Rare earth doped oxyfluoride glass-ceramics (GCs) have recently attracted much attention as a novel material candidate for solid state laser cooling application. In this study, highly transparent (~ 90 % in the infrared region) ytterbium doped aluminosilicate oxyfluoride glasses and glass ceramics containing YF3 nanocrystals prepared by the conventional melt quenching process have been investigated to determine and compare their potential to obtain high photoluminescence quantum yield (PLQY). The highest ASF emission intensity was observed in the GC composition with near-infrared PL emission centered at ~1010 nm under a laser excitation at 1020 nm. The PL spectra at different temperatures (25 °C – 200 °C) were measured using different excitation wavelengths varying from 920 nm to 1030 nm in order to understand the nature of Stokes and anti-Stokes emission in glass ceramics. The glass-ceramic has a net heating near to zero with an excitation between 1020 nm and 1030 nm showing its potential for optically induced heat-management applications. The optical properties such as refractive index, quantum efficiency and lifetime of GC and the precursor glass were also studied in detail in order to explore these properties for laser cooling applications.
The development and the emergence of fully integrated all-fiber optical systems is very interesting from a technical point of view in photonics. Indeed, the development of mutimaterials fibers combining both optical waveguide properties and simultaneous in-fiber electrical excitation could provide plenty of innovative signal-processing, sensing or imaging functionalities. Here, we report the engineering of a new glass/metal composite fiber. For the glass, we have chosen tellurite glasses for their excellent thermo-viscous abilities (low Tg) and linear/nonlinear optical properties. This low Tg allows to have a larger panel of potential metals to be co-drawn with. The synthesis is firstly realized by build-in-casting at room atmosphere which allows to get a large-core. Then, the rod-in-tube technique and the insertion of metallic wires allow to get a step-index fiber with a small-core (7μm) and two continuous metallic electrodes running along the fiber axis (Øelectrodes = 30μm). Thus, we obtain a tellurite-based core-clad dual-electrode composite fiber made by direct, homothetic preform-to-fiber thermal co-drawing. The rheological and optical properties of the selected glasses allow both to regulate the metallic melting flow and to manage the refractive index core/clad waveguide profile. We will discuss the engineering of these multimaterials optical fibers and their characterization: thermal and viscosity properties, linear optical properties (loss), electrical properties with a continuity of the electrodes over meters of fiber.
Oxyfluoride glass-ceramics are considered to be one of the promising materials for anti-Stokes laser cooling. Our previous results showed that glass-ceramics are more appropriate than glassy materials for laser cooling applications. In the present work, we describe the role of optimization of the oxide: fluoride ratio in oxyfluoride glass ceramics with the composition (SiO2-Al2O3)(100-x)(YLiF4)x: (YbF3)1 (x = 35 and 40; in mol.%) in order to obtain high photoluminescence quantum yield (PLQY) and low background absorption focusing on optical refrigeration applications. Glass-ceramics with high transparency (~ 90 % in the infrared region) were synthesized by the conventional melt-quenching process followed by heat-treatment. Near-infrared (NIR) photoluminescence (PL) emission due to the 2F5/2 – 2F7/2 Yb3+ transition, centered at ~1010 nm was observed. An improvement in the quantum efficiency is observed for all the samples, which varies between 64 % and 99 %, depending on the oxide: fluoride ratio. A decrease in the background absorption of the samples was investigated by calorimetry. The enhanced radiative (radiative emission) quantum efficiency is achieved due to the YLiF4 crystals (low phonon energy ~450 cm-1) which minimize non-radiative relaxations. At a laser wavelength of 1020 nm, the glass-ceramics show anti-Stokes PL emission, essential to achieve laser cooling. The proposed composition is an ideal candidate for laser cooling considering the low phonon energy and low background absorption compared to the other oxyfluoride glasses previously investigated.
We report on the structural and optical properties of 50GeO2-30PbF2-(20-x)PbO-xYbF3, with x = 0.5, 1.5, 2.0, 2.5 mol% glass-ceramics for optical refrigeration. XRD measurements reveal the formation of nanocrystals embedded in glass samples after heat treatment at 360°C ⁄ 20h. Spectroscopic measurements show that samples have near infrared photoluminescence emission due to the 2F5/2 − 2F7/2 Yb3+ transition, centered at ∼1020 nm with excitation at 919.7 nm, or 1011.2 nm, and the highest PL emission efficiency occurs for samples with 2.0 mol% of Yb3+. The PL quantum yield varies between 95% and 75%, depending on the lanthanide concentration and excitation wavelength, for 1.5 and 2.5 mol% Yb3+doped samples being the most efficient under 1011.2 nm excitation. The UV-Vis-NIR spectroscopy shows a transparency as high as 80% in the infrared region, and the absorption between 900-1050 nm increases with Yb3+ concentration, in good agreement with the theoretical doping levels. Preliminary measurements monitoring the sample temperature dependence using a fiber Bragg grating sensor, as a function of pump laser wavelength and Yb3+ concentration shows that the heating process approaches zero for an excitation wavelength of around 1030 nm, which is an indication that phonons are annihilated in these glass-ceramic materials, and shows promise for applications in optical refrigeration.
Multifunctional fibers are developed worldwide for enabling many new advanced applications. Among the multiple new functionalities that such fibers can offer according to their design, chemical composition and materials combination, the co-transmission of light and electrical signals is of first interest for sensing applications, in particular for optogenetics and electrophysiology. Multifunctional fibers offer an all-solid approach relying on new ionic conducting glasses for the design and manufacturing of next generation optrodes, which represents a tremendous upgrade compared to conventional techniques that requires the utilization of liquid electrolytes to carry the electrical signal generated by genetically encoded neuronal gated ion channels after optical excitation. After a systematic study conducted on different ion-conductive glass systems, silver phosphate-based glasses belonging to the AgI-AgPO3-WO3 and AgI−AgPO3−Ag2WO4 systems were found to be very promising materials for the target application. Several types of fibers, including single-core step-index fibers, multimaterial fibers made of inorganic and optical polymeric glasses have been then fabricated and characterized. Light transmission ranging from 400 to 1000 nm and electrical conductivity ranging from 10−3 and 10−1 S·cm−1 at room temperature (AC frequencies from 1 Hz to 1 MHz) were demonstrated with these fibers. Very sharp fiber tapers were then produced with high repeatability by using a CO2 laser optical setup, allowing a significant shrinking from the fiber (300 μm diameter) to the taper tip (25-30 μm diameter).
Luminescence properties of Pr3+ and Dy3+ doped GaGeSbSe(S) vitreous systems have been studied. The synthesis process to obtain homogeneous glasses has been determined and fibers have been successfully drawn from the produced preforms and characterized. Fibers show a mid-IR luminescence matching with the CO2 absorption band at 4.3 μm and can be used in an environmental monitoring sensor for the CO2 underground storage. The luminescence and glasses properties have been investigated on bulk samples and fibers in order to improve the efficiency of an optical CO2 sensor prototype operating from high to low concentration, down to the ppm level.
Oxyfluoride glasses and glass-ceramics (GCs) have some niche advantages over other oxide and fluoride glasses, as they possess combined properties. This paper reports the structural, thermal, and photoluminescence (PL) properties of Yb3+-doped SiO2−Al2O3−CaO−CaF2 oxyfluoride glasses and transparent GCs containing CaF2 nanocrystals. Special efforts were undertaken to minimize the hydroxyl (OH−) content in the prepared samples to improve their optical features. Differential scanning calorimetry analyses were performed to determine the characteristic temperatures of the base glasses. X-ray diffractometry studies have confirmed the fluorite CaF2 nanocrystals to be 10 nm in size. Reduced transparency in the ultraviolet (UV)–visible to the near-infrared (NIR) regions was observed for the GCs compared to the base glass with increasing thermal treatment temperature. A higher PL intensity upon 920-nm excitation was obtained in the GCs compared to that of the base glass. The absolute photoluminescence quantum yield upon 920-nm laser excitation was evaluated using an integrating sphere and an optical spectrum analyzer. It was observed that the lifetime of the F5/22 level of the Yb3+ ions decreases with increasing ceramization temperature. The potential advantages of using such oxyfluoride GCs over commonly studied single crystals for laser cooling applications are discussed.
Laser cooling with anti-Stokes fluorescencewas predicted by Pringsheim in 1929, but for solids was only demonstrated in
1995. There are many difficulties which have hindered laser assisted cooling, principally the chemical purity of a sample
and the availability of suitable hosts. Recent progress has seen the cooled temperature plummet to 93K in Yb:YLF. One
of the challenges for laser cooling to become ubiquitous, is incorporating the rare-earthcooling ion in a more easily
engineered material, rather than a pure crystalline host. Rare-earth-doped nanocrystalline glass-ceramics were first
developed by Wang and Ohwaki for enhanced luminescence and mechanical properties compared to their parent glasses.
Our work has focused on creating a nanocrystalline environment for the cooling ion, in an easy to engineer glass. The
glasses with composition 30SiO2-15Al2O3-27CdF2-22PbF2-4YF3-2YbF3 (mol%), have been prepared by the conventional
melt-quenching technique. By a simple post fabrication thermal treatment, the rare-earth ions are embedded in the
crystalline phase within the glass matrix. Nanocrystals with various sizes and rare-earth concentrations have been
fabricated and their photoluminescence properties assessed in detail. These materials show close to unity
photoluminescence quantum yield (PLQY) when pumped above the band. However, they exhibit strong up-conversion
into the blue, characteristic of Tm trace impurity whose presence was confirmed. The purification of the starting materials
is underway to reduce the background loss to demonstrate laser cooling. Progress in the development of these nano-glass-ceramics
and their experimental characterization will be discussed.
Gold nanoparticle embedded in Er3+-Tm3+-codoped tellurite-glass are able produce two effects on the emission properties these glasses: (i) quenching on direct-emission under excitation by a 405 nm laser diode, or (ii) enhancement on upconversion-emission under excitation by a 976 nm laser diode in these glasses. Both effects were investigated from the luminescence decay dynamics of ions. The localized surface plasmon resonance band of gold nanoparticles at around 580 nm resulted in the quenching/enhancement of Er3+-Tm3+ emission for the Er3+:(4S3/2→4I15/2) transition. These hybrid materials can be utilized for various photonic applications, e.g. infrared to visible light converters or emitting green light.
We report on the characterization of oxyfluoride glasses and glass ceramics for their application in optical refrigeration. Oxide glasses are chemically and mechanically stable and relatively ease to handle and fabricate, but their high maximum phonon energy leads to a nonradiative decay rate which is unacceptable for optical refrigeration. On the other hand, low-maximum phonon energy hosts such as fluorides lack the desirable mechanical and chemical stabilities to make them widely used. The combination of the high chemical and mechanical stability of oxides and the low maximum phonon energy of fluorides make oxyfluorides strong potential candidates for wide-spread use in optical refrigeration. Glasses and ultra-transparent glass-ceramics of molar composition 30SiO2-15Al2O3-(27-x)CdF2-22PbF2-4YF3-xYbF3, with x = (2, 5, 8, 12, 16 and 20) mol % are investigated. The absorption and photoluminescence spectra, as well as the lifetime and the external quantum efficiency of the photoluminescence for these samples using an integrating sphere are reported. The effects of reabsorption on the measured mean fluorescence wavelength are also reported. The cooling efficiencies of the samples were measured as a function of the pump wavelength using a calorimetric method with a Ti:Sapphire laser pump source and a fiber Bragg grating sensor for a direct temperature measurement. Impurities and background absorption are also investigated using different pump sources and the calorimetric method. From a comparison of the cooling/heating performance of the oxyfluoride glasses and glass-ceramics containing various Yb3+ amounts, we developed a strategy to realize and enhance optical refrigeration in this class of material.
Glass-ceramics are composite materials consisting of crystals which are controllably grown within a glass matrix usually by applying an appropriate heat treatment. They possess outstanding optical properties with applications in solid state lasers, optical amplifiers, and now, laser induced cooling. For laser cooling, the material should exhibit specific properties like low phonon energy environment around the lanthanide ions, low background losses, high transparency and high photoluminescence quantum yield. In the present study, oxyfluoride glasses and ultra-transparent nano glassceramics doped with different concentrations (2, 5, 8, 12, 16 and 20 mol %) of Yb 3+ ions have been prepared by conventional melt-quenching and subsequent thermal treatments at different temperatures, respectively. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements have been performed to characterize the thermal properties of the glass and the structural changes in the glass-ceramics, respectively. The XRD patterns confirm the growth of β-PbF2 nanocrystals as well as progressive incorporation of Yb 3+ ions. This enhances the Yb 3+ ion emission intensity which depends on the doping concentration and ceramization temperatures. The size (20 nm) of the nanocrystallites was estimated from the Sherrer’s formula and found to increase with increasing ceramization temperature, small enough to avoid scattering losses and ensure an excellent transparency of the glass-ceramics comparable with that of the parent glass. An enhancement of the luminescence properties of Yb 3+ ions surrounded by a crystalline low phonon environment is observed. Finally, the utilization of these heavily Yb 3+-doped ultra-transparent materials for laser cooling and solid state laser applications is discussed.
New Yb3+, Er3+ and Tm3+ triply doped fluoro-phosphate glasses belonging to the system NaPO3-YF3-BaF2-CaF2 have been prepared by the classical melt-casting technique. Glasses containing up to 10 wt.% of rare-earth ions fluorides have been obtained and characterized by using differential scanning calorimetry (DSC), UV-visible-near-infrared spectroscopy and up-conversion emission spectroscopy under excitation with a 975 nm laser diode. Transparent and optically homogeneous glass-ceramics have been reproducibly obtained by appropriate heat treatment in view to manage the red, green and blue emissions upon 975 nm laser excitation. According to the applied thermal heat-treatment, a large enhancement of intensity of the up-conversion emission – from 10 to 160 times higher – has been achieved in the glassceramics compared to that of glasses, suggesting incorporation of the rare-earth ions into the crystalline phase. Furthermore, a large range of color rendering has been observed in these materials by controlling the laser excitation power and material crystallization rate. Time-resolved luminescence experiments as well as X-ray diffractometry and scanning electron microscopy techniques have been employed in order to understand and correlate the multicolor emission changes to the crystallization behavior of this material. A progressive phase transformation of the fluorite-type CaF2-based nanocrystals initially generated was observed along with increasing heat-treatment time, thus modifying the rare earth ions spectroscopic features.
Metallic negative-nanobowtie is a new suitable structure for development of nanoantennas that can be integrated on wide number of optical devices. Nevertheless, metallic negative-nanobowtie with absence of gap deserve attention special, because in addition to present similar properties from regular nanobowtie, can also interacts with different systems, like gain materials. One of remarkable class of such material is rare earth ions, not only for the enhancement on measured intensity, but also its easiness to implement it on glasses, which constitute the main type of substrate adopted on plasmonic structures. In this work we performed the analysis of effects due implementation of erbium (Er3+) rare earth ions into tellurite glass over a pattern of negative-nanobowtie on absence of gap between its tips, fabricated by focused ion beam (FIB) technique from gold (Au) films with 240 nm thickness. Here, the negative-nanobowties are vertically excited by an argon laser (Ar) at 488 nm and were performed to verify the dependence of nanobowtie’s geometry over the electric field along its symmetry axis. An asymptotic energy gap between the localized surface plasmon polariton modes and the ion spectral position was observed, which couple strongly with the 2H11/2→4I15/2 radiative emission of the Er3+. Besides, the 4S3/2→4I13/2 electronic transition is an indirect transition that was improve due to negative-nanobowtie in comparison with the 4I9/2→4I15/2.
Colorless sulfide glasses can be obtained by selecting appropriately the composition within the Ga2S3-GeS2-CsCl pseudo-ternary glass system. The addition of electronegative chlorine ions into the sulfide glassy network results in a widening of its optical bandgap without altering its infrared transparency. Glasses transparent from the near UV (380 nm) up to the middle infrared (11.5 μm) are thus achievable. Such extended infrared transmission for a colorless glass is the widest among the known heavy metal oxide and fluoride glasses, e.g. fluoroindate glasses are transparent from 350 nm up to 8-9 μm. We present in this work our recent progress on the preparation of this chloro-sulfide glass of high optical quality. Efforts have been devoted in a first step to reduce the content of extrinsic impurities such as OH, SH and H2O. In a second step, protective coatings have been deposited on polished glass samples to improve their chemical durability and assess their potential for practical applications. Large improvement of both optical quality, in terms of transmission spectrum flattening, and chemical durability were achieved. Finally, the high thermal stability against crystallization of this glass shows a high potential for lens molding and applications in multispectral imaging.
Metallic nanobowtie is well known as a suitable structure for development of antennas that can be integrated on wide
number of devices, especially in optical communications. Such feature is achieved due the presence of surface plasmon
polariton (SPP) that provides a great charge density on nearby region from its tips. Considerable studies have described
theoretical and experimentally the influence of gap between tips on radiation emission, once this parameter may improve
the local field, as such length decrease. In optical regime, the emission enhancement is due the quantum-plasmonic
interaction created from tips’ region (localized field) and the transition levels from rare earth ion of erbium (Er3+) and
thulium (Tm3+). However, metallic nanobowtie with absence of gap still deserve attention, because in addition to present
similar properties from regular case as previously mentioned, can also interacts with different systems, like gain
materials, that can be embedded thermically into the substrate. Rare earth ion is one of the remarkable and suitable for
our proposition, not only for the enhancement on measured intensity, but also its easiness to implement it on glasses,
which constitute the main type of substrate adopted on plasmonic structures. In this work we performed the analysis of effects due implementation of Er3+ and Tm3+ ions into BK7 glass over a pattern of nanobowtie on absence of gap
between its tips, fabricated by focused ion beam (FIB) technique from gold (Au) films. The bowties were vertically
excited by an Argon laser (Ar) which wavelength ( ) is 488 nm. Furthermore, computational simulations based on finite
element method (FEM), were performed to verify the dependence of nanobowtie’s geometry over the electric field along its symmetry axis.
Metallic nanostructures upon resonant excitation can enhance the local electric field, which could be increased, if these nanostructures are embedded in a gain medium. In this sense, we propose a gain medium as a candidate for the development of nanowaveguide amplifier based on Er3+-doped tellurite glass with embedded silver nanoparticles (NPs). Those glasses are characteristic for their amplifying response in the telecommunication window, and when we embedded metallic NPs modified the crystalline potential surrounding to the Er3+ ions, due to an electric coupling between NP (received/emitter) and Er3+ ion (emitter) enhancement luminescence intensity from the 4I13/2→4I15/2 transition radiative of the Er3+ ions. Besides, the presence these NPs changes the refraction index these glass modifying the complex parameter β(neff) increasing the polarizability of the samples f(Ɛd). Therefore, a gain medium – Er3+ ions (amplification function in the telecommunication band) with silver NPs (luminescence enhancement) – can increment the propagation length of light into nanowaveguide.
Periodic nanostructure arrays consisting of square holes were fabricated with a Focused Gallium Ion Beam on a gold thin film deposited onto the surface of an
Er3+-doped tellurite glass. The nominal dimensions of the square elements are approximately 300×300 nm2, separated by 1.0 μm, such that we have arrays of approximately 15×15, 10×10 and 5×5 μm2 dimensions. The metallic nanostructures were vertically illuminated with a diode laser at 405 nm. The Er3+ luminescence spectrum in the near-infrared was measured in the far-field via the micro-luminescence technique. The excitation and emission of the Er3+ ions were obtained through of the so-called extraordinary optical transmission of excitation and emission light, respectively, via those squares array. In this way, metallic nanostructures sustaining surface plasmons can excite and change the emission properties of the Er3+ ions. Additional contributions on the emission spectra were achieved due to the influence of the gold metal film, i.e., the resonant properties from the plasmonic nanostructures can strongly influence the spectroscopic features of the Er3+ ions. Therefore, we present a systematic quantum mechanical experiment that shows the quantum plasmonic properties of these nanostructure arrays on the erbium ions, with direct applications for understanding and exploiting of nanophotonic devices.
In this paper, the strong influence of alkali halide in chalcogenide glasses is reminded, leading for the
first time to highly transparent glasses from the visible range up to 11μm. The behavior of crystallization has
been demonstrated to be similar in sulfide and selenide glasses containing gallium as well. The structural
evolution of several glass compositions from the Ge-Ga-S or Ge-Ga-Se systems leading to reproducible glass ceramics
has been studied by XRD, NMR and thermal analysis. Whatever the composition, gallium plays a
fundamental role as nanosized domains appear by phase separation between Ge rich regions and Ga rich
regions. The determination of the appropriate crystallization time and temperature has permitted to obtain new
passive and active glass-ceramics with a broadened transmittance region thanks to the incorporation of
various alkali halides. In the first case, the controllable generation of nanocrystals leads to an increase of the
main thermo-mechanical properties. In the second case, the incorporation of rare-earth ions inside the glass ceramics
has exacerbated their photoluminescence properties. The possibility to combine the ceramization
process with the shaping has also been demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.