
which we designate as Y. The value of
ffiffiffiffi
p

p
is the flaw shape

factor of a Griffith crack, i.e., where b/c approaches the infinite:

Y ¼ ffiffiffiffi
p

p
: ð2:5Þ

This is the most severe shape of flaws, and Y ¼ 1.77.

2.4.1 Finite bodies and free-surface correction

The Griffith formulation of shape factor applies to through
flaws that are embedded in an infinite body, as has been shown
in Fig. 2.1. Many handbooks4 and texts show modifications to
the shape factor when the body in which the crack is embedded
is not infinite. This is depicted in Fig. 2.3. Such modifications
are dependent on the flaw-depth-to-body-thickness ratio, as
shown in Fig. 2.4. The higher the ratio, the higher the stress
intensity amplification.

Figure 2.3 Embedded crack in a finite body.
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However, most of our interest is in surface flaws, as in
Fig. 2.2. Further, most of our concerns are for flaws
that are much smaller than the material thickness in which
they exist; i.e., the flaw-depth-to-material-thickness ratio
approaches zero. In this case, we find a free-surface
correction factor that can be obtained from theoretical
Laurent series expansion formulation with appropriate
boundary techniques.5 Suffice it to say that, due to an
increase in strain energy at the boundary, the value of the
free-surface correction factor, which is to be multiplied by
Y, is given as 1.122, when c is much less than the specimen
depth.

A plot of the free-surface correction factor versus flaw-
size-to-body-thickness ratio is given in Fig. 2.5, super-
imposed on the embedded crack modification. The effect of

Figure 2.4 Embedded crack stress intensity versus crack-depth-to-
body-thickness ratio.
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the free surface is more pronounced for higher crack-depth-size-
to-specimen-thickness ratios. However, glass and ceramic flaws
are generally much smaller than the body thickness; a large, 300-
mm surface flaw (0.012 in.) in a 1-in.-thick component results in
a flaw-to-depth ratio of 0.012. An expanded view in Fig. 2.6
shows the effect to be rather inconsequential relative to the
usual assumption of c/d being near zero. Thus, in general, for
a free surface, we find the Griffith shape factor to be

Y ¼ 1:122
ffiffiffiffi
p

p ¼ 1:98: ð2:6Þ

2.4.2 General point flaws

Most flaws are not Griffith flaws; i.e., they are not through
flaws (b/c¼1) but are point flaws (e.g., the penny crack, where
b/c ¼ 1). We can solve for the value of Y by using advanced

Figure 2.5 Free surface versus embedded-crack stress intensity
amplification.
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fracture mechanics techniques. This is given6 as an elliptical
integral of the second kind, with free-surface correction, as

Y ¼ 1:12
ffiffiffiffi
p

p
f

, ð2:7Þ

where

f ¼
Z p=2

0
cos2uþ c2

b2

� �
sin2u

� �1=2
du ðc � bÞ, ð2:7aÞ

f ¼ c
b

� �Z p=2

0
cos2uþ c2

b2

� �
sin2u

� �1=2
du ðc � bÞ: ð2:7bÞ

The integral is carried over the half-angle subtended by the
elliptical shape of the crack, as shown in Fig. 2.7.

Figure 2.6 Free-surface correction factor versus crack-to-body-depth ratio.
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The integral is readily solved for the Griffith and half-penny
flaws but not so readily without the use of complex calculus.
Fortunately, the calculus has been done for you. Table 2.1 gives
the Griffith and penny solutions, while Fig. 2.8 shows the entire
domain, in which a surface crack is illustrated. In most
instances, the value of Y ranges from 1.0 to 1.98, with the half-
penny crack solution giving a value of 1.26.

Figure 2.7 Flaw shape factor is a function of the integral over the flaw
half-angle.

Table 2.1 Flaw shape factor Y for Griffith and penny cracks (b ¼ flaw
half-width; c ¼ flaw depth).

Y

Crack type b/c f Internal flaw Free-surface
correction

Surface flaw

Griffith >10 1 p1/2 1.12 1.98
Penny 1 p/2 1.13 1.12 1.26
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