Wavelength-swept laser is one of the most critical common components of fiber Bragg grating (FBG) sensors. However, a fast, stable, integrated and low-cost multi-channel wavelength-swept laser array is still unavailable. In this article, a multi-channel simultaneous wavelength-swept DFB laser array based on the reconstruction-equivalent-chirp (REC) technique is proposed and manufactured. The REC technology simplifies the fabrication process and greatly reduces the cost of the laser. The laser array contains 4 lasers in parallel with integrated heating resistance for thermal tuning to broaden the wavelength-tuning range. Each single-wavelength DFB laser introduces a π-phase shift structure, which is used to improve the single-mode performance of the laser. Meanwhile, the active multiplexer responsible for coupling and an optical amplifier (SOA) responsible for compensating the coupling loss of the laser are also integrated on the same chip. The driving circuits of the laser use FPGA to control the DAC chip to obtain precise current output and realizes continuous linear output of wavelength by changing the injection current size. The packaged laser module can realize a continuous wavelength-swept range of 2.4 nm per channel with the SMSR over 40 dB, achieving a simultaneous sweep of four channels with good scanning linearity and scanning speed. The work of this paper realizes the integration of linear wavelength-swept light sources, which creates the conditions for a low-cost, small-volume multi-channel sensing system in the future.
A weak double-peak fiber Bragg grating (FBG) temperature sensor is proposed and demonstrated. Wavelength-swept tunable laser is regarded as one of the most popular demodulation methods for fiber Bragg grating (FBG) sensors. However, due to the limitations of the existing tunable laser technologies, a fast, compact, stable and low-cost tunable laser for FBG sensors is still unavailable, which will become one of the major barriers for more widespread applications of FBG sensors. To further improve the efficiency and accuracy of the FBG interrogation system, a FBG temperature sensor is proposed and demonstrated by using tunable laser and a weak double-peak FBG. Since the reflection of the weak double-peak FBG has two main reflection peaks and relatively wide bandwidth, it is convenient to track the two characteristic peaks to accurately obtain the wavelength shift during the alteration of ambience temperature. A proof-ofconcept experiment is also conducted to verify the theory. By demodulating a weak double-peak FBG in the temperature experiment, a sensor sensitivity of 10.17 pm/ °C is measured for the proposed interrogation system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.