(w/4)
A=A(NV2m/4) = ﬁ[iﬁiw/@ sos(w/4)]

describes the rotation of point (x,,),) by an angle of w/4 (in radians)

following the translation of the point from the circle of radius r, = /X3 + )3

to the circle of radius v/2r,.
It is not difficult to see that the complex number z = x + iy = z;z, can
also be calculated in vector form with another matrix,

== () =aG) =G )G

Y Y1 Ya X2 Y1

Here, matrix A is defined by the second complex number z, and can be
written as
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A = A(ry, 0) = rZ(cos 9, —sin 62>’

sin 6,  cos 6,

where radius r, = y/x3 + »3 and the angle 6, of rotation of point (x,y,) is
defined from the equations

X2 V2

cos 0, =——= and sin 6, = ——.

V3t 3 VeSS
In the multiplication z;z, by this matrix, point (x,y;) can be rotated by
angle 0, on a circle of radius r; = |z;| and then moved to another circle of

radius ryr;.

1.1.2 Quaternion numbers

The operation of multiplication in complex arithmetic allows for division by
nonzero numbers. As shown in the previous sub-section, division is possible
because of the unique inverse complex number 1/z, when z # 0. If we try to
generalize the concept of complex numbers and define a new arithmetic, the
operation of multiplication must guarantee the existence of such inverse
numbers. The operations of multiplication and division are dual, meaning that
for any two complex numbers zy, z, # 0,

Let C be the complex plane with numbers that we denote by z = a + ib,
where a and b are real numbers, and 7 is the imaginary unit. We may consider
a different imaginary unit j and new numbers ¢ in the form of

q=z+jc=(a+1ib)+jc=a+ bi+jc,

where ¢ is real. It is well known that for such numbers with three components
(a,b,c), it is not possible to define the multiplication together with division.
For example, consider the simple imaginary number ¢ =i = 0 + 1/ + 0j and
its inverse ¢! = (a + ib + jc), if it exists, from the equation

(0+1i+0j)(a+ib+jc) = 1.

We can write 1 = i(a + ib +jc) = ia + i*b + ijc = ia — b + ijc, or ia+ ijc =
1 + b and, therefore, a = 0 and ijc = 1 + b. If we multiply both parts of this
equality by i from the left, we obtain i(ijc) = i(1 + b), or —jc = i(1 + b). This
is possible only if j = —i(1 + b)/c, but j should be a different imaginary unit,
not proportional to i. Thus, the inverse number to i does not exist in the
arithmetic of numbers a + ib + jc.
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Figure 1.6 (a) The complex plane C and (b) the abstract combination of two complex
spaces.

The complex numbers z = x + iy represent the points (x, y) in the complex
space C. Figure 1.6(a) shows such a plane. As shown above, adding one line to
the complex plane does not result in a full arithmetic with multiplication and
division. Instead, we may think of “adding” similar complex planes, formally
writing this operation as C + jC, as shown in Fig. 1.6(b). For that, we can
imagine two complex planes; one complex plane C with numbers z; = x; + iy,
and another complex plane C with numbers z, = x, + iy,. If we assume
another imaginary unit j, then the following numbers can be considered:

q =21 +jz = (X1 +iy)) +j(x2 + ipy). (1.6)

We can denote such a doubled complex space by C? and call such repre-
sentation of numbers ¢ the (2,2)-representation.

Thus, the complex numbers z; and z, in this construction play the same
role as the real numbers x and y in the complex numbers x + iy. These new
numbers ¢ can be written as

q = X + iy +jx2 + (i)ya,

where the number (ji) should represent another number, or may be a new
imaginary number unit, which will be denoted by k or —k, i.e., k=i or
—k = ji. These numbers as elements of four (or “quaternion” in Latin) are
called quaternions and were first described by the Irish mathematician William
Hamilton (1805-1865) in Ref. [6].

1.1.3 Rules for multiplication

The new imaginary number j has been considered, and a new number k has
been defined as k = ji. Now, we need to describe the multiplications among
the numbers 7, j, and k. We assume that the operation of multiplication of
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numbers ¢ is associative, i.e., (¢1¢>)q3 = ¢1(¢2q3), for any numbers ¢, ¢,
and ¢ of type

q = X1+ iy +jx2 + kp. (1.7)
Also we assume that all such numbers ¢ are commutative with real numbers A,
i.e., g\ = \q.

It is important to note that the multiplication of such numbers ¢ is not
commutative, i.e., ¢;¢, # ¢1¢>, for many quaternions where ¢, # ¢,. Indeed,
we consider the number ¢ = 1 + 7 + /. Then, the following calculations hold:

qi—qi=0+i+))i—(1+i+j)=Gi+>+ji)—(+i+/%)
= (= 14+j) = (G+i— D) =i—j+ji—
or

q(i—j) = (i —=j) + (ji = i)

If ij = ji, then ¢ = 1, which is not true. Thus, ij # ji, and it can similarly be
shown that jk # kj and ik # ki.
The following properties can also easily be obtained:
Since /> = —1,
Jk = j(ji) = ()i = —i,
Jki=j(i)i = (jjii = —* =1,
ijk = ij(ji) = i(j)i
ki = (ji)i = j(i*) = —J.

H
N.
(3]
Il
—_

It is also true that

(ki)> =—1 and (kj)*> = —

since

(ki) (ki) = (ji)i(ji)i = j(iD)j(ii) = j(=1)j(=1) = jj = =1
(k) (kj) = ()i (G = Ui (i) = =) = —jGi)j = jj = —1.

It is clear that these equalities do not describe all rules of multiplication
from the left and right between the numbers 7, /, and k. Since we have not yet
defined the multiplication #j, this system of equalities is incomplete; other
missing multiplications are ik, kj, and k2.

We know that ij # ji, therefore, we can assume the following condition:

ij=—ji, or ij=—k.
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Then, we obtain the following equalities:

k> = kk = (ji)(ji) = (=if) (ji) = —i(jj)i = ii = ~1,

kj = (ji)j = =) = —i(jj) =1,

e = i(ji) = i(=1j) = —(i0j =i
It is also true that one of these equalities results in the equality ij = —ji.
For instance, let k> = —1; then we obtain the following:

iji = =1] = [j-jiji = —=j) = [(i)iji = —j] = [iji = j] = [-ji = ij].
Thus, under the assumption that ij = —ji, we obtain the following full set

of multiplication laws:

ij = —ji=—k, jk=—kj=—i,
ki = —ik = —j, *=j*=Kk*=kji = jik = —1.

Together with multiplication by the real unit number 1, all of these basic
multiplications are shown in Table 1.1, which is referred to as the 7'(1,/,1, k)
table; the order of imaginary units j, i, k shows that if we periodically extend
this triplet as j, i, k,j, i, then the result of multiplication of each of the two
numbers from left to right (right to left) is the next number with the plus
(minus) sign.

It should be noted that such a table of multiplications is not unique, and
we can use other tables. For instance, if we start with the condition ji = —k,
we obtain the similar table 7'(1,/, 7, k), which is shown in Table 1.2.

Table 1.1 Table T(1,/,i,k) of the multiplications
of the four quaternion unit numbers.

1 i j k
1 1 i j k
i i -1 —k j
j J k -1 —i
k k —j i -1

Table 1.2 Table T(1,/,j, k) of the multiplications
of the four quaternion unit numbers

1 i j k
1 1 i j k
i i -1 k —j
j j —k -1 i
k k j —i -1
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The three imaginary units 7,;, and k satisfy the following multiplication
laws:

= —jimk, k= —ki=1i
7 J J J (1.8)

ki=—ik =j, i*=j*=k =ijk=—1.
In these two tables, the unit i is changed by j and j is changed by i. We will
stand on T(1,7,j,k) since this table is most often used in quaternion

arithmetic. The multiplication of quaternion numbers, which is based on this
table of rules, is called the left multiplication of quaternions.

1.1.4 Basic operations

We consider the arithmetical operations with quaternion numbers. Thus, a
quaternion number is represented as

q=a+bi+cj+dk=a+ (bi+ ¢j+ dk),

where a, b, ¢, and d are real numbers. The number « is called the real part of ¢,
and (bi + ¢j + dk) is the “imaginary” part of ¢. The quaternion ¢ has a three-
component imaginary part, which we denote by ¢/, such that

g=a+q =a+ (bi+c¢j+dk)=a+ (ib+jc+kd).

Other notations for the real and imaginary components are Sq¢ and Vg,
respectively, i.e., Sg=a, Vq=¢', and ¢ = Sq+ Vq.

In the cases when ¢’ = ib, jc, and kd, the numbers ¢ = a + ib, ¢ = a + jc,
and ¢ = a + kd can be considered as complex numbers. The zero quaternion
is 0 + 0/ + 0f + Ok = 0, and the unity element is 1 + 0i + 0/ + 0k = 1.

Now, we describe the arithmetic of quaternion numbers, i.e., the main
operations that include the sum, multiplication by a real constant, and
multiplication and division of quaternion numbers.

The sum of two quaternions ¢, = a; + ¢} = a; + (iby + jc; + kd,) and
g = ay + ¢, = ap + (iby + jcy + kd,) is defined as

L. g=q+q@p=a+q =(a+a)+(q) +q5) = a+ (bi+ ¢j + dk),

and b =b; + by, ¢ =c| + ¢, and d = d| + d,. Therefore, this operation is
defined to be component-wise and commutative:

la. g=q+aw=q+q.
For any real number A,

2. Ng=Na+ N = Na—+ (i\b + j\c + k\d).
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If a = 0, the quaternion ¢ is called a pure quaternion number:
q =0+ (ib+jc+kd).

The multiplication ¢;¢q, of two quaternions ¢; and ¢, is calculated
according to Table 1.2 of multiplication as

3. g=q1qr = (a1 + q)) (@ + @) = aiax + arqy + axgy + 4145
and can be expanded as
q = a1ay + aiqy + arqy + (iby + jei + kdy)(iby + jes + kd,)
= a1q5 + arqy + ayay — (b1by + cycy + dyds)
+i(eidy — dicy) — j(bidy — diby) + k(bycy — ¢1by).

This multiplication ¢ = ¢,¢, can also be written as

ik
q = [alq’2 + azq,]] + ayay — (ble + C10y + d1d2)+ bl C1 dl . (19)
by ¢ dy

Example 1.8

Consider two quaternions ¢; =1 —2i+3j+kand ¢, =1 — i+ 4j + 3k. The
multiplication ¢ = ¢;¢, is calculated as follows.

(1). The imaginary components of these numbers are ¢; = —2i +3j +k
and ¢, = —i + 4j + 3k; therefore,

aygy+aygy =1-(=2i+3j+k)+1-(—i+4j+3k) = -3i+ 7j + 4k.
(2). The real part of the multiplication is

aay — (b]b2 + C1Cy +d1d2) =1- [-2(-1) + 3(4) =+ 1(3)] =1- 17 = —16

(3). The quaternion determinant equals

i j ok
-2 3 1|=i9-4)—j(-6+1)+k(—8+3)=5i+5 — 5k.
-1 4 3

(4). Therefore, the quaternion number ¢ = ¢;¢, equals
g=q1q» = (=3i+7j+4k) — 16+ (5i + 5/ — 5k) = =16 + (=2i + 12j — k).

It is not difficult to check that the multiplication of these two numbers is not
commutative:
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0192 # 291 = —16 + (—=8i + 2j + 9k).

Below is the script of the MATLAB®-based code “test_example.m” for
this example. It uses function “mult2qs_direct” to multiply two quaternions.

% test example.m / with function mult2gs direct (gl, g2)
S multiplication of two quaternion numbers
ql=[1,-2,3,1]1; 92=1[1, —-1,4,3];
g=mult2gs direct (gl,g2); 5 —1l6212 -1
function g = mult2gs direct(gl,g2)
al=qgl(1l); bl=qgl(2); cl=qgl(3); dl=qgl(4);
az=q9g2(1l); b2=q9g2(2); c2=92(3); d2=9g2 (4) ;
Ql=qgl(2:4); Q2=qg2(2:4); % imaginary parts

o°

Ql2=al*Q2 4+ a2*Q1l; $ =374
a=al*az2-Q1*Q2"; $1—17=—-16
bi= (cl*d2—-dl*c2); %5
cj=-(bl*d2 —-d1l*b2); %5

dk= (bl1*c2 —cl*b2); % —5

b=Q12 (1) + bi; % 2

c=0Q12(2) + cj; %12
d=012(3) + dk; T —1
g=l[a,b,c,d]; $ —16212 —1

4. When ¢, and ¢, are the quaternions with only one and the same
imaginary units, for instance, ¢, = a; + jc; and ¢, = a, + jc,, the operation of
multiplication ¢,¢, is complex multiplication. Indeed, the following holds:

ik
¢y =Jjcdh=jc, gy x ¢y =0 ¢ 0]=0,
0 Cz 0

and
0192 = ay(jea) + ax(jer)] + ayay — cycy = (a1a; — c1¢3) + j(ajc; + axey).
If ¢ =0 and ¢, = 0, then
5. q1gx = (a1 + ) (@2 + ¢3) = aras.

For any real numbers \; and \,,
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6. (Mg1)(Mag2) = M2 (q192)-
The quaternion multiplication is distributive:

T g2+ a3) =qa+qq and (g1 +92)95 = 195 + 4245,
and associative by multiplication:

8. (‘11‘]2)‘]3 = 41(6]2‘13)-

1.1.5 Properties of multiplication of quaternions

In this section we consider a few properties of the operation of multiplication
in quaternion arithmetic.

P1. It is important to mention that the property of commutativity does
not hold in quaternion algebra; i.e., for quaternions ¢, =a; +¢; and

¢ =a, + ¢,
9192 = 4291 O 419> # 4241,

because of the imaginary units, ij = —k # ji = k, and so on. It can also be
seen from Eq. (1.9) that

ik
0q1 = [aaq) + argh] + aray — (baby + cyey +dody) + | by dy
by ¢ d
and therefore,
ik
9192 — 291 =2|by ¢ dy]|. (1.10)
b2 () dz

The multiplication of a quaternion number ¢; by a real number A is com-
mutative, i.e., A\qg; = ¢\.

When the quaternion vectors q; and ¢ are similar, i.e., ¢, = \q], where \
is a real number, then

D21 = 412 = @2+ AN + @ — NG+ + ),

P2. In the case when ¢; = ¢,, we obtain the following for the square of the
quaternion:

q=q; = laj — (b} + ¢ + d})] + 2a14;. (1.11)

The real part of the square is the number @ = a? — (b3 + ¢? + d3), and the
imaginary part is 2a;q}. If ¢, is a pure quaternion, i.e., ¢; = 0, then
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qi = (¢1)* = —(bi + cf +d}) <0. (1.12)
Thus, for a quaternion number ¢ = a+ ¢ = a + (ib + jc + kd),
¢ =a* — ¢+ 2aq, (1.13)

and therefore, the equations of type ¢> =4 > 0 cannot be solved, if ¢’ # 0.
The equations of type ¢> = —4 < 0 can be solved in quaternion numbers,
since in this case « =0 and we have the condition ¢*> = —|¢|*> = —4, or
|¢'|> = 4. The number ¢ = ¢ as a point (b, ¢,d) is on the sphere of radius 2 in
three-dimensional (3-D) space. Such points on this sphere are, for instance,

(2,0,0),(0,2,0), (0,0, —2),(v/2,/2,0), and (1,1,v/2). In other words, the
solutions of the equation ¢*> = —4 include the quaternion numbers
q = 2i + 0j + Ok, 0i + 2j + Ok, 0i 4+ 0j — 2k, v/2(i + ) + Ok, and i +j + /2k.
Example 1.9

Consider the solution of the equation
@ =1+2i+4.

It directly follows from Eq. (1.11) that the following system of equations
should be considered:

G-+ ) =1,
ayqy =i+ 2j.
Therefore, d; = 0, and this system of equations is reduced to the following

one:

ai — (b +¢f) = 1,
ayby =1,
ajcp =2,

and, therefore, ¢ = a; + (1/a;)i + (2/a;)j. To find a;, we need to solve the
equation
1 4
2 (S 2) =1,
i (Ga)

Two solutions of this equation (a?)? — (a?) — 5 =0 are

, 11420 1+£V21
1 — - b}

“ 2 2

and since we are looking for real a;, we obtain
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1+ 21 N 1++21

G="7 > @@= 2
Thus, the solutions of the above equation are
2 1
g=a+—+L=a +—(i+2)

ap  a a
1++21 V2

=+ + i+2j)| = =x[1.6707 4+ 0.5985(i + 2j)].

3Tty = (i+2))

If the square qf is a real number, then 2a,¢4} = 0, which means that a; = 0
or ¢) = 0. In the first case, the square is negative:

q=qi=—(bi + i +d7) <0.

The square of any pure quaternion is a negative number. In the second case,
we have ¢ = a} > 0. The square of the quaternion number is positive only if
the number is real.

Example 1.10

Consider the first equation of this chapter in quaternion arithmetic:
?+1=0. (1.14)

For a solution ¢ = a+ ¢’ = a + (ib + jc + kd) of this equation, we obtain the
following:

@ —|q)>+1+2aq =0,

where |¢/|? = b> + ¢* + d>. The imaginary part of the expression of this
equation is zero; therefore, @ = 0 and the equation is reduced to the equation
|¢|> = 1. All solutions of this equation ¢ = ¢ = (ib + jc + kd) as points
(b,c,d) are on the unit sphere b?> + ¢?+d?> = 1. Thus, the solutions of
Eq. (1.14) are pure unit quaternion numbers. The case when ¢ =d =0

corresponds to the complex solutions ¢ =i and ¢ = —i.
The solutions of the general equation
¢+ 2 =0, (1.15)

where y is a positive number, can be obtained from the solutions of

Eq. (1.14),
2
<ﬁ> +1=0.
y
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Thus, q/y = ib + jc + kd, where b* + ¢* + d*> = 1, or we can write g = iyb +
Jjye+kyd. The solutions ¢ are pure quaternions with length |¢| = y.
Presenting such quaternions as points (yb, yc, yd), they are in the sphere of
radius y.

Example 1.11

Consider all solutions ¢ = a + ¢’ of the equation
P —q+2=0. (1.16)
This equation can be written as
2aq' + @+ (¢)] = (a+¢) +2=0,
or
[@>—a+(¢)P+2]+¢d2a—-1)=0,

and it can reduced to the following system of equations:

qd2a—-1)=0,
a*—a+(q)+2=0.

If ¢ = 0, then we do not get a real solution from the equation @> —a +2 = 0.
Therefore, we consider the a = 1/2 case, for which we obtain the condition

1 1 7
220 g2 (N2 2 —__ _
b*+c+d*=—(¢)=a—a+2 1 2+2 1
Thus, a solution ¢ in Eq. (1.16) is of the form ¢ = 1/2 + ¢/, where point
¢ = (b,c,d) is on a sphere of radius r = +/7/2. Such solutions are, for
instance,

1 V7 1 V7 )
D=5t =57 5 B3=5— T 5

1 o
S+ =y ; ks =5+ (i) K

The numbers ¢, and ¢, are only solutions of the equation in complex
arithmetic, and ¢; and ¢, are full quaternion numbers. A sphere with the
points marked ¢,, g3, and ¢4 is shown in Fig. 1.7. This sphere contains all
solutions of the equation ¢*> — ¢ + 2 = 0, which are pure quaternions.

Example 1.12 Equation of the golden ratio
Consider all solutions ¢ = a + ¢’ of the following equation:

¢ —q—1=0. (1.17)

This equation can be written as

@ —a+ (@)~ 1) +q2a—1)=0,
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Brd =4

k—axis

Figure 1.7 A sphere of radius v/7/2 in the space of quaternion vectors.

and it can reduced to the following system of equations:

qd2a—-1)=0,
@ —a+(¢)P—-1=0.

We consider two cases, when ¢’ = 0 and when ¢’ # 0.
In the first case, we obtain two real solutions of the equation
2 .
a—a—1=0:

14++/5 1-+/5

5 and @, =¢= 5

The number ® = 1.6180339887498948 . .. is known as the golden ratio, or the
golden mean. The second solution is ¢ = 1 — ® = —0.6180339887498948 . . ..
Figure 1.8 illustrates these two solutions as the points of intersection of the
line y = x + 1 with the parabola y = x?. The first point (from the left) of the
intersection is ¢ = 1 — ®, and the second point is .
In the second case when a = 1/2, we obtain the following “condition” for
the imaginary part of ¢ to be considered:

a1:¢:

2 —1=—

5
—a—1= 2
“ 4

B —
N —

7 = ~(¢) = a

A length of the vector cannot be negative.

Thus, in 3-D space of pure quaternions, the equation ¢> —g — 1 =0 is
unsolvable. The only solutions of an equation such as a> —a — 1 = 0 are in
the real line, and these solutions are related to the golden ratio. This example
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L y=x2

[3S] w £ W
T

-3 -2 -1 0 1 2 3

Figure 1.8 The line y = x 4+ 1 and the parabola y = x? in the real plane R?.

differs from Example 1.11, where the consideration of the equation in
quaternion arithmetic results in not only known complex solutions but the
entire sphere of radius v/7/2. The golden ratio equation is unique in the sense
that it is solvable only in the real line.

As is well known, the golden ratio had originally been defined as a ratio of
two real numbers b and a (when b > a), such that (see Fig. 1.9)

bra_ b (1.18)
b a

or (b+a)b~' = ba~'. Therefore, we can write this condition as 1+ ab~! =
ba™', or ba~' —ab~! = 1. After denoting x = ba~!, we obtain the equation
x—x!l=1orx*—x—1=0.

In quaternion arithmetic, the ratios (b + a)/b and b/a in Eq. (1.18) can be
considered as divisions from the left or divisions from the right. In other
words, instead of one equation in the real case, we have two equations for
quaternion numbers,

(b+a)b™' =ba"! or ba'—ab!'=1,
b='(b+a)=a'b, or a'b-bla=1,
which are different, since the operation of multiplication of quaternions is not

commutative. In both cases, these equations can be reduced to ¢> — ¢ — 1 = 0,
when ¢ = ba~!' and a~'b, respectively.

A
b
arcctg[(b+a)/b] = arcctg(b/a)
a
a' t') b+a .
Py ki <

Figure 1.9 Triangles with the golden ratio property.
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We consider the two quaternions ¢, = a; + iby +jc; + kd; and
¢y = ay + iby + jco + kd, to be in the golden ratio if all components of these
numbers have the golden ratio. Namely, let ¢, > ¢, meaning that a, > qa,
by, > by, 5 > ¢;,and d, > d;. We assume the golden ratio for the components

a by o dy

=_= ===,
23] bl C1 dl
Then,
Gta_ (1+P)q  (1+9P) _p_
q2 dq, @ a’

since 1 + ® = @2,

It should be noted that the golden ratio was first introduced for the real
numbers ¢ and b, and the ratio itself concerns the ratio of the lengths a + b, b,
and a, which are real and positive. This means that we should apply this
concept to the lengths of the numbers. The quaternion number ¢ = a + ¢’ has
the real and imaginary parts with lengths |a| and |¢'|, respectively. The length
of the quaternion is |¢|, and we know that |¢| < |a| + |¢/|. Let us assume that
|a| <|q'| and these two parts are in the golden ratio, i.e., |¢’| = ®|a|. Then,

gl = \/az 4P = \/(1 F O = |a|V1 + P = |a]V2 1 ®.

Thus, for such a quaternion ¢, the imaginary part ¢’ can be considered as a
point (b, ¢,d) on a sphere of radius ®|a|:

2 2 2
b+ 2 +d? =d%a?, or <é> + (£> + (é) = P2.
a a a

The number ®? = ® + 1 = 2.6180339887498948 .. .. The point (b/a, c/a,d/a)
is on the sphere of the radius ®. If the quaternion ¢ is a complex number,
i.e., ¢’ = ib, then this condition can be written as b = +a®. Thus,

g=a+ia®=a(l+i)®, or ¢g=a—ia® =a(l—i)d.

If |a| > |¢'| and these two parts are in the golden ratio, i.e., |a|/|¢| = P,

lql =/ +|q)”? =/ (1+¢*)a* = la]\/1+¢*> = |a]\/2+ ¢.

Here, we consider 1/® = —¢. Thus, the imaginary part ¢’ of the quaternion ¢
can be considered as point (b, c¢,d) on a sphere of radius |ag|:

M\ 2 2 /4\2
b* + 2+ d* = a*¢?, or (;) +<2> +<E> = ¢,

where ¢ = ¢ + 1 = 0.3819660112501052......
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Now, we generalize the results of the above two examples. When
considering the polynomial equation

F+2Ng+v=0 (1.19)

with real coefficients N and v, we can separate the two cases when the dis-
criminant of the equation A = (A\?> — v) is negative and non-negative.
Case A < 0: The equation

242z 4+v=0

has two solutions,

Zia=-ANEVN —v=-NEiVy—2\

where 7 is the complex imaginary unit. The transformation of this equation
into the space of quaternion numbers enlarges the set of solutions. Indeed,
Eq. (1.19) can be written as

¢ +2Ng+v= ("~ ¢ +2aq) +2Na+¢') +v=0

and reduced to the system of equations

{a2 —|¢)?+2aN+v=0 (1.20)

(a+N)g =0.

The ¢’ = 0 case is not considered since the equation > + 2a\ + v =0 is
not solvable in real numbers. Therefore, we consider the a +\ = 0 case,
i.e., when ¢ = —\. From the first equation of Eq. (1.20), we obtain

> =a>+2an+v=N -2\ +v=v— N =—-A>0.
Thus, the solutions of Eq. (1.19) are all quaternion numbers of type

g=—-N+¢, suchthat |¢| =V-A.

The imaginary parts of these solutions are on a 3-D sphere of radius r = v/—A.

In Example 7, which concerns the equation ¢*> — ¢+ 2 =0, the numbers

A= —1/2and v = 2. Therefore, —A = v —\2 =2 —1/4 =7/4,and r = \/7/2.
Case A > 0: The equation

X4+22x+v=0
has the real solutions

Xl,zz—)\ﬂ: )\2—\7:—)\:&\/&
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These two solutions relate to the ¢ =0 case in Eq. (1.20). The condition
¢ #0,or a+ \ =0, leads to the equality |¢'|> = v — A\ = —A <0, which may
only be satisfied for ¢ = 0. Thus, as in Example 9, quaternion arithmetic does
not give a new solution of the quadratic equation that is solvable in real
numbers.

P3. The quaternion conjugate of ¢ =a+ ¢ = a+ (bi + ¢j + dk) is the
quaternion

g =a— (bi+ ¢j + dk),
such that
qq = la+ (bi+ ¢j + dk)][a — (bi+ ¢j + dk)] = a®> + b* + * + d*> > 0.
The operation of complex conjugate is linear, i.e.,
(@1 +42) =01 + 3>

Indeed, the following calculations hold: ¢, + ¢, = (a1 + ¢}) + (aa + ¢,) =
(a; + ay) + (q) + ¢5); therefore,

Gt @=(a+a)-(+q)=(@—-¢)+(@-q)=q+7a.
For any real number A\,
Ng = \G.

It follows from Eq. (1.9) that the quaternion conjugate of multiplication
¢19> equals

ik
07 = —|a1gh + arqy] + ayay — (byby + cjey +dydy) — |by ¢ dy| (1.21)
b2 (&) d2
and
ik
0 = —laigs + axqi] + ayay — (byby + cjey +dydy) + |by ¢ dy .
by ¢ d,

Thus, ;4> = §»g, and might not equal g,g,.
Example 1.13

Consider two quaternion numbers ¢; =1+i—2j+k and ¢, =1+ 2i—
Jj — k. The following holds for the conjugate of multiplication:

Gh=0+i—2+k)(1+2i—j—k)=—2+6i+3k=—2—6i—3k
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and §,3; = —2 — 6i — 3k. The multiplication of their conjugate numbers
gi=1—i+2—kand g =1—2i+j+ k equals

GGy = (1 —i+2—k)(1—2i+j+k)=—2+6j+ 3k.

P4. The module of the quaternion ¢ equals

g = /493 = /39 = V@ + B> + A + d°.

In the particular case, when ¢ = ¢/, the module |¢'| = V/b> + * +d>. In

general, [g| = /@ +|¢|* and |¢| > |¢/|.
It is not difficult to see that the following holds for the operation of the
quaternion conjugate:

N
I
=

and
g+q=2a, q—q=2¢ =2(bi+ ¢+ dk).

The following calculations are valid:

119)* = (010060 = (0192)(001) = ailaalPa = |l (a31) = |l a >

Thus,
192 = |lla] = |aillgal.

It is not difficult to show the property of triangle inequality,

g1 + @2 < a1l + |gal.

To do so, it is enough to prove that for any quaternion
g =a+ (ib+ cd + kd), the inequality |g+ 1| < |¢| + 1 holds. The following
calculations hold:

g+ 12=(q+1)@G+1) =g +1+(q+q =g +1+2a
<l|gl* +1+2la| < |q|* + 1+ 2|q] = (g +1)*.

P5. The inverse ¢~! to the quaternion ¢ # 0 is defined as the quaternion
number such that ¢g~!¢ = 1. This is the inverse number when multiplying ¢
from the left and is defined (from the definition gg = |¢|>) as the multi-
plication of the quaternion ¢ by the real number

PR
lal> ™
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The inverse from the left and right are the same, i.e., gg~! = g !¢ = 1. Note
that if ¢ is a unit quaternion, i.e., |¢| = 1, then ¢~! = g.
Example 1.14

Consider the quaternion number ¢ =1+ 2i — 3j+4k. Then, g=1—-2i+
3j — 4k, and the inverse ¢! is calculated as

1

1 42i-3+4k) =
R A e i e

(1—2i+3j — 4k) :3—10(1 — i 3j— 4k).

The following property holds for the inverse of multiplication:

| — | 9> 4
(1) ' =T =0l = — 55 = () ()"
9142 lq11%|92? 21 g1 2
In the particular case when ¢; = g5, we obtain (¢7)~! = (¢;1)2.

P6. Multiplication is not a commutative operation; therefore, the
operation of division of one quaternion ¢; by another ¢, # 0 is considered
when solving one of the following two equations:

91 =q»q and q; = qq>.

For division from the left, multiplication of the equality ¢; = ¢,¢ by g, from
the left results in

D29 =00 of |g:Pqg = gy
Therefore, we obtain the solution

1 _
q="—"—"7499-
|(12‘2

We can denote this division operation from the left as

1
q9=49=—q1-
q>
Similarly, after multiplying both sides of equation ¢; = ¢¢g, by g, from the
right, we obtain the solution of this equation, which equals

1 _ I _
=79 =97 792
|(]2|2 "Iz|2

We can denote this division from the right by

9=9 =9 -
p)
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The divisions from the right and left are the same if g,q; = ¢;¢,, which
can also be written as §;q, = ¢»7;.

Example 1.15

Consider two quaternions ¢; = 1 + i+ k and ¢, = 1 + 2i — j + k. The left and
right divisions of ¢; by ¢, are calculated as

1 1 o . 1 :
QIZW%%—m(l—zl‘i‘]—k)(l‘i‘l‘i‘k)—7(4+2J—k)
and

_ b -——(1+i+k)(1—2i+'—k)—l(4—2i+k)
A PNER AL E R IR g /=g '

We can see that these two numbers are different.
Below is the script of the MATLAB-based code “test_examplel0.m” to
calculate the division of two quaternion numbers for this example.

% test examplelO.m
ql=11,1,0,11;
az=11,2,-1,1];
gzc=192(1l), —q2(2:4)];

o\

gl=1+1+0j+k
qg2=1+2i-jJ+k
conjugate to g2

o\

o°

gzm=qg2*g2’; S |1g2172="7
F——m———————— Left Division (gl) ---—-————————-

g2cl= mult2gs direct(g2c,gl); %402 —1

gl=(1/92m) *g2cl; % 0.571400.2857 —0.1429
% checking the result

mult2gs direct(g2,gl); $1101 (gql)
F——————— Right Division (gr) —----—--—-—-———-—--

gl2c=mult2gs direct(gl,g2c); $4 —201
gr=(1/92m) *ql2c; % 0.5714 —0.2857 00.1429
checking the result

mult2gs direct (qr,g2); $1101 (gql)

o°

P7. 1t directly follows from Eq. (1.9) that if the numbers ¢; and ¢, are pure
quaternions, i.e., a; = a, = 0, then

ik
q=q1q, = —(b1by +cic, +dydy) + |by ¢ dy. (1.22)
b2 (&) d2

When ¢; = ¢,, we obtain from this Eq. (1.22) the following:
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i j ok

(1)) =B +3+d)+|by ¢ di|=—-BF+3+d})=—|q > (1.23)
by ¢ d

Therefore, for the pure unit quaternion ¢y, i.e., |¢;| = 1, its square ¢7 = —1.

P8. For any two pure quaternion numbers ¢; and ¢,, the following holds:

ik
9192 — ¢>q1 =2|by ¢ d;|,
by ¢ d,

and this difference is zero (or ¢,¢» = ¢»q;) only if ¢; and ¢, are similar,
i.e., ¢ = Ag,, where A4 is a real number.

P9. We also use the notation ¢ = ¢, + iq; + jq; + kg, for the quaternion
number ¢ =a + bi+¢j +dk, ie., q,=a, q;=0b, q;=c, and g, =d. The
quaternion ¢ can be considered as a vector

q= (QE’ qi>4;» Qk)T = (aaba c, d)T

in four-dimensional real space R*, when the basic vectors of this space are
e=(1,0,0,0)7, i=(0,1,0,0)", j=(0,0,1,0)7, and k = (0,0,0, 1)”. Here,
the operation ()7 stands for the transposition.

The direct calculation of the multiplication ¢;¢g, results in the following:

q19>» = (a1 + ib] +jC1 + kdl)(az + ibz +j02 + kdz)
= (alaz — b1b2 — C1Cy — dldz) + i(a1b2 + a2b1 + Cldz — Czdl)
+jlarcy + axey — bydy + byd,y) + k(aydsy + apdy + byey — bacy).
This formula can also be obtained in symbolic programming in MATLAB. As

an example, a simple script of the code “test_example.m” for symbolic
calculation of the multiplication of two quaternions is given below.

o\

mult2g symbolic.m / Art Grigoryan, 2015
the formula for multiplication glg2 of two quaternions gl
and g2

o°

syms al bl cl dl as real;
syms a2 b2 c2 d2 as real;
gl=T[alblcldl];
g2=[a2 b2 c2d2];

glg2 =mult2gs(gl, g2)
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The script of the code “mult2gs.m” is given in the next script.
Therefore, in matrix form, the multiplication ¢ = ¢;¢, can be written as

a —by —c —d, a
_ _ | & ay —d, €1 b,
q=Aq, = ¢ d, a  —by o | (1.24)

dy —c by a; d,

where the four-dimensional (4-D) vectors are

a ay

_ | b | b
q= . and q, = ‘o
d d,

The quaternion numbers p = p, + ip; + jp; + kpy such that > = —1 are
pure quaternions. For instance, the numbers

ik ik .

— i s “‘ — i s and M — ﬂ

V3 V3 V2

are pure unit quaternions. For such quaternions, p, = 0 and the imaginary
part lies on the unit sphere. It should be noted that for any real triplet
(Mis s i) # (0,0,0), the corresponding number

I R

VIR
is a pure unit quaternion.

The equation p?> = —1 can also be considered in matrix form as

Pe —R  —H —Mg Pee -1
i B TR Wy mo| | O
T U e By 0
Re —H B e 19 0

It follows that
He — W7 — W —pp =1,
2pep; =0, 2pep; =0, 2ppy =0.

Therefore, p, = 0 and |u|> = p? + MJZ + pi =1, ie., the point (w;, w;, py) is
on the unit sphere.
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Below is the script of the MATLAB-based code-function “mult2qs.m” for
calculating the multiplication of two quaternions by using the matrix A.

% call: muit2gs.m / Art Grigoryan, UTSA January 10, 2015
% the matrix multiplication of 4-D quaternion-vectors
$gl=1[al,bl,cl,dl] *g2=[a2,b2,c2,d2]
function gl2=mult2gs(gl,g2)
al=qgl(l); bl=qgl(2); cl=qgl(3); dl=qgl(4);
ifsize(g2,1) ==1g2=qg2’; end % g2 tobe a column-vector
A=[al —bl —cl —dil
bl al —dl cl
cl dl al —bl
dl —cl bl all; % See Eqg. (1.24)
ql2=A*qg2;

This function as the function “mult2qs_direct.m” uses 16 real multi-
plications and 12 real additions in the multiplication of two quaternion
numbers.

Matrix A in Eq. (1.24) is defined by the quaternion ¢;, so we can write
A = Ay, . The subscript L stands for the vector ¢; on the left of ¢;¢,. It is not
difficult to see that the same multiplication ¢ = ¢,¢g, can be written by a
matrix defined by the quaternion ¢, as

a) —b2 —C) —d2 a
_ | b a dy —o b
=Aceti=| o o o ol (1.25)

d, ¢ —by a d

where the 4-D vector q; = (a;,by,c;,d;)T. Here, we use the subscript R for
multiplication by the matrix that is generated by the quaternion from the right
in the multiplication ¢;¢5.

Below is the code-function “mult2qsR.m” for calculating the multiplica-
tion of two quaternions by using the matrix Ag.,,.

% call: muit2gsR.m / Art Grigoryan, UTSA January 10, 2015
% the matrix multiplication of 4-D quaternion-vectors
$gl=1[al,bl,cl,dl] *g2=1[a2,b2,c2,d2]
function gl2=mult2gsR(gl, g2)
az=q9g2(1l); b2=q9g2(2); c2=q9g2(3); d2=qg2(4);
ifsize(gl,l) ==1gl=qgl’; end % gl tobe acolumn-vector
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Ag2=1[ a2 —b2 —c2 —-d2
b2 a2 d2 —c2
c2 —d2 a2 b2
d2 c2 =b2 a2]; % See Eq. (1.25)
ql2 =Ag2*ql;
We now describe an important property of the inverse matrices to
matrices A, but first we use a simple script of the calculation of such matrices.

Example 1.16

Consider the quaternion number ¢ = 1 + 2i + 3j — 4k with |¢|> = 15. If we
run the code “inver2Amatrices.m,” the script of which is given below, we
obtain the following multiplication of the matrices with their transposition:

1 -2 -3 1 12 3-1
2t 3 21 -1 -3 -
Ava=| 3o 1 AT o3 2| AseAn =Bl

1 -3 2 1 13 -2 1

where I denotes the 4 x 4 identity matrix.

% call: inver2Amatrices.m / Artyom Grigoryan, January 2, 2016
% calculate inverse matrices of the left and right
multiplication
a=1[11,2,3, —-11;
$ g=qg/norm(q); % lgl”2=norm(q)"2 =15
a=qg(l); b=qg(2); c=qg(3); d=qg(4);
Al=[a —-b —c —-d

b a-—-d c¢

c d a —b

d—c b ajl; % See Eqg. (1.17)
A2=[a —b —c —d

b a d —c

c—d a b

d ¢ —b al; % See Eq. (1.18)
dl=det (Al); d2=det (A2); % dl=d2=225 which is 15*15
what weget =Al'"*Al;
what weget =A2' *A2;
15 0 0 0

o°

5 0 15 0 O
s 0 0 15 O©
s 0 0 0 15

o

if open the command g=g/norm(qg), then we get the identity
matrix
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Similarly, for multiplication from the right, we have

1 -2 -3 1 123 -1
> 1 -1 -3 ., |2 11 3 .
Ara=| 3 1 1 2| AReT| 3 _1 1 2| AreAry=Dl
~1 3 -2 1 1 =32 1

We note that |g|> = 15 and have the following inverse matrices:

1 2 3 -1
1 1| -2 1 -1 =3

—1 _ AT _
AL;q_15AL;q 151 =3 1 1 2
1 3 =2 1

and

123 1
Lo 1|2 11 3
1578 15 -3 -1 1 =2
1 -3 2 1

-1 _
AR;q -

Also, we can see that the determinant of both matrices is 225 = (15)?.
In general, we have the following for matrices A:

det(A,.,) = det(Ag.,) = |qf* (1.26)
and
-1 1 T -1 1 T
ALQC]:WALJQ and ARSKI:WARH]' (127)

If the quaternion is a unit quaternion, i.e., |g| = 1, these inverse matrices are
transpose matrices.

1.2 Vector Space and Pure Quaternions

To describe the geometry of the multiplication presented in the previous section,
we consider the Cartesian coordinate system in 3-D space, vectors q' = [b, ¢, d]
with original (0, 0, 0), and the terminal points (b, ¢, d). Along three perpendicular
X,- Y,- and Z-axes in this system, we can measure the unit vectors as

i=[1,0,0, j=10,1,0, and k=10,0,1],

respectively, as shown in Fig. 1.10. The space of quaternion numbers is 4-D,
and the Cartesian model in Fig. 1.10 is shown only to present the space of the
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-y
N

Figure 1.10 The Cartesian coordinate system in the 3-D space.

imaginary components of the quaternion numbers. In general, it is not
necessary to draw the i-, j-, and k-axes perpendicular to each other in the
space of quaternions.

A pure quaternion number ¢’ = (b, ¢, d) can be presented by the vector
q = [b, ¢, d] in this vector space. The sum of pure quaternion numbers and
multiplication by real numbers correspond to similar operations on vectors.
Thus, we can associate vectors with pure quaternion numbers and call them
vector quaternions. Given a quaternion ¢ = a + ¢, a is the real part of ¢, and
q' is the vector part of q.

In vector space, two interesting operations, the inner product and vector
product, are described. These operations are used in many applications of
vector algebra and mechanics, when calculating the work done by a force, or
finding the normal vector to the plane, moment of a force, velocity of a rotating
body, etc. We now describe these operations performed on vector quaternions.

1.2.1 Inner product (or dot product)

The operation of the inner product of two vectors q) = [by,c,d;] and
q, = [by, ¢3,d>] is defined as
(qll’qlz) :blb2+C1C2+d1d2. (128)

Thus, the real part of the multiplication in Eq. (1.22) is the inner product with
the sign minus.

In vector space, the inner product is defined by the following rule: for each
two elements q} and ¢}, of the space with which a real number is associated, the
inner product that is denoted as (q),q}) has the following four properties
(axioms):

L. (q.45) = (43, 4})-

2. (q) +45.93) = (1. 93) + (45 43)-

3. ()\ql, q,) = \(qj, qz) for any real number A.
4. (¢',q') >0, and (¢',q') =0 if only ¢’ = 0.



Complex and Hypercomplex Numbers 37

The value of (q’,q') is denoted by |q'|?>, and the positive number

lq'| = /(q,q) is called the length of vector ¢'. As in real Euclidean space, the
concept of the angle between the vectors can be defined in the vector space of
pure quaternions. Indeed, it directly follows from the above axioms, which for
given vectors ¢} and qj, the following polynomial is non-negative:

p(N) = (\q} — g5, M} — ¢5) = [Aq} — g3 > 0.
Here, \ is a real variable. Thus,
N(d1,q7) — 2M(q}. 43) + (95.93) > 0,
and the discriminant of this equation
A= (q).q5)° — (4. 9))(a2- 92) = (q}.95)° — qi[*[gs]* < 0.

Therefore, (q7.q5)*/(g; *lq3[*) < 1, or

The fraction in this expression can be considered as a cosine of angle V:

(q).q5)°
|47 1*]q5]?

(91.95)
qilla5]

cos(V) = and sin(d) =4/1 —

This angle is called the angle between vectors q} and qj. Since

(91, 93) = |a;[1q3| cos(D), (1.29)

we can call two vectors perpendicular if (q},q5) = 0. This condition can be
denoted as ¢} L q.

It directly follows from Eq. (1.22) that if vectors q and ¢} are perpendicular,
then the following holds for the pure quaternions ¢; = ¢} and ¢, = ¢:

i j ok i j ok
Q192 =|b1 ¢y di|=—|by & dy|=—-qq. (1.30)
b2 (&) dz b] C1 dl
Also, if ¢q; = —¢»q;, then ¢, and ¢, are pure quaternions, and the

corresponding vectors q; and ¢, are perpendicular.
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Since
i j k
¢\q» = —(q).q5) + | by ¢ di|,
by ¢ dy

the real part of ¢}g) is zero if vectors q} and ¢ are perpendicular.
Example 1.17

Consider three vector quaternions q; = (1,2-3), ¢, =(-1,5,3), and
q; = (2,1,2). The first two vectors are orthogonal,

(41.95) = 1(—=1) +2(5) = 3(3) =0,
and
¢\¢y = (1 +2j — 3k)(—i + 5j + 3k) = 21i + Tk.

One can verify this result by using the calculation of the determinant:

ik ik
by ¢ di|=| 1 2 —3|=i(6+15)—j(3—3)+k(5+2)=21i+7k.
b2 Cy d2 -1 5 3

These two vectors are not perpendicular to vector q;. Indeed,

(q1.95) = 1(2) +2(1) — 3(2) = -2,

(g5, q5) = —1(2) + 5(1) +3(2) =9.

The angle 9, 3 between vectors ¢ and ¢} is calculated by

() -2 =2
cos( ) — _ _ — 0.1782,
) gl VI a VAT T e avia

2
V3 = arccos | ——— ] = 1.7499 rad, or 100.2634°.
b < 3\/14)

The angle 9, 3 between vectors ¢}, and ¢} is calculated by

! !/
cos(D5) — 929) _ ) 3 _ 05071,

e Vit +90vAr1+4 V3s

¥, 3 = arccos (i> = 1.0390 rad, or 59.5296°.

V35
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1.2.2 Vector product
In vector space, we can consider the symbolic determinate
i j k
by ¢ di|=i(cdy —dicy) —§(bidy —diby) +k(bicy — c1by).  (1.31)
b2 Cy d2
According to Eq. (1.22), the vector with the terminal point
[(1dy —dyicz), — (b1dy — dyby), (bicy — ¢1by)]

describes the whole imaginary part of the multiplication ¢ = ¢,¢,, when
a; = a, = 0. We also can say that this point corresponds to (¢}¢5). This vector
is denoted by q x ¢}, or [q},q}] and is called the vector product of vectors q

and ).
It is not difficult to see that
ij Kk i j Kk
by ¢, d; :i(czdl—dzcl)—i(bzdl—d2b1)+k(bzcl—Czbl)z— by ¢ dy|,
bl & d1 b2 (&) d2

and, therefore,
4 X ¢ = —q) X ¢

The vector product is perpendicular to vectors q} and q}. To verify this
property, it is sufficient to show that the real parts of vectors ¢} (q; % q5) and
q,(q) x q5) are zero. The real part of the first multiplication can be cal-
culated as

bi(c1dy — dycy) — ¢i(bydy — diby) +dy(bycy — ¢1b,) = 0.

The real part of the second multiplication is similarly calculated and equals
zero, too. The three perpendicular vectors ¢ x ¢}, q}, and ¢} are oriented in
space similarly to the way unit vectors i, j, and k are oriented. The orientation
of these unit vectors can be considered in the chosen right- or left-handed
Cartesian coordinate system in 3-D space.
The length of the vector product can be calculated by
4} X @3> = (c1dy — dyc2)* + (bidy — diby)* + (byey — c1by)?
= (C%d% — 2C1C2d1d2 —+ d%c%) —+ (b%d% — 2b1b2d1d2 —+ d%b%)
+ (b%C% — 2b1b2C1C2 + C%b%)
=B+ +d}) b3+ G+ d3) — 3G —bibs — dids
- 2C1C2d1d2 — 2b1b2d1d2 - 2b1b2€1€2
= (b + i +d) (B3 + &+ d5) — (bi1by + crey + d1dy)*.
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Because
Iqi)? = b7 + &+ d2,
lg5|? = b5 + 3 + d3, (1.32)
(4. 95) = |dj /@3] cos(¥) = b1by + c1¢3 + dds,
where ¥ is the angle between the vector quaternions, we obtain
|4} > d5* = [q;71951* — |a;[*[a5]” cos®(9) = | [*|q3 [ sin* (D).
Thus, the length of the vector products equals
9} < 43| = |4} |lg5] sin(V), (1.33)

when considering sin(9) to be non-negative. It is the area of the parallelogram
composed on vectors q; and q,. If the vectors are perpendicular, then
W =m/2, sin(¥) = 1, and

la; < @3 = |q}lg3]- (1.34)
Now, we can define the inner product and vector product of quaternions as
(91.92) = (d1.45) and (g1 x ¢2) = (q; X q3),

and consider pure quaternions as vector gquaternions. The multiplication of
pure quaternion numbers unites the inner and vector products:

9=q90 =—(q1.0) + (q1 X q2). (1.35)

One can notice that

001 = —(q2.q1) + (02 x q1) = — (01, 02) — (91 X @2) = 192 — 2(q1 X q3).

In the general case of quaternions, the multiplication of two quaternions
in Eq. (1.9) can be written as

q4=q19> = a1y — (q1, Q) + [a195 + aq|] + (g1 X q2). (1.36)

The real part of this vector is the minus inner product of the imaginary parts
of the quaternions,

a=aja; —(q1,9),

and the imaginary part of the multiplication is the sum of vector quaternions,

q = laigh+ aqi] + (41 X q).
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The first vector in the square brackets presents a vector in the “(q}) — (q5)”
plane, and the second vector is the vector product of the imaginary parts of
the quaternions, which is perpendicular to this plane.

Example 1.18

Consider two quaternions ¢; =1 +4+i—j+2k and ¢, =1 +2i+j — 3k. The
vector quaternions are q; = (1, —1,2) and q5 = (2,1, —3). The inner
product equals

(¢1:¢5) = 12+ (=1) 1 4+2-(=3) = =5,

and a = 1 — (—5) = 6. The vector product is calculated as

i i Kk
(@, xqh) =1 —1 2[=i3-2)—j(=3—4)+k(1+2)=li+7j+3k
2 1 -3

and can be written as the vector with the terminal point (1,7,3). The
imaginary part of ¢;¢, is

q = la1qy + axqh] + (q) x q5) = [(2i +j — 3k) + (i —j + 2k)] + (i + 7] + 3k)
= [3i — k| 4 (i +7j + 3k) = 4i + 7j + 2k;

therefore, ¢ = a+ ¢ = 6 +4i + 7j + 2k.

1.3 Quaternion Multiplication and Rotation

Quaternion multiplication allows one to describe a rotation of one vector in
3-D space around any other vector. In this section, we show a few examples of
rotations by multiplication. First, we consider the multiplication of two
quaternions, one of which is a pure quaternion. The geometry of such
multiplications with rotations in the 3-D subspace of vectors presenting
quaternion vectors is described by using the matrix representation of
multiplication as well as the polar form of quaternions.

1.3.1 Multiplication and sum of elementary rotations

Consider the quaternions in the space R* as vectors. When multiplying the
quaternion q; = (a;, by, c;,d,)T by the vector quaternion q, = (0, b,, ¢5,d,)7,
the real component of the multiplication is —(b;b, + ¢j¢y + d d>). It follows
from Eq. (1.24),
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ay _bl —C _dl 0
by a; —d; (] b,
¢ dy a; —b o |’
d —c by a; d,

q=Aq, = (1.37)

that the matrix of multiplication in the 4-D real space A can be reduced to a

(3 x 3) matrix:
ay —d; 1
B = dl al _bl [}
—Cq bl ay

when calculating the vector component of the multiplication ¢,¢5,

()-+)

The point (by, ¢5,d5) is on a circle of radius r, ; = /b3 + ¢} = d3.

This matrix can be represented as

B = B(“—‘ 0 —cl) +B<%,d1,0) +B<0, %,bl),

where the matrices

B,=B(3.0,—c1) = (

a) 2
_( 2 G _4 . o
)NB}(C1 %>,det(ij.)_Z+cl,

a —d, 0

2 1 a 2

d 4 0]~B,= <j a_fil) det(B}{):%erz’
0 0 0 I 2

B, :B(%,d1,0> - (

a 0 2 0 / T =b oD
BiZB(O,E,bO: 8 53 —alb1 ~B; = by @ ) det(Bi):Z+bl'
17

Each of these three matrices describes the rotation in the corresponding 2-D
plane. Matrix B; describes the rotation of the projection (b,,0,d,) of the

vector (b,, ¢5,d5) in the (i — k)-plane around the j-axis by the angle

2
¢; = —arctan <ﬂ>
a



Complex and Hypercomplex Numbers 43

Following this rotation, the point moves along the radial line from its circle of
radius rp; = /b3 + d3 to another circle of radius amplified by a factor of

\; = /det(B}). A similar rotation for complex numbers was described in

Example 1.6 with Fig. 1.5.

In the first stage, matrix B, describes the rotation in the (i — j)-plane, and
B; describes the rotation in the (j — k)-plane of projections (b,,c,,0) and
(0, by, ¢5) by angles

2d 2b
b, = arctan <—1> and ¢; = arctan (—1> ,
a aj

respectively. Then, the rotated points move to circles with radii amplified by
the factors of A, = \/det(B}) and \; = /det(B;), respectively. Thus, matrix B
is the sum of the three matrices of the elementary, or Givens rotations, as
shown in Fig. 1.11. If ¢ is the quaternion vector, i.e., a; = 0, all of these angles
are considered to be /2.

Statement 1.1 Multiplication of the quaternion number q; = a; + ib; + jc; + kd,;
by a pure quaternion q, describes the rotation of the sum of three rotations of
the vector quaternion ¢, around the i-, j-, and k-axes by the angles

2b 2 2d
¢; = arctan =1, ¢d; = arctan | , and &, = arctan =1,
/ a

a; 1 a;

respectively, or all w/2 if a; = 0.
If ¢, is not a pure quaternion, ¢, = a, + ib, + jc, + kd, and a, # 0, we can
write the multiplication ¢;¢, in the following matrix form:

Figure 1.11 Three rotations around the axes in the vector subspace of quaternions.
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(5 0 (qll ’ q/2)
- 0 by | b,
A=A o | +A o | T 1Bl e ||
0 d, d,
or we can write the multiplication as
_ | @war — (41, 45)
Aq, = { aq, +Bq, | (1.38)

In the second line of matrix Eq. (1.38), the amplified vector q} is added to the
combined rotation of vector ¢, by matrix B. This is a geometrical
interpretation of the quaternion multiplication in the general case.

Example 1.19

Consider two quaternions ¢; =2+ 1i+3j+4k and ¢, =0+2i+j—k,
where the numbers a; =2, b; =1, ¢; =3, and d; = 4. The multiplication
q19, of these two quaternions can be calculated as

2 -1 -3 —4 0 —1
|23 2| | =3
1=2= |3 4 2 _ 1]~ 11
4 -3 1 2]\ —7

Thus, the number ¢ = ¢;q, = —1 —3i 4+ 11j — 7k.

Figure 1.12 shows two vectors q; = (1,3,4) and ¢, = (2,1, —1) and the
vector qj, = (3,11, —7). It can be shown that vector q}, describes the
rotation of vector ¢}, around vector ¢} with a subsequent change in the length
of vector ¢j.

We now consider the rotations of the vector ¢, = (2,1, —1) when
calculating the imaginary part ¢’ = (—3i + 11j — 7k) of ¢q. Matrix B is

2 -4 3 1 0 3 1 -4 0 00 O
B= 4 2 —-1]= 0 0O0|+14 1O0]+{01 —1].
-3 1 2 -3 0 1 0 00 01 1

Here, the matrix components and their determinants equal

L0 3
V10 V10
)\/10(0 0 0)
_3 0 L
V10 V10

—_ O W

10
B, =B(1,0, -3)=( 0 0
-3 0

and det(B;) =1 +9 = 10;
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5

0
-5 -10 -5

Figure 1.12 Vector q),: vector g, rotation around vector ¢ with a subsequent change in
length.

1 4 0 L _4 9
- V17 V17
Bk :B(1,4,0) = 4 1 0 =Vv17| L 1 01,
V17 17
0 0 0 0 0 0

and det(B,) =1+ 16 = 17; and

I
S
o O
Sk o
|
gk o

0 0
B,=BO,1,1)=[0 1 -1
0 1

—_
]

and det(B,) =1+1=2.
Matrix B; first rotates the projection vector (2,0, —1) along the circle of
radius r ; = /5 around the j-axis by the angle

2
¢; = —arctan (f) = —arctan(3) = 1.2490 rad,
1

or 71.5651° (see Fig. 1.13). The rotated projection is calculated as

1 3
o F) (o)=L (T
_3 oo o)\ vio\_4
V10 V10

Then, matrix B; moves the rotated projection to the vector (—1,0, —7),
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a A (@2)ix

g ¥--q7

Figure 1.13 The rotation around the j-axis.

0 2 2 ~1
Vio
=vi0-[ 0 0 0 o)l=( o].
‘ _3 0 L _1 _7
Vo VUl

We can assume that the projection is first amplified by a factor of

\; = /det(B;) = V10, and then rotated by the angle b,

&0 NIE

= 0 o o ||vViof o]|=[ o],
3 1

-75 0 U -1 =7

along a circle of radius r = \;r, ; = V/50.
Matrix B, rotates and moves the projection vector (2, 1,0) to the vector

(_27970)5
1 -4 0 2 -2
=4 1 0|[1])=] 9],
0 0 0 0 0

around the k-axis by the angle

=

(=)

2
¢, = —arctan <ﬁ> = —arctan(2) = 1.1071 rad,

ap
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2 | 2

Figure 1.14 The rotation around the k-axis.

or 63.4349° (see Fig. 1.14). The rotated projection is calculated as

1 4
o —vm 0\ (2 P [2
o 1:¢—179'
0 0 0 0 0

Then, matrix B, moves the rotated projection to the vector (—2,9,0) by

multiplying the rotation by a factor of N\, = /det(B;) = V17.
Matrix B, rotates and moves the vector (0,1, —1) to the vector
(—1,0, —7). First, it rotates the vector as

0 O 0 0 0
a0 5 -5) (V)2 (3
i 2 2 - T =

1 ! V2

0 5 »/ \-1 0

around the i-axis by the angle

2b 1
b, = —arctan (—1> = —arctan (—) = (0.4636rad,
ay 2
or 26.5651° (see Fig. 1.15). The rotated projection then is moved to the vector
(0,2,0), after multiplying by a factor of \; = /det(B;) = /2.

We can verify the above calculations by

—1 -2 0 -3
g+q.+q=| 0|+ 9)+|2]|=|11]=4q.
=7 0 0 17

The decomposition of the matrix B shows that vector q}, can be obtained
by a linear combination of three elementary rotations of the projections of the
vector ¢, around the three axes of the Cartesian system.
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k
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~

Figure 1.15 The rotation around the i-axis.

1.3.2 Rotation: Multiplication by a perpendicular vector

We consider the unit quaternion number (not pure) ¢ = a + ¢’ and multi-
plication of this number by vector s’, which is perpendicular to q'.
Such a number can be represented as

/

—eox) +

where the angle 0 is defined from the condition |g|*> = a® + |¢/|* = 1 as

sin(¢d),

a=-cos(d) and |¢| = sin(d).
The unit vector p’ = q'/|¢'| is in the direction of the vector q'.

Example 1.20

Consider the unit quaternion

I 1 i—2j+3k
(1424 3k) = ——t ,
1= /55 N TR

which can be written as

_1_g—y+%¢ﬁ
LV TV, VIR E

In this case,

R , i—2i+3k ‘q_Vﬁ
\/E) q \/ﬁ b q 15 b

and the pure unit quaternion vector is
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/

243k
V4

The angle 6 is calculated from the equations

= 0.2673i — 0.5345j + 0.8018k.

cos(¢p) = % =0.2582 and sin(d) = g = 0.9661,

i.e., from the interval [0, w/2] as

1
= arccos ( ——= | = 1.3096rad,
¢ (\/ 15)

or 75.0368°.
An illustration of the point (a,¢’) and vectors p’ and q' are given in
Fig. 1.16. The unit quaternion number ¢ is presented as the point (a, |¢'|).
In the general case, when the module |g| may be not 1, the quaternion ¢
can be represented as

q = |gl[cos(d) +p'sin(d)], b € [0, m).

Thus, the number ¢ is described as a triplet (|¢|, p’, &), which is the polar form
of the quaternion ¢. Below is the script of the MATLAB-based code
“test_qginpolform.m” for Example 1.20, with the function “ginpolform.m” to
calculate the polar form of g.

% test ginpolform / Art Grigoryan, November 10, 2015
q=1[1,1, —2,3]1/sgrt (15); % for Example 1.20
[g abs,p vector,phi] = ginpolform(q) ;

P 1 (@lq’)

v

Figure 1.16 Components of the unit quaternion number g = a+ ¢
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% The result is: 1, (0.2673, —0.5345,0.8018), and
1.3096 rad/s

% call: ginpolform.m
% To calculate the polar form of a quaternion number

s a=1qgl [cos(phi) + p’sin(phi)]
% as the triplet (lgl,p’,phi).
function [g abs,p vector,phi] = ginpolform(q)

g_abs=norm(q) ; % is |ql
an=q/q_abs; $a/lql
gim=qgn(2:4); % imaginary part of gn
gim abs=norm(gim) ; % 1is |gim|
p_vector =gim/gim abs; % unit vector p’
phi=acos(gn (1)) ; % angle phi

The multiplication ¢s’ equals

g8’ = [cos(d) 4 p' sin(d)]s’ = s’ cos(db) + (p's') sin(d).
Here, the multiplication of the vectors is calculated as
p's =—(p,s)+p xs =p xs.
We could also come to this result by writing the multiplication ¢s’ as
g8 =as' — (¢,8)+q xs' =as' +q xs' =as' + (|¢|p) x ¢
=as' +|q|(p’ x §') = cos() + (p x §') sin(p).

As shown above, the vector product p’ xs' is a vector that is
perpendicular to both vectors p’ and s’. According to Eq. (1.34), the length
of the vector product equals

p" x s = [p'[ls'] = [s].

Denoting the vector product p’ x s’ by v/, we can write gs' = s cos(d)+
v sin(dp). Both vectors s’ and v’ have the same length of |s'|. Therefore, this
equation describes the rotation of vector s’ around vector ¢, or around p’ by
the angle 6 as shown in Fig. 1.17. Vector V' is perpendicular to s’, and we may
say that v’ is the result of the rotation of s’ by 90° around the vector p’. Thus,
the following can be stated.

Statement 1.2 The multiplication gs' describes the rotation of the perpendicular
vector §' around the unit vector p' by the angle &:
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s'cos(@)

Figure 1.17 Rotation of vector s’ around the unit vector p’ by the angle ¢.

gs' = s’ cos(d) + V' sin(db). (1.39)

Example 1.21
Consider the unit quaternion number

q=a+q'—%+f< i — 2+ 3K) = cos(d) + p'sin(d).

As shown in Example 1.20, the pure unit quaternion vector p’ and angle ¢ are

[

i—2j+3k ( 1 )
———— and = arccos| —— | = 1.3096 rad.
V14 ¢ V15

Let us assume that vector s’ to be rotated around the vector p’ by angle ¢ is

s =4i—j—2k (|¢] =V21).

This vector is perpendicular to p’, since

1
I8 =—=[14)+ (=2)(—1) +3(-2)] = 0.
(p)\/ﬁ[()()() (=2)]
Vector s’ is rotated to vector ¢s’, which can be calculated as
i i k
qs’:as’+q’xs’_m(41—]—2k) \/Ezll —? ;
:ﬁ[(4i—j—2k)+(7i+14j+7k)]:ﬁ(11i+13j+5k).

We also can calculate this rotated vector by using multiplication in matrix
form, as described in Eq. (1.37),
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-1 2 =3 0
S/—AS/—L 1 1 -3 =2 4 _L 11
B=2=050 2 3 1 <1 || -1 | T /as] 13

32 1 1)\ 5

Here, vector §' = (0,s') = (0,4, —1, —2)7. We can verify that the length of
vector ¢s’ equals |§'| = v/21 by

IP4+13+5 V35 _VIS2l_ g0
V15 Vs V15 '

1.3.3 The 2nd rotation: Multiplication by a perpendicular vector

The above described rotation by the angle ¢ is defined by the linear operator
q— Lys') =qs, (1.40)

for a given unit quaternion ¢, which is considered in the form of ¢ = cos(¢)+
p'sin() with (p')> = —1. Here, vectors s’ are perpendicular to the imaginary
part of ¢, i.e., s L ¢, or s’ L p'. To release this constraint and describe the
rotation by any vector s’ by operations of multiplication, we consider a
modification of the operator L,.

In quaternion algebra, the following operator of rotation is used:

q— L,4(s) =gsq7", (1.41)

where it is not necessary for vector s’ to be perpendicular to q'. We first
consider the operator for a perpendicular vector s’ and then use the fact that
any vector s’ can be presented as the sum of two vectors, one of which is
perpendicular to .

The operator L, ; as the operator L, ; preserves the length of the vector §'.
Indeed, one can see that

L) =las'q™!| =ldllsllg~" = |].
Since |g| = 1, the inverse quaternion ¢! is g, i.e.,
g~ =g = cos(dp) — p'sin(d). (1.42)

Therefore,

Ly (') = (s cos(d) + [p' x 8] sin(d))(cos(d) — p'sin(d))
=§'cos?(d) — s'p/ cos(d) sin(¢) + [p' x §'] sin(d) cos(d)
— [p’ x §'lp/ sin’*().
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Vectors 8’ and p’ are perpendicular; therefore, s'p’ = —[p’ x §], and vectors
[p’ x §'] and p’ are also perpendicular. This simplifies the above calculations as

(1.43)

since (p')> = —1. Thus, we obtain the rotation of vector s’ around vector p/,

which is similar to the rotation in Eq. (1.39) but by the angle 2¢,
L, 3(s") = qs'q = ' cos(2¢) + V' sin(2). (1.44)
Such a rotation is illustrated in Fig. 1.18.

Example 1.22

We describe the rotation of the quaternion vector s’ = i + 2j — 3k around the
unit vector

1

by the angle @ = 30°. The required vector v’ in Eq. (1.44) is calculated by

i j k
V=p xs =502 05 4] = Lfi(—15-8) — j(—6 - 4) + k(4 - 5)]
1 2 -3
= = (-23i + 10j — k).

Therefore, the rotated vector s’ — § is calculated by

Figure 1.18 Rotation of vector s’ around the unit vector p’ by the angle 2¢.
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= (i+2j — 3k) cos(30°) + (—23i+ 10j — k) sin(30°)

1
3V/5
3 23 3 1
(-2 1)
265 2 6V5
= —0.8483i + 2.4774j — 2.6726k,
considering that cos(30°) = /3/2 and sin(30°) = 1/2.

The vector § is ¢s'g, but ¢ has not been used directly in the above
calculations. The quaternion ¢ can be calculated by

q= cos(z) +p sm(;P) = cos(15°) + p’sin(15°)

—cos(159) 4 S0 0 sy Z V2HEV3 V2 V32 5tk
243 V2-\3
- v +f+\/ f(2i+5j+4k):0.9659+0.0386(2i+5j+4k)_

2 6v/5

1.3.4 Multiplication: Rotation of any vector

The operation of rotation by the angle 2¢ can also be described for the general
case of vector §'. Indeed, let s’ be the vector that is not perpendicular to p'. It
can be presented as the sum of two vectors

s =5 +5s.,
where vector s/ is perpendicular to p/, and s__ is proportional to p’; i.e., sl = \p/
for a real number A.

It is not difficult to notice that the multiplication g(\s') is commutative.
Indeed, the following calculations are valid:

q\p') = (a+p'[g')(Ap") = Nap" +p'P|p']) = Mp'(a + P'Ip']) = (\p')g.
Therefore, vector s| remains invariable when applying the operator L, g,
Ly q(sh) = Ly (') = ()G = (\p')qq = (\p)|q* = (\p') = sL.
The operator L, ; is linear; therefore, we obtain the following:
L, q(8") = Ly 4(8)) + L, z(s.) = L, 4(s)) +sL. (1.45)

The component s/ is rotated around vector p/, and another component
remains invariable, which means that vector §' is rotated around p’.
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Statement 1.3 Given pure unit quaternion q and vector s', the equation
Ly 3(s") = ¢8'q = [s) cos(2d) + (p's]) sin(2d)] +sL (1.46)
describes the rotation of vector s’ around vector p' by angle 2.

1.3.5 Matrix representation of rotation

We consider the operator of rotation L, ;(s') = ¢s'g in matrix form. The
multiplication gs’ can be calculated by matrix A, i.e.,

a —-b —c —d 0

g8 = Aps = ﬁ fl _Z —zf j . (1.47)
j
d —c b a S

Here, vector s’ is composed of its components " = 0 + is; + js; + ks, and,
similarly, ¢s’ is a vector of ¢s'.

We denote §' = (¢s')g and the corresponding column vector by §'. The
multiplication of the number ¢s’ from the right by g can be accomplished by
matrix Ag.z, 1.€.,

—d —c b a
Therefore, the rotation can be written as
§ = AR;ZI(qSI) = AR;q(AL;qSI) = (AR;Z[AL;I])S/‘ (148)

The operator of rotation L, ; is described by the matrix

a b ¢ d a —b —c —d
A = A Ar — -b a —d ¢ b a —d c
4 Rt Ly —c d a —b ¢ d a —b
—d —c b a d —c b a
1 0 0 0
0 &?+b—-2-d° 2(be — ad) 2(ac + bd)
~ o 2(ad + be) -0+ —d? 2(cd — ab) ’
0 2(bd — ac) 2(ab + cd) a—b—-+d
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considering that > + b* + > + d?> = |q|> = 1.
We can also write this matrix of rotation as

0 0 0

0
0 —(>+d*) (bc—ad) (ac+ bd)
0
0

Apg=14+2 (1.50)

(ad +bc) —(b*+d?) (cd—ab) |
(bd —ac)  (ab+cd) —(b*+c?)

where I is the 4 x 4 identity matrix.
In the particular case when ¢ is a pure quaternion number, i.e., @ = 0, this
matrix is symmetric and equals

0 0 0 0
B 0 —(A+d?)  be bd
Agg=Llt+2], be —(b* + d?) cd ’ (1.5
0 bd cd —(b* + )
or
0 0 0 0
0 15 bc bd
Agg=L+2| g 7 o % (1.52)
0 bd cd 1 - d?
since |g]> =b*+ ¢*+d*=1. One can notice that A;,=A,,; and the

determinant of this matrix det(A; ;) = 1.

Example 1.23

Consider the rotation related to vector s =4.5i—2j+ 3.5k and the
quaternion

I V141 +i—2j+3k\/ﬁ_ 1
=715 T U Jida 15 I3

(1+i—2j+ 3k).

Vector s’ can be presented as s’ =s| + s, where
¢ =4i—j+2k and s.=0.5i—j+ 1.5k =0.5(i — 2j + 3Kk).
To calculate the rotated vector L, ;(s') = ¢s'q, we compose the matrix of

rotation A; ,. Fora given g, we havea = 1,b=1,¢ = —-2,andd = 3 all up to
the factor of 1/4/15. The matrix can be written as
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5 0 0 0
1o —-11 —10 2
=15 0 2 —5 —14 | [detlAgy)=1]. (1.53)

0 10 —10 5

Therefore, the rotated vector is calculated as

0 0 0 0 0
) 4 0.5 2 0.5 15
S=Au| | Al =TT 2

2 15 4 15 5.5

Below is the script of the MATLAB-based code “example_one23.m” for
this example with the function “rotateVarroundP.m,” which calculates the
matrix A; , and rotated vector §'.

% example one23.m / Art Grigoryan, December 30, 2015
a=1[1,1, —2,3]/sqrt (15);
sl=1[0,4,—-1,2];
s2=1[0,1, -2,31/2;
s=sl+s2; $0 4.5 -2 3.5

[gsqg,matrixR] = rotateVarroundP (g, s) ;

% gqsq = [0 —1.5 =2 5.5]

[gsgl,matrixR] = rotateVarroundP (g, sl);

% gsqgl = [0 =2 -1 4]

[gsg2,matrixR] = rotateVarroundP (g, s2);

% gsqz2 = [0 .5 =1 1.5]

B gsqg = gsgl + gsg2 —————————————————

R=round (15*matrixR)
%15 0 0 0
% 0 —11 —-10 2
$ 0 2 =5 —-14
$ 0 10 —10 5

% call: rotateVarroundP / Art Grigoryan, December 31, 2015
% Calculate the matrix of rotation and rotated vector s

% around the unit vector p’ by the doubled angle 2*phi,

% where phi = acos(a) andg=a + p’ sin(phi).

function [gsqg,matrixR] = rotateVarroundP (g, s)
a=qgq(l); b=qg(2); c=qg(3); d=qg(4);
if size(s,l) ==1s=s’; end % s tobe acolumn-vector

% 1lst rotation
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Al=[a —b —c —d

b a—-d c

c d a —b

d—c b al;
% 2nd rotation
b= —-b; c=—c; d=—-d; % for conjugate of quaternion g
A2=[a —b —c —d

b a d—c

c—d a b

d ¢ —-b al;

% Matrix and Rotation by the doubled angle of arcos (a)
matrixR=A2*Al;
gsg=matrixR*s; % as qs=Al*s; gsq=A2*Qgs;

We also can formulate the task in the following way. Given unit vector p/,
rotate vector s’ around p’ by an angle 2¢. To use the above matrix of rotation,
first the quaternion ¢ should be calculated as

q = cos(d) + p'sin(d),

and then the matrix A; , can be constructed and used to calculate the rotated
vector L, 4(s').

Example 1.24
Let vector s’ be 4.5i — 2j + 3.5k and rotated around the vector

1
= —({—2j+3k
P \/ﬁ( ! )
by the angle 2¢, where
¢ = arccos(1/v15) = 1.3096 rad,

or 75.0368°. The quaternion ¢ is calculated as

. 1 | — 2j + 3k
g = cos(8) +p/sin(8) = =t 7

As we know from Example 1.23, rotation of vector s’ results in the vector
L, 4(s") = —1.5i — 2j+ 5.5k.

Below is the script of the demo code “example_one24.m” for this example
with the function “qsprotation.m,” which calculates the rotation of the vector
s/ around the vector p’ by a given angle.
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% example one24.m / Art Grigoryan, December 31, 2015
s=1[0,4.5, -2, 3.5];
p=1[1,—-2,3]/sqrt(14);
phi doubled=2*acos (1/sqrt(15));
gsq = gsprotation (s, p,phi doubled)
% result: 0 =1.5 =2.0 5.5

% gsprotation.m
% rotate a vector s around a unit vector p’ by angle phi
% by using the operator with multiplication by quaternion
% g = cos (phi) + p’sin(phi), (phi in radians).
function gsq = gsprotation(s,p,phi doubled)
phi=phi doubled/2;
g=zeros(1,4);
g (1) =cos (phi);
g(2:4) =sin(phi) *p;
gsg=rotateVarroundP (g, s) ;

For this example, we have

5 0 0 0
1o -1t 2 10|,
Aa=15| 0 —10 -5 —10 | ~Ae

0 2 —14 5

and this property holds for all matrices A, ;.
One can note that two quaternion numbers ¢ = a + ib + jc + kd and
—q = —a — ib — jc — kd define the same matrix, i.e.,

Az = qu, —q

Thus, up to the sign, the number ¢ can be restored from the matrix A = A, .
We denote the elements of this matrix by a,, ,, n,m =0,1,2,3. If we add all
elements of this matrix along the main diagonal, which is the trace, tr(A), we
obtain the following (see Eq. 1.49):

tr(A) =apo+a; +ap,+a33=1+ 302 — b? — 2 — d? = 442,

Thus, then the real part of ¢ can be calculated by

azi%d&@) (1.54)

Three components of the imaginary part of ¢ can be defined from other
elements of the matrix as
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| —dy = 2Cld, ay 3 —ds) = 2616’, a3, —dy3 = 2Clb,
and therefore
dy | —dpn ayz —dz asn, —dsz
d=—————=, ¢=——>" b= (1.55)
2a 2a 2a
If the quaternion is pure, i.e., @ = 0, we can use the second matrix-summand

in Eq. (1.52), the elements of which we denote by s, ,,,

0 0 0 0
0 1-52 bc bd

_ 3 _
SZ],q - ({S”l,n'l}n’m:()) =2 0 bC 1 — C2 C’d

0 bd cd 1—d?

(1.56)

Three components of the imaginary part of ¢ can be defined from the diagonal
of this matrix as

si=2(1 -5, 520 = 2(1 —), az3=2(1-d%).
Thus, up to the sign o = +1, we obtain the imaginary components:
OL«/]—Sll OL\/I—S22 OL\/I—S33
b=—"—"—, ¢=—"—7F7"—"", d=—3——-. (1.57)
2 2 2
1.3.6 Addition of rotations in 3-D space

We have used the property of linearity of the operation of rotation,
Lq’q(sl + Vl) — Lq,q(sl) + Lq’q(vl)

for arbitrary vectors 8’ and v'.

We also can consider the composition of the rotations, when a vector is
rotated around an axis with unit vector p} and then around a different axis
characterized by unit vector p) as

s — Ll]lafll (S/) - Ll]zsfh [Lih,(?l (S/)}' (158)

Here, ¢, and ¢, are unit quaternions, which that can be written as

g, = cos(dby) + pysin(d;) and g, = cos(dby) + ph sin(b,).

The quaternion multiplication is distributive, and therefore,

Ly, 3,[Lg.3,8)] = Ly, 0,(15T1) = ¢2(01591) % = (4241)8'(713>)»

and we know that (§,¢,) = ¢>q;. Therefore, denoting the quaternion ¢,¢q; by
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q = cos(d) + p'sin(d), (1.59)

we obtain the following statement.

Statement 1.4 The consequence of performing two rotations equivalent to the
rotation around vector p’ by angle 2, where both of these values can be easily
calculated from the quaternion multiplication q = ¢»q,, is

Ly, a,[Lyg.q,(8)] = q5'q = L, 4(s). (1.60)

Example 1.25

Consider two unit quaternions

q1:a1+qﬁzi+ﬂ and qzzaz-l—q’z:l—l—zi_zj
V7 V7

3 3 7
and the corresponding unit vectors

@ _i-it2k p,zzq_gzzi—zj:i—j
|

Pi=r,= :
r V6 o8 V2

Let us assume that a vector ' is rotated first around vector pj and then around
p, by angles 2¢; and 2¢,, where

1 1
= arccos | — | = 67.7923° and = arccos | = | = 70.5288°,
) b =arcos 5)

respectively. To find the resulting rotation, we first calculate the quaternion
q = ¢»q,. The real part of this number is

1
@ = = (ghogh) = 5211~ (2+2) =~ 7=,

and the imaginary part is

i j ok
q/:(alq'2+aqul)+(‘1/1Xq/Z):#[(21._2])4_(1‘_].4_2]()]_31?; _é é

= ﬁ@i— 3j + 2k) —#(4i+4j) :#(—i— 7j + 2k).
The vector q' can be written as

/

—i-7j+2k _ —i-T7i+2%k [6

3V7 3v6 7
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Therefore, the corresponding quaternion is written as

B B 1 +—i—7j+2k_—3—i—7j+2k
q = 9429 \/7 3\/7 3\/7 s

the angle of rotation is 2¢, where

1
= arccos(a) = arccos | ———= | = 112.2077°,
¢ @ < ﬁ)

and vector p’ around which vector s is to be rotated is

(A

—i—7j+2k
W6

Thus, two consecutive rotations of vector s’ by angles 2 x 67.7923° and
2 x 70.5288° around vectors p; and p, can be accomplished by one rotation of
vector s’ around vector p’ by angle 2 x 112.2077°.

Example 1.26

In Example 1.25, the angles of rotations 2¢; and 2¢,, as well as the summary
angle 2¢, are large. Let us consider the consequence of rotating vector s
around the same unit vectors
, i=Tj+2k , i—j

=——+— and =—
Pi NG P> /2

by 30° and 60°, respectively. Our task is to calculate the quaternion ¢ = ¢,¢,
that describes this rotation.

Since
v/ 1+ cos(30°) \/14‘\/73 V243
cos(15°) = = =
2 2 2
and

sin(15°) = /1 —cos(30°) ~ \/1_7\/75 Vis A
2 5 ’

2 pu—
the quaternion ¢, = a; + ¢} is calculated by

CV24+V3 V23
=

gy = cos(15°) + p/ sin(15°)
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The second quaternion ¢, = a, + ¢, is

3 1
¢» = c0s(30°) + p) sin(30°) = g +p’2§.
To calculate the vector ¢ = ¢,q,, we first consider its real part
V2-+31
a=aa, = (q,9) = @16y —————>5 (P}, p3)
_V24V3VE V2B L o V63VE V6-3V3
N 2 2 4 V62 N 4 12 ’

or a = 0.7618. This number defines the doubled angle 2¢ of rotation, where

¢ = arccos(a) = 0.7047 rad,

or 40.3767°.
The imaginary part of ¢ = ¢,¢; can be calculated by
Jj k
V2-v311 1
"'=(arq) +a145) + 45 X ¢ = (¢, +a1¢h) + ————=—=—=|1 —1 0
q = (@ + aqy) + 45, x ¢, = (g, + a193) T Vi )
_{ﬁ\/Z—\/?_i—j—i—Zk_F\/Z—ir\/?i—j]+ 2—\/5(_21._2_)
2 2 NG 2 22l 83 /
V4-2V3 Va+2v3 1 V6e-3V3
= P i+ 20+ T ) | - ().
8 8 12
The components of this vector are
b:\/4—2ﬁ+\/4+2\@_\/6—3\/3':0.3583,
8 12
VA-2/3+V4+2V/3 V6-3V3
c=— - = —0.5077,
8 12
d:ﬂzo.lsw.
4
Thus, the required quaternion is
g=a+q =0.7618 + (0.3583i — 0.5077j + 0.1830k), (1.61)

and it can be verified that |g|> = 1. From this number, we find the unit vector



64 Chapter 1

, ¢ 0358305077/ +0.1830k _ 0.3583i — 0.5077/ + 0.1830k
P = N - 0.6478 ‘

Of course, it is difficult to make such calculations by hand, and we can write
the code to calculate all required data. As an example, a simple script of the
code “example_one26.m” is given below with the input data of our example.

% example one26.m / Art Grigoryan, January 1, 2016

% Rotation of the vector around two unit vectors pl and p2

% by the given angles phi 1 and phi 2, respectively.

% 1. Given data:

s=1[0, 4.5, =2, 3.5];

pl=1[1, —1,2]/sqgrt (6); phi 1=30/180*pi;

p2=1[1, —1,0]1/sqgrt (2); phi 2=60/180*pi;

2. Calculation of the quaternions gl, g2, and g=g2*ql:
gl = [cos (phi_l/2) ,sin(phi_l/Z) *pl]l; $0.9659 0.1057
—0.1057 0.2113

g2 = [cos(phi 2/2),sin(phi 2/2)*p2]; % 0.8660 0.3536
—0.35360

g =mult2gs direct(g2,qgl); % 0.7618 0.3583
—0.5077 0.1830

3. Calculation of the vector p, angle, matrix, and rotated
vector:

[g abs,p,phi] =ginpolform(q) ; %1, 0.5531 —0.7838
0.2825, 0.7047

[gsg,matrixR] =rotateVarroundP (g, s) ;

% gsq = [ —0.0000 0.9153 —4.2961 4.1480]

o©°

o°

$matrixR = [1 0 0 0
% 0 0.4174 —0.06427 —0.6424
% 0 —0.0850 0.6763 —0.7317
% 0 0.9047 0.3601 0.2277]

The results of this program are the following:

¢; = 0.9659 + 0.1057i — 0.1057j + 0.2113k,
q>» = 0.8660 + 0.3536i — 0.3536;,
q = ¢q»q; = 0.7618 + 0.3583i — 0.5077; + 0.1830k, (1.62)
p = 0.5531i — 0.7838; + 0.2825k,
¢ = 0.7047 rad.
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Here, g coincides with the quaternion number in Eq. (1.61). The matrix
of vector § rotation around vector p’ by the angle ¢ =0.7047, or
40.3767°, is

1 0 0 0

A — 0 04174 —-0.6427 —-0.6424
&4 0 —0.0850 0.6763 —-0.7317
0 0.9047  0.3601 0.2277

) [det(AE/,q) = 1],

and the rotated vector is
Lq,,—](s’) = 0.9153i — 4.2961j + 4.1480k.

One can verify that, for this example, |L, ;(s')| = |s'| = 6.0415.

1.4 The Quaternion Exponential Function

The above-considered module |¢g| of the quaternion is an example of the non-
negative function over the quaternions ¢ = a + ¢'. Other functions are the real
component ¢ and imaginary, or vector, component ¢’ of the quaternion ¢, and
the quaternion conjugate g. In this section, we consider the concept of the
exponential function in quaternion arithmetic, which is important in
understanding rotations in the vector space of a quaternion, as well as in
studying of the application of quaternion Fourier transforms, which will be
described in the next chapters.

P1. We consider the Taylor series for the exponential function in the real
case: [36]

2 3 4 X3

Y X X
e’ :exp(x):1+x+5+§+m+§+ S
together with two series
W) =1+ 31y
cos(x) =1+ —1)"——,
— (2n)!
» i ) 2+l
sin(x) = ) (1) ——.
— (2n+ 1)!

The first series for the imaginary number ix is
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ix : _ (ix)*  (ix)*  (ix)*  (ix)
e =exp(ix) = 1+ (ix) + TR TRy Tk - el
X2 X
:1+lx_2' 1y+4'+l§+
— 1 xz X4 Coe . / X3 xs coe .
= — E + z — +1(x— ? + § —
= cos(x) + i sin(x).
The Taylor series can also be used for the quaternions as
o] qn
el =exp(q) =1+ Z;H‘ (1.63)

The convergence of this series can be shown by considering two properties of
the modulus operation: (1) the triangle inequality |¢; + ¢»| < |q1| + |¢»| and
(2) modulus of the power |¢"| = |q|", for positive integer n. Indeed, the

following inequalities hold:

* qn
e |1+ 30 <
n=1

| . e —lgl”
| =TSy s
= n= n=

e‘(I‘.

Let us first describe the case when ¢ = w9, where ¥ is a real number as an
angle, and p is a pure unit quaternion (w> = —1). One can note that

3

= =—p pt= @) =1 = (pHe = p, pb = (p?)’

or
MZn = (—l)n’ MZ”JFI = (—l)nlJ_,’ n:0,1,2,

Therefore, the quaternion number exp(pn9) can be written as

[ e] Ry

Any pure quaternion g can be written as

q/
q:q':m|q’| =9, where Mzm,ﬁ=|q/|>0a

-1, ...
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and therefore,

/

el = cos(9) + w sin(V) = cos(|¢']) + ‘%sin(|q’|).

In general, when ¢ = a + ¢/, the real number « is commutative with ¢/,
i.e., a¢’ = ¢'a. Therefore, we can define the exponential function as

e = et = %l = e“[cos(D) + p sin(D)], (1.64)

or
/
el = e“|cos(|q']) +|Z—,|sin(|q’|) )
We consider the exponent of the imaginary part of ¢ to be
¢! = cos(¥) + p sin(¥) = cos(V) + ip; sin(¥) + jp; sin(Y) + kpy sin(9).
Therefore, the quaternion exponent can be written as
el =1 — (i =+ + pg)] os(9) + e’ + pyel® 4 pyeet?.
It should be noted that, for a given pure quaternion ., the number
0 = cos(V) + p sin(Y)

is a quaternion number, and this number is the exponent Q = e*? only if W is a
pure unit quaternion. Otherwise, we can express the number

Q = (1 —[u[) cos(¥) + [u[|cos(V) +ﬁsin(ﬁ) = (1 = |n]) cos(®) + |fei

as the arithmetic sum of the cosine and exponent.

Example 1.27

Consider the quaternion ¢ = 1 4+ i — 2j + k, which can be written as

i—2j+k
=l+pd=14+—2""/.
q i NG

Then, the exponential number exp(g) is calculated as

el = e [cos(V6) +%sm(\/€) .
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The real part of the exponent is

(e7), = e' cos(V6) = —2.0928,

and the components of the imaginary part equal

1
(e7), = ! 76sin(\f6) —(.7082,

(=2 . _
(ef); =e %sm(\/g) = —1.4164,

(e?), = e! %sin(\/g) = 0.7082.

The exponent of ¢ equals

el = —2.0928 4 (0.7082i — 1.4164; + 0.7082k).

The length of this number |e?| = 2.7183 and ¢l¢l = ¢>%43% = 14.0940. One can
note that, if the imaginary part has equal components, then the corresponding
components of the imaginary part of the exponent exp(g) are equal, too. For
instance, if ¢; = gy, then (%), equals (e?);; and if ¢; = g;, then (e?); = (e7);.

Below is the script of the MATLAB-based code “test_expofq.m” for this
example with the function “expofq.m” to calculate the quaternion exponential
function. We can also check that, for the numbers ¢; = 1 + 17, ¢, = 1 — 2j, and
gz = 1 + k, the exponential function equals

el = 1.4687 + 2.2874i, e't* = 1.4687 + 2.2874k,

and the complex exponential function e!™" = 1.4687 4 2.2874i and e'~% =
—1.1312 — 2.4717..

% test expof.m
a=1[1,1,-2,11;
gexp = expofqg(q) ; % —2.0928 0.7082 —1.4164 0.7082
Checking the function
gexp=expofq([1,0, —2,0]);
zexp=exp(l—2*1i);

o)

o

o°

—1.13120 —2.4717 0
—1.1312 —2.47171

oo o

1.4687 2.287400
1.4687 4+ 2.28741
1.4687 00 2.2874

gexp =expofq([1,1,0,0]);
zexp=exp(l+1);
gexp =expofq([1,0,0,1]1);

oe o°

oe
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% expofg.m / Artyom Grigoryan, January 8, 2016
% calculate the quaternion exponent function
function gexp=expofqg(q)
gqim=qg(2:4);
theta=norm(gim) ;

imaginary part of g

angle theta= |gim| =sqgrt
(b"24c”2+d"2)

mu_vector =gim/theta; % unit \mu

el=exp(q(l));

gexp (1) =el*cos (theta);

gexp (2:4) = (el*sin(theta)) *mu vector; $ See Eq. 1.64

%
)
o

P2. It is known that the cosine, sine, and complex exponential functions
are periodic with the fundamental period 7" = 2,

cos(x) = cos(x + 2mn),  sin(x) = sin(x 4 2mn), e = /¥ H2™),

for any integer n. In the definition of the quaternion exponential function
[Eq. (1.64)], the pure unit vector p = ¢'/|q'| is used. This vector is directed as
the vector ¢’; both vectors are on the same radial ray. Let us consider new
vectors

q/

|q,|217n, n=0, =1, £2,....

Gn =4 +n2mn =q +

One can notice that, if two numbers ¢; and ¢, are commutative, i.e.,
419> = q»4q1, then exp(q; + ¢») = exp(q;) exp(q»). In our case, vectors ¢ and
(¢'/|4'|)2mn are commutative; therefore,

/
= e |cos(2mn) + |q—,|sin(21'rn) = e,
q

s
q' +2-2mn 27n

! 7 / 4
e = e’ Id = ¢4 eld|

We also could write the following:

!
= cos(|¢'| + 2mn) + ‘q—,‘sin(|q’| + 2mn)
q

/ 1[_/2 i /|42
oA HRE™ eWI(qu )

/
= cos(lg') + 7 sin(la) = ef.
P3. Consider a pure unit quaternion number . and the exponential number

exp(pd) = cos(V) + w sin(9).
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When the number w = i,j, or k, this exponential function is the traditional
complex exponential function. Any unit quaternion number ¢ = a + ¢’ can be
written in such a form. Indeed, let |¢| = 1, and p be the pure unit quaternion
w=4¢q/lq|, ie., ¢ = pn|g|. Because of the equality
@+ P =1,
there exists an angle ¥ € [0, |, such that
cos(9) =a and sin(¥) = |¢].
Therefore, we can write
q=a+ plg| =cos(V) + w sin(Y) = e* (1.65)

The unit vector w is in the direction of vector ¢'.

P4. We now consider the inverse ¢~!' to the quaternion ¢ = cos(9)+
w sin(d), ie., such that g¢g~' = 1. In complex arithmetic, the inverse to

z=cos(¥) +i sin(d) is the complex conjugate z~! =z = cos(V) — i sin(I).
For the quaternion exponential function, a similar property holds:

¢~ =g =cos(V¥) — p sin(V) = exp(—pud). (1.66)
Indeed, ¢(g) = |¢|> = 1, or we can perform the direct calculations as
[cos(D) + w sin()][cos(¥) — w sin(V)] = cos?(V) — p? sin?(9Y) = 1,

where p?2 = —|p? = —1.
Now we consider the inverse number to ¢?, for any quaternion
g = a+ Y, where p?> = —1. The following calculations hold:

(eq)—l — (eaepuf))—l — e—a(epu‘))—l

—a eiuﬁ —d ,—py —a—pd —q
= e =e Y% =e =e 1.
Thus,
(7)™ = e = e7%[cos(V) — w sin(V)]. (1.67)

P5. Consider two quaternions, ¢; =1+2i—j+k and ¢, =2—i+
4j — 2k. The exponents of these numbers and their sum are the following:

e = —2.0928 + (1.4164i — 0.7082j + 0.7082k),

e?> = —0.9565 4 (1.5989i — 6.3954;j + 3.1977k),
and
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el ®) = —19.7786 + (—1.0546i — 3.1638;j + 1.0546k).

The product of two the exponents equals

efle> = —7.0565 + (—2.4363i 4+ 10.6650j — 15.2956k).

All of these numbers were calculated by the code “test_expof2.m,” a script of
which is given below.

% test expof2.m
qgl=1[1,2,-1, 1]1;
q2=1[2,-1,4,—-2];
qlexp = expofqg(gl) ;
gl2exp = expofq(g2);
glZ2exp = expofg (gl +q9g2);

o

—2.0928 1.4164 —0.7082 0.7082
—0.95651.5989 —6.3954 3.1977
—19.7786 —1.0546 —3.1638
1.0546
gexpl2=mult2gs direct (glexp, g2exp) ;

% —7.0565 —2.4363 10.6650
—15.2956

oo o°

One can see that, for these quaternions,
e(‘]l‘HIZ) + etz

This statement is also valid in the general case when ¢; # kq,, where k is a real
number.

P6. It is not difficult to see that, for any angles ¥, and 3,, the following
holds:

exp(udy) exp(pds) = [cos(97) + p sin(dy)][cos(D,) + . sin(D,)]
= [cos(V}) cos(D,) + p?sin(Dy) sin(D,)]
+ pfcos(Vy) sin(9y) + sin(By) cos(V,)]
= cos(¥; + V) + p sin(¥; + V) = exp[p(V; + )]
In the ¥; = ¥, case, we obtain
(ehD1)2 = o200

therefore, (e?)? = €% for any quaternion number.
For any pure unit quaternions w and v,

ot

exp(pd)) exp(vd;) = [cos? (V) + pv sin?(d)] + sin(29,);

therefore, if w # v,
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exp(dy) exp(vd;) # expl(p + v)9).
P7. The quaternion also can be represented in a polar form as
q = lq| exp(pd),

where . is a pure unit quaternion p = ip; +jp,; + k., such that [p| =1,
p? = —1, and 9 is a real angle in the interval [0, 7] Indeed,

a ¢ a ¢ |
0=a+d =l (L) =o)L+ L)
lq] gl lql 14| 4l
oA W 9 in(d

where the pure unit quaternion p and the angle ¥ are calculated by

q a
= m and O = arccos (\q\) (1.68)

It should be noted that the sine of this angle is not negative, sin(9) = |¢'|/|¢|
therefore, the angles ¥ in the polar form of the quaternions are from the
interval [0, ],

The polar form is unique, as the classic polar form of complex numbers.
Indeed, consider the following equation for the unit quaternion ¢ with |¢g| = I:

q = qe+ib+jc+kd = cos(¥) + (ip; +jp; + kpy) sin(9),
from which it follows that if |g,| # 1; then,
cos(V) = a, w; = b/sin(V), w; = ¢/ sin(V), uy = d/sin(V).

In the |a| =1 case, b = ¢ = d = 0; therefore, p; = u; = py =0 and ¥ = .
P8. Given a real number x, the power of quaternion ¢ is defined as

¢ = [lglexp(ud)]* = [g[fexp(pd)]*
— J¢]*lexp(pxd)] = [g¢|*[cos(xD) +  sin(xD)]

We can verify this definition for the square of ¢ as follows:
lq|*[cos(29)] + p sin(29)] = |¢|*[cos? (D) — sin?(V) + 2 sin(D) cos(D)]
= |q*[cos(D) + p sin(¥)]* = {lgl[cos(V) + . sin()]}* = (¢)*.

The x = 1/2 case corresponds to the calculation of the square root of the
quaternion g¢,
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-0 aln(3) ()

Example 1.28

Consider the square root, square, and cube of the quaternion ¢ = 1 — i + 2j +
3k with the length |¢| = 1+ 1+4+9 = V15, which can be written as

(1 —it2i+3k
1 V15 V15

and whose imaginary part is

—i+2+3k
B ViV
V14

q =—i+2j+3k=
The angle ¥ is calculated by
1
Y = arccos <—> = 75.0368°,

V15

and the vector is

¢ —i+2j+3k
M:—:i.
|4 V14

The following calculations hold for the square root:

= eos(2) +wsn(2)

i 243k
- \/15[cos 37.5184°) 4+ ——J T h(37.5184°
VIS cos(37.51847) + L sin(37.5154°

= 1.5609 + 0.3203(—i + 2j + 3k).
The square of ¢ can be calculated by

q* = |ql*[cos(29) + w sin(29)] = 15[cos(2) + . sin(29)]
it 243k

= 15|cos(150.0736°) +
00T

sin(150.0736°)

= 13+ 2(—i +2j + 3k).
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The cube of g can be calculated similarly;

¢ = lgleos(39) + . sin(3)]

2 +3k
— (V15)? |c08(225.1103°) + ——— 2K (1n(225.1103°
(VI5)*|cos(225.11037) -+ =L sin(225.1103°)

= —41 — 11(—i 4 2j + 3k).

P9. Using the polar form of the quaternion ¢ = a + (ib + jc + kd), we can
define the quaternion logarithm function. Indeed, we can write ¢ as

q= |q|e+Lﬁ = eln‘q‘el*ﬁ = eln“]H‘Hﬁ'

Then, the logarithm of ¢ can be defined as

b+ jc+ kd
Ing=1Inlg|+ pd =Inlg| + %arccos <i) (1.69)
VO +E+d? 4]

This is a quaternion number, which we denote by

lnq:al—l—ibl +jC1+kd1

with the components

1
ay=1In|gq| = Eln(\/a2 + 0>+ +d?),

vl )
by = ———arccos [ — |,
P+ + d> l4|
(1.70)
¢ a
¢y = —————arccos | — |,
Vb + A+ d> <|Q|>
dy = Larceos <i>
VO + A+ d? 4|

Thus, the components by, ¢; , and d; are proportional to the components b, c,
and d, respectively:

ﬁ—ﬁ—ﬂ—iarccos (i>
b ¢ d | lql)

Example 1.29
Consider the quaternion g = 1 + 2i — 3j + k. The logarithm of this number is

In ¢ = 1.3540 + 0.700i — 1.0500;7 + 0.3500%.
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Indeed, |¢| = V1 +4+9+1=+15=3.8730, a; = In3.8730 = 1.3540, and
the imaginary components are

2 1 2
by = ——=arccos | — | = —— -1.3096 = 0.7000,
' V14 <\/15> V14

-3 1 3
= ——arccos | —— | = —b; = = —1.0500,
1A <\/15> '2

1 1 b,
d; = ——=arccos | —— | = — = 0.3500.
' V14 <\/15> 2

Below 1is the script of the MATLAB-based code for this example,
“test_logofq.m,” which uses the function “logofq.m” to calculate the
logarithm by Eq. (1.70). The command “qexp = expofq(qq)” is used to
verify that the exponent of the logarithm of ¢ is ¢.

% test logofg.m
qa= (1,2, —3,11;

gq=logofq(q) ; $1.3540 0.7000 —1.0500 0.3500
gexp =expofq(qq) ; $isqg=[12 —31];

% call: logofg.m / Art Grigoryan, January 9, 2016
% calculate the quaternion exponent function
function gln=1ogofqg(q)

g modul =norm(q) ;

al=1og (g modul) ;

gim=qg(2:4); % imaginary part of g
gm=norm (gim) ; % gm=sgrt (b"2+4+c”2+d"2)
phi=acos (g(l) /g modul) ;

k=phi/qm;

bcdl =k*qg(2:4); % imaginary part [bl cl dl]
gln=[al bcdl]; % 1n(g) =[al bl cl dl]

To express the components of the number ¢ by the components of the
number Ing, we can represent ¢ = a + bi + ¢j + dk as the logarithm in the
exponent

q — eln q — ea1+ib1+jc1+kd1 — ealeibl+jcl+kd1‘

We consider all components of the quaternion exponent,
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lb1+j(1+Ad1 / erC +d2

q= et elb1+j(‘1+kd1 — elie b2+62+d2

\/ b} + ¢} +d}

Let ¢ = y/b? + ¢} + d>. Then, we can write that the real part of ¢ is

a=e" cos(p), and a; = In|q|. (1.71)

To express the imaginary components of the logarithm by the number ¢, we
use the following equalities:

b= bl |q‘ Sin(cp), c= 9 |q‘ Sil’l(tp), d = dl ‘q’

=— sin(¢).
P ¢ ¢ ( )
Using the sinc function
sin(¢) = sin(e) , sinc(0) =1,
we can write
b = b|glsinc(e), ¢ = ci|glsinc(e), d= d|glsinc(e). (1.72)

Therefore, the components of the quaternion logarithm can also be
calculated by

by = — [sinc(@)] !,
= 7l [sinc(¢)]~', or ¢ = ¢y ifb#0, (1.73)
d, —%[sinc(cp)]l, or d, —d];l if b #0.

Below is the script of the code “test_logofq2.m” for the calculation of the
logarithm of the quaternion ¢ = 1 + 2i — 3j + k. In this script, the function
“logofq2.m” is used to calculate the logarithm of the quaternion by Eq. (1.73).

% test logofg2.m

q=1[1,2,-3,11;
qq=logofqZ(q);
gexp = expofqg(

14

; % 1.3540 0.7000 —1.0500 0.3500
aq) ; $isg=[12 —-311];
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o©°

call: logofg2.m / Art Grigoryan, January 9, 2016
calculate the quaternion exponent function
function gln = logofg2 (q)

g modul =norm(q) ;

al=1og (g modul);

phi=acos (g(l) /g modul) ;

k=g modul*sinc (phi/pi); % See Eq. 1.72

bedl =g (2:4) /k; % imaginary part [bl cl dl]
gln=[al bcdl]; % 1In(g) = [al bl cl1 dl]

o°

Thus, two functions “logofq(q)” and “logofq2(q)” can be used to calculate
the logarithm of a quaternion number ¢g. We note here that the command
“sinc” in MATLAB calculates sinc(¢) as sin(wo)/[w(¢)].

1.5 Quaternion Trigonometric and Hyperbolic Functions

The quaternion exponential function allows for extending the concept of the
cosine, sine, and tangent functions to the quaternion space. Given a pure unit
quaternion number ., the exponential function of angle ¥ is defined as

M = cos(9) + p sin(D),

and e " = cos(9¥) — p sin(9). Therefore, the real cosine and sine functions
can be written as

(M 4 emhd),

N —

cos(V) =
and

1
sin(9) = o (M — V) =
n

8| F

(M — emhd),

To extend these concepts to the quaternion functions, we define the
quaternion cosine and sine in a way that is similar to the complex case:

. 1
(et 4 e 1), sin(q) = o (et — =P,

cos(q) = ;

N —

Here, the unit p can be considered to be the number from the representation
of the quaternion ¢ = a; + pV.
The quaternion hyperbolic cosine and sine can be defined as

(e —e™9).

| —

(e?+e77), sinh(q) =

| —

cosh(g) =
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Example 1.30
Consider the quaternion ¢ = 1 + 2i + 1/3j — 3k and write it as

2+ V3 3k,
VA+3+9

When representing this quaternion as ¢ = a + pJ, we have a = 1,9 = 4, and

_2i+\/T—3k_1,+\/§, 3

g=1+

i 2t a/a

Therefore, the exponent exp(¢) can be written as

k, (n?=-1).

1
el = eletV = ¢! [005(4) + <§i +§j — %k) sin(4)} ,

and

1
el =e¢ %M = [005(4) + <2 + ?} — %k) sin(4)} .

The number g is pw(a + pd) = —9 + ap.; therefore,

M = e Ve = ¢V cos(a) + w sin(a)]
— e [cos(l) + (5 +\/T_ —%k) sin(l)],
and

v = o0 = Aeost) - (3i+ Y2726 sncy)]

Therefore, the cosine of the quaternion ¢ can be calculated as follows:

1 I R S
cos(q):E(euq+e‘uq):cos(1)-e 2+e 1 ¢ 5 ¢ <§i+? —§k> sin(1).

This cosine can also be written as
cos(g) = cos(1) cosh(4) — p sinh(4) sin(1).

It also not difficult to see that the quaternion sine can be calculated by

sin(g) = sin(1) cosh(4) + w sinh(4) cos(1).
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Indeed, since p> = —1, we can write
1 et—et ettt /1. V303 )
(et — g} = 1)- ik 1
™ (e e ") = cos(1) o + o <2 AR ) sin(1)
44 4 4
= cos(1) - ¢ Zue + > ¢ sin(1)
4 _ 4 4, 4
=cos(1)- ¢ 2e M+e 2+€ sin(1)

= cos(1) sinh(4)p + cosh(4) sin(1).

The quaternion hyperbolic cosine can be calculated by

1 el +e !l el —el/1 V33 .
= —(e4 —q) — . 7 _
cosh(q) 2(8 +e77) =cos(4) 7t <2l + —J 4k> sin(4),
or
1 3 3
cosh(q) = cos(4) cosh(1) + (Ei + % j— Zk) sinh(1) sin(4).

The quaternion hyperbolic sine can similarly be calculated as

. 1 el—e ! elte /1. V3.3 )\ .
——(e1 — 7 1) = . 7 _
sinh(g) 2(6 e 1) = cos(4) 7t (21 + —J 4k> sin(4),
or
1 3.3
sinh(q) = cos(4)sinh(1) + (Ei + % - Zk) cosh(1) sin(4).

Summarizing the above calculations, we can write that the quaternion
cosine and sine and hyperbolic cosine and sine can be represented as

cos(g) = cos(a) cosh(9¥) — p sinh(V) sin(a),

(q) = ( ) cosh(9) + w sinh(9) cos(a),
cosh(g) = cos(¥) - cosh(a) + p sinh(a) sin(V),
(¢) = cos(V) - sinh(a) + p cosh(a) sin(V),

sin
1 (1.74)

sinh(g

This representation is valid for any quaternion g¢.
The hyperbolic tangent is defined as

sinh(q) e?—e 7 el —e 9 el -1

tanh(q) = = = -
anh(q) cosh(q) el+ed el+ed e X411’

1

since according to Eq. (1.67), e 7 = (¢7)~", or e ¢? = 1.
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Here, we note that in the division of the hyperbolic sine, the left and right
divisions by the hyperbolic cosine are the same, i.c.,

sinh(q) 1 : . 1
cosh(q)  cosh(q) sinh(q) = sinh(q) cosh(q)’

Indeed, as mentioned in sub-section 1.1.5 (property P4), when dividing
quaternions ¢; by ¢,, the divisions from the right and left are the same if
7>91 = q19>. In our case, this requirement holds:

(el 4 e ) (e —e™) = (e79 +ed)(ed — e ¥) = &2 — !
and
(e —e ) (e +e ) = (ef —e ) (el +el) =X — e,
The hyperbolic cotangent is similarly defined as

_cosh(q) el4ed elte el M4 1

coth(q) = Snhiq) A —c i d—ed el 241"

1.6 Quaternion-Type Numbers

In 4-D space, numbers other than quaternion numbers can be considered and
applied in signal and image processing. We mention three such types of
numbers, which are called pseudo-quaternions, degenerate quaternions, and
degenerate pseudo-quaternions [34].

* Pseudo-quaternions ¢ = (a, b, ¢, d) are defined as the numbers
g=a+ib+ec+fd,

where i, and f are unit numbers with multiplications given in Table 1.3.
The conjugate number ¢ is defined as

g=a—ib—ec—fd,
therefore, the module of the pseudo-quaternion number ¢ is defined by

Table 1.3 Table T(1, i, e, f) of multiplica-
tions of pseudo-quaternion unit numbers.

i
i

-1

-/

e

R~ — —
~ —<a a
|
IS

1
i
e
S
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lqf? = lqq| = a® = b* = ¢ - .
* The degenerate quaternions g = (a, b, ¢, d) are defined as the numbers
g=a+ib+ec+md,

where i, e, and m are the numbers with multiplications given in Table 1.4.
The conjugate number ¢ is defined as

q=a—ib—ec—md.
The module of the degenerate quaternion number ¢ is defined by
g = lqq| = a® + 0.

* The degenerate pseudo-quaternions ¢ = (a, b, c,d) are defined as the
numbers

q=a+eb+ec+Ud,

where ¢, e, and { are the numbers with multiplications given in Table 1.5.
The conjugate number ¢ is defined as

g=a—ib—ec—&d.
The module of the degenerate quaternion number ¢ is defined by

lq|* = |qq| = a* — b

Table 1.4 Table T(1,i,&,m) of multiplications
of degenerate quaternion unit numbers.

1 i € mn
1 1 i € mn
i i -1 mn —e
€ € - 0 0
m mn € 0 0

Table 1.5 Table T(1,e,¢,{) of multiplications
of degenerate pseudo-quaternion unit numbers.

S Mmoo =
[ I N
—_

S O M
S O M o U
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