With the rapid development of optical network for data center techniques and artificial intelligent algorithms, it’s harder to train relevant professionals. Experimental course plays an important role for students to deepen understanding of complex theoretical knowledge. However, existing SDN-based experimental platforms face two challenges that increase the learning cost: (1) how to evaluate intelligent algorithms in optical network for data center rapidly and automatically, (2) how to provide a large-scale optical network for data center environment for students’ practice with acceptable cost. To overcome these two challenges, this paper proposed an innovative educational platform with two features: (1) Introducing an intelligent algorithm center in the control layer to store and manage students’ different customized intelligent algorithms. (2) Introducing the combination of physical domain and virtual domain in underlying devices layer to provide a large-scale network experimental environment for students. The main functions of the proposed platform have been realized. Many students have used this platform to evaluate their intelligent algorithms. The difficulty of evaluating intelligent algorithms is greatly reduced. Students can make it more clear how intelligent algorithm works on optical networks for data center.
Network failures are unavoidable and can easily cause huge losses. The occurrence of failures typically results in a number of changes that have to be made to recovery and keep operating the network in a normal manner. Restoration is a common method of network failure recovery. However, the traditional methods of Path Restoration and Link Restoration will be effective only when there are resources that can satisfy the condition in the network. And the resource utilization is not high enough. We propose a network failure recovery method based on reinforcement learning, integrated Path Restoration and Link Restoration. The protection channel of the damaged service flow and the channel of the normal service flow share the bandwidth resource. A simulation is designed to evaluate the performance of the proposed algorithm. Simulation shows that whether there is only one input service flow or multiple input service flows, when the final switched flow cannot find a suitable path in the idle resource, the traffic of the best situation will be the minimal of all possible cases. The scheme of this paper can effectively improve the success rate of network failure recovery with high utilization of physical resources. It is more extensive than traditional methods.
The performance monitoring of fiber-optics communication is an important task in nowadays communication system. Link optical noise-to-signal ratio (OSNR) is one of the most important parameters that affect the performance of optical networks. The traditional internal measurement method may increase the network construction cost and operation complexity. To overcome these drawbacks, an ANN based link OSNR estimation method with external measurement is proposed in this paper. Route level OSNR values are measured at the edge nodes and are used for link level OSNR estimation with the trained ANN. Besides, a heuristic method for route set generation is proposed to generate the route set that introduce fewer extra network load. The experiment results demonstrate that the ANN based method can meet the practical requirement in both estimation accuracy and computation complexity. The proposed method can be an important part of optical network OSNR monitoring to ensure robust and intelligent network operation.
We propose to compare the hardware cost of OTN switching and IP switching to obtain the ballpark adaptation range for the two switching mode. By abstracting the switching behavior of OTN switching equipment and IP router, we present a detailed study on the hardware cost in the case of ensuring connectivity. A unified network-level connection model is established based on CLOS switching network, and then we compare hardware costs for IP switching and OTN switching. The hardware cost of the two switching mode in different L1 switching granularity and different port rate cases is simulated. Simulation results show that OTN switching has lower hardware cost than IP switching when average bandwidth for traffic demand excess 250Mbps in the cases of ODU0 switching granularity.
We designed and implemented a dynamic simulation platform for software defined optical satellite networking. It can simulate all nodes in satellite network on one computer. It can refresh the network in real time in a highly dynamic and complex environment, including changes in the connection between nodes caused by the dynamic periodic motion of the satellite and changes in link quality, etc. In addition, the platform can apply other algorithms in the simulation network so that the platform is practical and scalable. We also conducted the test of the small satellite constellation on this platform. The experimental results obtained are in line with expectations and reflects the practical capabilities of the platform.
Flexible optical networks (FONs) are used to handle the enormous bandwidth demands and significantly improve the flexibility and efficiency of spectrum resources. This flexibility opens the door to strategies that can optimize the allocation of spectrum resources. The dynamic setup and teardown of traffic will inevitably fragment these resources and increase the network blocking probability. Different modulation formats can be configured to guarantee efficient spectrum resource allocation by taking the transmission distance into account. We investigated routing and fragmentation-avoiding spectrum allocation for the unicast service over FONs with the constraints of spectrum resource and transmission distance. To alleviate spectrum fragmentation, the available spectrum adjacency (ASA) is used to estimate the adjacency among available spectrum block resources on routing paths or links. A distance-adaptive fragmentation-avoiding spectrum resource allocation (DA-FASA) algorithm based on ASA and genetic operators is proposed to resolve the spectrum fragmentation problem in FONs. The DA-FASA algorithm defines an ASA value for the free spectrum blocks on each routing path and each modulation format to maximize spectrum availability, which effectively reduces the spectrum fragmentation and network congestion. Simulation results indicate that DA-FASA exhibits highly efficient performance with regard to the bandwidth blocking probability and the spectrum utilization ratio under different network scenarios, compared to the benchmark algorithms.
As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding–enabled EON. We investigated the RSA for the unicast service and network coding–based multicast service over the network coding–enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding–enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding–enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding–based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.
With the rapid growth of 4G mobile network and vehicular network services,mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What’s more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane and achieve effective scheduling OLT wavelength resources between different OLTs based on various traffic situation. Simulation results show that, by using the scheduling algorithm, network traffic between different OLTs can be optimized effectively, and the wavelength utilization of the multi-OLT system can be improved due to the flexible wavelength scheduling.
An all-optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed for multigranularity multicast traffic transmission in flexible-grid optical networks. Based on all-optical OFDM technology, diverse bitrates traffic is transmitted efficiently by the proposed architecture with flexibility and scalability in spectrum allocation. Moreover, the integration of network coding technology within the optical multicast network improves resource utilization efficiency and enhances transport capacity. The feasibility of an all-optical OFDM network coding scheme for multigranularity multicast traffic transmission is analyzed, and performance evaluations are performed on transmitting diverse bitrate traffic, respectively. The relevant simulation results show that various bitrate multicast traffic demand can be transmitted successfully by the proposed scheme, and spectrum resources can also be allocated to satisfy flexible multicast traffic demand dynamically and efficiently. Furthermore, synchronization for network coding is also investigated. Tolerance of misalignment is improved by the approach to stretch subcarrier signal pluses, and the difficulty of pulse alignment is also reduced.
An efficient dynamic bandwidth allocation (DBA) algorithm for multiclass services called MSDBA is proposed for next-generation time division multiplexing (TDM) passive optical networks with network coding (NC-PON). In MSDBA, a DBA cycle is divided into two subcycles with different coding strategies for differentiated classes of services, and the transmission time of the first subcycle overlaps with the bandwidth allocation calculation time at the optical line terminal. Moreover, according to the quality-of-service (QoS) requirements of services, different scheduling and bandwidth allocation schemes are applied to coded or uncoded services in the corresponding subcycle. Numerical analyses and simulations for performance evaluation are performed in 10 Gbps ethernet passive optical networks (10G EPON), which is a standardized solution for next-generation EPON. Evaluation results show that compared with the existing two DBA algorithms deployed in TDM NC-PON, MSDBA not only demonstrates better performance in delay and QoS support for all classes of services but also achieves the maximum end-to-end delay fairness between coded and uncoded lower-class services and guarantees the end-to-end delay bound and fixed polling order of high-class services by sacrificing their end-to-end delay fairness for compromise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.