Most traditional pixel-based analyses are based on the digital number of each pixel. Whereas images can provide more details such as color, size, shape, and texture, object-oriented processing is more advantageous. Multiresolution segmentation, which was proposed by Baatz and Schäpe, is one of the most powerful segmentation algorithms. On the other hand, meaningful segmentation is the most important issue in object-oriented processing. Currently, meaningful segmentation, which is recommended by Baatz's multiresolution segmentation approach, is a trial-and-error task that is very tedious and time consuming. Therefore, a genetic algorithm (GA) is used for finding optimal parameters of Baatz's multiresolution segmentation approach for three building groups' meaningful segmentation. The optimal parameters are found by GA and its generality has been evaluated on a simulated image as well as some IKONOS and GeoEye image patches. The evaluations show the efficiency of GA for finding optimal multiresolution segmentation parameters for meaningful segmentation of the simulated image and the three groups of building images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.