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Abstract. Recently, image communications are becoming increasingly
popular, and there is a growing need for consumers to be provided
with high-quality services. Although the image communication services
already exist over third-generation wireless networks, there are still obsta-
cles that prevent high-quality image communications because of limited
bandwidth. Thus, more research is required to overcome the limited band-
width of current communications systems and achieve high-quality image
reconstruction in real applications. From the point of view of image proces-
sing, core technologies for high-quality image reconstruction are face hal-
lucination and compression artifact reduction. The main interests of
consumers are facial regions and several compression artifacts inevitably
occur by compression; these two technologies are closely related to
inverse problems in image processing. We review recent studies on
face hallucination and compression artifact reduction, and provide an out-
line of current research. Furthermore, we discuss practical considerations
and possible solutions to implement these two technologies in real mobile
applications. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10
.1117/1.OE.51.10.100901]
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1 Introduction
With advancements in mobile communication devices, tech-
nology now allows people to communicate while looking at
each other’s face. This technology is also referred to as
videoconferencing and basically transmits images to a dis-
play system so users can see each other while talking, as
shown in Fig. 1(a). Many market analysts predict the number
of subscribers to image communication services grows expo-
nentially every year because of lower mobile device prices
and aggressive marketing of communication companies, as
shown in Fig. 1(b). As image communication services come
into wide use, consumers want high-quality services.
Although image communication services already exist
over third-generation (3G) wireless networks, such as the
high-speed downlink packet access (HSDPA), there are
still obstacles that prevent high-quality communications
because of limited bandwidth (maximum uploading and
downloading speeds are 14.4 and 5.76 Mbps, respectively).
Consequently, more research is required to overcome the
limited bandwidth of current communications systems and
achieve high-quality image reconstruction in mobile devices.
In terms of image processing, core technologies for high-
quality image reconstruction are face hallucination and com-
pression artifact reduction.

Face hallucination technology, which is also referred as
face super-resolution (SR), is very important for image com-
munications because the main interests of consumers are
facial regions, as shown in Fig. 2. A number of related
face hallucination methods have been proposed in recent
years. Among them, learning-based methods have received

much attention because they can achieve a high magnifica-
tion factor and produce good SR results compared with other
methods. Baker and Kanade1,2 first introduced a face hallu-
cination method which constructs the high frequency com-
ponents from a parent-structure resorting to the training set.
Wang and Tang3 presented a principal component analysis
(PCA)-based face hallucination algorithm to globally infer
the high-resolution face image. Liu et al.4 developed a
two-step statistical modeling approach which integrates a
global model and a local model corresponding to the com-
mon and specific face characteristics, respectively. Although
complicated probabilistic models are required in Liu et al.’s
method,4 the idea of the two-step approach became more and
more popular since then. Recently, a novel face hallucination
method based on position-patch has been proposed. The
position-patch based method hallucinates the high resolution
(HR) image patch using the same position image patches of
training images.5–7 Thus, it is able to save computational time
and produce high-quality SR results compared to manifold
learning-based methods.

With respect to the compression artifact reduction, several
compression artifacts inevitably occur because of the loss of
high frequency components caused by lossy compression
techniques such as H.264 or MPEG-4 (representative arti-
fact: blocking artifact). They seriously degrade the picture
quality and are annoying to viewers of the reconstructed
images as shown in Fig. 3.8,9 Accordingly, compression arti-
fact reduction is also very important for image communica-
tions. Blocking artifacts appear as grid noise along the block
boundaries because each block is transformed and quantized
independently. Blocking artifacts occur because of the inde-
pendent transform and quantization of each block without0091-3286/2012/$25.00 © 2012 SPIE
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considering inter-block correlations. Up to now, many stu-
dies have been conducted to reduce blocking artifacts
from compressed images. Among them, image restoration
techniques are commonly used to reduce blocking artifacts
and recover the original image;10 projection-onto-convex-
sets (POCS)-based methods are representative research
results of such techniques. In the POCS-based methods,
prior information was represented as convex sets for recon-
struction, and blocking artifacts were reduced by iteration

procedures.11 POCS-based methods are very effective in
reducing blocking artifacts because they are easy to impose
smoothness constraints around block boundaries. Total var-
iation (TV)-based methods are actively studied for image
deblocking.12,13 TV provides an effective criterion for
image restoration, and thus can be successfully used as
prior information for image deblocking. Alter et al.13 pro-
posed a constrained TV minimization method to reduce
blocking artifacts without removing perceptual features.
By the TV minimization, edge information was effectively
preserved while reducing blocking artifacts. Moreover, a
field of experts (FoE) prior was successfully applied to
image deblocking.10 In this method, the image deblocking
problem was solved by the maximum a posteriori (MAP)
estimation based on the FOE prior. The two technologies
are associated with inverse problems in image processing.
In this article, we provide an outline of recent studies on
face hallucination and compression artifact reduction.

The rest of this article is organized as follows. In Sec. 2,
we describe the inverse problems in image processing. In
Sec. 3, we explain recent research trends and results related
to face hallucination, and we address them related to com-
pression artifact reduction in Sec. 4. In Sec. 5, we discuss
practical considerations and possible solutions to implement
two technologies in mobile applications. Finally, conclusions
are made in Sec. 6.

Fig. 1 (a) Image communications in mobile devices. (b) The number of subscribers (from Atlas research).

Fig. 2 Face hallucination in image communications.

Fig. 3 Example of compression artifacts in the Ballet sequences. (a) Original image. (b) Compressed image.

Optical Engineering 100901-2 October 2012/Vol. 51(10)

Jung et al.: Toward high-quality image communications: inverse problems in image processing



2 Inverse Problems in Image Processing
Inverse problems involve estimating parameters or data from
inadequate observations; the observations are often noisy
and contain incomplete information about the target para-
meter or data due to physical limitations of the measurement
devices. Due to lack of sufficient information in the indirect
observations, solutions to inverse problems are usually
nonunique and challenging. That is, they are ill-posed pro-
blems, and thus, some other reconstruction technologies are
required to solve them including machine learning, Bayesian
inference, convex optimization, sparse representation, and so
on.14–16

Indeed, many problems in image processing can be repre-
sented as inverse problems. They are modeled by relating the
observed image gðrÞ to the unknown original image fðrÞ. A
general form for the relation is as follows:14

gðrÞ ¼ ½Hf�ðrÞ þ nðrÞ; r ∈ R; (1)

where r represents the pixel position, R represents the whole
surface of gðrÞ, H is an operator representing the forward
problem, and nðrÞ represents the errors (modeling uncer-
tainty and observation errors). If we assume operator H is
linear, we can write the observation model in a vector-matrix
form as follows:

g ¼ Hf þ n; (2)

where g ¼ fgðrÞ; r ∈ Rg, f ¼ ffðrÞ; r ∈ Rg and
n ¼ fnðrÞ; r ∈ Rg are vectors containing the observed
image pixel values, unknown original image pixel values,
and observation errors, respectively; and H is a huge dimen-
sional matrix whose elements are defined from H.

Figure 4 shows the observation model in image proces-
sing which can be formulated as inverse problems. In
image processing, there are many inverse problems such as
image denoising, image SR, image deblurring, image
decompression, and so on. Above all, we inevitably meet
several inverse problems in image communications because
transmission bandwidth is strictly limited in a mobile com-
munication environment. Consequently, image sequences
are compressed and transmitted using lossy compression
techniques such as H.264 and MPEG-4, and thus, undesired
image distortions also occur because of compression artifacts
resulting from lossy compression techniques. In this article,
we deal with two representative inverse problems in image
processing: face hallucination and image deblocking.

3 Face Hallucination
Since the concept of face hallucination is introduced by
Baker and Kanade,1,2 a number of related face hallucination
methods have been proposed during the past decade. In gen-
eral, there are two classes of SR techniques: multiframe SR

(from inputs images only) and single-frame SR (from other
training images). From a methodological viewpoint, it can be
widely divided into interpolation-based,17,18 reconstruction-
based,19–24 and learning-based3,6,7,25–30 methods.

First, the basic interpolation methods include nearest-
neighbor interpolation, bilinear interpolation and bicubic
interpolation, etc.17,18 Given one low resolution (LR)
image, they only use the information of the original pixel
and several pixels around it to estimate the missing pixels.
It is simple and fast and can get some results when the inter-
polation factor is small. However, when the interpolation fac-
tor is large, the performance is not good because the high
frequency information is missed. Second, reconstruction-
based methods firstly build an observation model to connect
the original HR image and realistic LR image, simulating the
process to get a LR image from a HR image. There are many
reconstruction-based methods, such as POCS,19 MAP
method,20 iterative back-projection method,21,22 regular
method,23 and mixed method,24 etc. All of them need
some locality prior assumptions, and can make the blur
and saw-tooth effects to a certain extent. Since the prior
knowledge is somewhat little, the information provided by
LR images may not satisfy with the demand for HR images.
Third, learning-based methods have received much attention
in recent years because they can achieve a high magnification
factor and produce good SR results compared with other
methods. The basic idea is to compute the neighborhood
between the patch of test images and the patches of training
images set, and construct the optimal coefficients to approx-
imate the HR image using the learned prior knowledge. In
this article, we focus on learning-based face hallucination
methods and introduce some representative works and our
research results.

3.1 Example-Based Image SR

In 2001, example-based image SR was proposed by Freeman
et al. Its core idea was to learn the fine details from HR
images of training datasets, and use the learned relationships
between LR and HR to predict fine details of a test image.
Above all, Freeman et al. employed a nonparametric patch-
based prior along with the Markov random field (MRF)
model to generate the desired HR images. A large dataset
of HR and LR patch pairs was generated and used for seek-
ing the nearest neighbors of the LR input patches. The
selected HR patch neighbors were treated as the candidates
for the target HR patch. The block diagram of the method is
shown in Fig. 5. As shown in the figure, the key procedure of

Fig. 4 Observation model in image processing, redrawn from Ref. 14.
Fig. 5 Block diagram of the example-based super resolution (SR)
method.25
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this method is to predict the missing high frequencies using
the training datasets.

3.2 Neighbor-Embedding Based Image SR

In 2004, Chang et al. proposed a novel method for solving
single-image SR problems. In this method, given an LR
image as input, a set of training examples were used to
recover its HR counterpart. While this formulation
resembled other learning-based methods for SR, this method
was inspired by manifold learning-based methods, particu-
larly locally linear embedding (LLE). More specifically,
small image patches in LR and HR images formed manifolds
with similar local geometry in two distinct feature spaces.
Then, multiple nearest neighbors were selected in the feature
space, and SR images were reconstructed by the correspond-
ing HR patches of the nearest neighbors. Since then, this
method has been extensively applied to solving image SR
problems including face hallucination.

3.3 PCA-Based Face Hallucination

In 2005, a new face hallucination method using eigen-trans-
formation was proposed by Wang et al. In contrast to con-
ventional methods based on probabilistic models, this
method viewed face hallucination as a transformation
between different image styles. PCA was used to fit the
input face image as a linear combination of the LR face
images in the training dataset. The HR image was rendered
by replacing the LR training images with HR ones, while
retaining the same combination coefficients. Since face
images were well structured and had similar appearances,
they spanned a small subset in the high dimensional image
space. In the work of Penev and Sirovich,31 face images were
shown to be well reconstructed by PCA representation with
300 to 500 dimensions. The system diagram of this method
is shown in Fig. 6. As shown in the figure, this method first
employed PCA to extract useful information as much as pos-
sible from an LR face image, and then rendered an HR face
image by eigen-transformation.

3.4 Sparse Coding Based Face Hallucination

In 2008, a new approach to single-image SR based on sparse
signal representation was proposed by Yang et al. This
method was motivated by the image statistics that image
patches could be well-represented as a sparse linear combi-
nation of elements from an appropriately chosen overcom-
plete dictionary. They found sparse representation for each
patch of the LR input, and then used the coefficients of

this representation to generate the HR output. Theoretical
results from compressed sensing suggested that under
mild conditions, the sparse representation could be correctly
recovered from the down-sampled signals. By jointly train-
ing two dictionaries for the LR and HR image patches, they
made the similarity of sparse representations between the LR
and HR pairs with respect to their own dictionaries. There-
fore, the sparse representation of an LR patch was applied to
the reconstruction of SR images with the HR patch diction-
ary. The learned dictionary pair was a more compact repre-
sentation of the patch pair compared to previous approaches,
and simply sampled a large amount of image patch pairs
reducing the computational cost effectively.

3.5 Position-Patch Based Face Hallucination

In 2010, a novel face hallucination approach was proposed
by Ma et al. In contrast to most of the conventional methods
based on probabilistic models or manifold learning, the posi-
tion-patch based method hallucinated the HR image patch
using the same position image patches of each training
images. The optimal weights of the training image posi-
tion-patches were estimated and the hallucinated patches
were reconstructed using the same weights. The final SR
face images were formed by integrating the hallucinated
patches. It was able to save computational time and produce
high-quality SR results compared to conventional manifold
learning based methods. The position-patch based face hal-
lucination method is briefly described in Algorithm 1.

Fig. 6 System diagram of the prinicipal component analysis (PCA)-based face hallucination.3

Algorithm 1 Position-patch based face hallucination.5

Step 1: Denote the input LR image, LR training image, and HR
training image in overlapping patches as fXL

P ði ; jÞgNp¼1,
fYL

mP ði ; jÞgNp¼1, and fYH
mP ði ; jÞgNp¼1, respectively, for

m ¼ 1;2; : : : ; M .

Step 2: For each patch XL
P ði ; jÞ:

(a) Compute the reconstruction weights wði ; jÞ by least square
estimation

(b) Synthesize the HR patch XH
P ði ; jÞ

Step 3: Concatenate and integrate the hallucinated HR patches to
form a facial image, which is the target HR facial image
fXH

P ði ; jÞgNp¼1.
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3.6 Convex-Optimization-Based Face Hallucination

Inspired by the position-patch based face hallucination
method, a new convex optimization based face hallucination
method is proposed. The position-patch based method has
employed least square estimation to get the optimal weights
for face hallucination; however, the least square estimation
approach can provide biased solutions when the number of
the training position-patches is much larger than the dimen-
sion of the patch. To overcome this problem, we make use of
constrained convex optimization instead of least square esti-
mation to obtain the optimal weights for face hallucination.
The optimal weights (w) are computed by solving the follow-
ing convex optimization problem:

min
w

kwk1 subject to kXP
L − YP

L · wk22 ≤ ε; (3)

where YL
P is a column matrix of the training patches

YL
mPði; jÞ for m ¼ 1; 2; : : : ;M; and ε is a error tolerance.

Consequently, the hallucinated HR patch XH
Pði; jÞ is

obtained by:

XP
Hði; jÞ ¼

XM
m¼1

YmP
H ði; jÞ · wmði; jÞ: (4)

By Eqs. (3) and (4), we can get more stable reconstruction
weights for face hallucination because l1-norm is more sui-
table for this problem, and because each patch can be
approximated with a smaller subset of patches than l2-norm.
In contrast, l2-norm provides nonzero weights for all patches.
Figure 7 shows the face hallucination results by bi-cubic
interpolation, example-based image SR,25 neighbor-embed-
ding based image SR,26 position-patch based face hallucina-
tion,5 and convex optimization based face hallucination.7 We
performed experiments on the CMU-PIE face database
which contains 41,368 images obtained from 68 subjects.

We took the frontal face images with 21 different illumina-
tion conditions. Thus, the total number of images was 1,428.
Among them, 630 images of 30 subjects were used in the
training stage, and the rest were used in the synthesis
stage. In the neighbor-embedding method, the HR patch
size of YH

m was 12 × 12 pixels, while the corresponding
LR patch size of YL

m was 3 × 3 pixels. In addition, the num-
ber of the neighbor patches for reconstruction was 5. The
size of the image patches in position-patch and convex opti-
mization methods was 3 × 3 pixels. The size of LR images
for training and synthesis was 25 × 25 pixels, while that of
hallucinated results was 100 × 100 pixels. That is, interpola-
tion factor was 4. As shown in the figure, learning based
methods generally produce better face hallucination results
than traditional bicubic interpolation. Above all, the halluci-
nated results of Refs. 25 and 26 are somewhat blurred and
with some artifacts; however, results of Refs. 5 and 7 pro-
duce more natural looking facial images. Further examina-
tion of the results reveals that Ref. 7 is more effective in
preserving the edge and image details in the nose and
mouth areas than Ref. 5.

For a more quantitative test, average peak-to-noise ratio
(PSNR) and structural similarity (SSIM) values of the face
hallucination results are provided in Table 1. The SSIM is a
complementary measure of the PSNR, which gives an indi-
cation of image quality based on known characteristics of the
human visual system.32 Here, the unit of PSNR is dB. As
shown in the table, our method achieves the best hallucina-
tion performances in terms of the PSNR and SSIM. Here, the
bold numbers represent the best PSNR and SSIM values.

4 Compression Artifact Reduction
Block-based discrete cosine transform (BDCT) has been
widely used in image and video compression due to its
energy compacting property and relative ease of

Fig. 7 Face hallucination results. (a) Input LR faces (25 × 25 pixels). (b) Bicubic interpolated images. (c) Example-based image super resolution
(SR).25 (d) Neighbor-embedding based image SR.26 (e) Position-patch based face hallucination.5 (f) Convex optimization based face hallucination.7

(g) Original HR faces (100 × 100 pixels).
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implementation.33–36 Thus, BDCT has been adopted in most
image/video compression standards including JPEG (joint
photographic experts group) and MPEG (motion picture
experts group). However, BDCT has a major drawback,
which is usually referred as blocking artifacts. Blocking arti-
facts appear as grid noise along the block boundaries because
each block is transformed and quantized independently.
Usually, the lower the bit rate is, the more serious the block-
ing artifacts are. Blocking artifacts occur because of the inde-
pendent transform and quantization of each block without
considering inter-block correlations.

4.1 Main Techniques for Image Deblocking

There are two main techniques to deal with the blocking arti-
facts: in-loop filtering and postprocessing methods. The in-
loop filters operate within coding loop while the postproces-
sing methods are applied after the decoder and make use of
decoded parameters. Table 2 lists the deblocking filters
employed by current video coding standards.37 As listed
in the table, in-loop filters have been optionally or not
used because of the need of changing the encoder structure.
Thus, postprocessing methods are promising solutions to this
problem and comparable results have been achieved by
researchers.

4.2 Postprocessing Methods For Image Deblocking

Since early 1980s, postprocessing of low bit-rate BDCT
coded images has a lot of research attention. Postprocessing
methods are classified into three main groups: filtering-
based, denoising-based, and restoration-based methods.10

First, some researchers viewed the distortions around the
block boundaries as spatial, high-frequency components.

Thus, many filtering-based methods have been proposed
to reduce them. In 1984, Lim and Reeve38 first applied
low-pass filtering to the pixels along the boundary to remove
the blocking artifacts. Then, in 1986, Ramamurthi and
Gersho39 proposed a nonlinear space-variant filter to perform
filtering in parallel with the edges. Since then, many
filtering-based methods have been presented, and the repre-
sentative work is the adaptive deblocking filter, which has
been used in the H.264/MPEG-4 advanced video coding
(AVC) standards to reduce the distortions.40

Second, some researchers viewed deblocking as a denois-
ing problem. They proposed some efficient noise models and
some deblocking methods based on the wavelet technique. In
1997, Xiong et al.41 exploited cross-scale correlation by the
overcomplete wavelet transform, and used the thresholds to
reduce the distortions. In 2004, Liew and Yan34 made a the-
oretical analysis of the blocking artifacts, and used the three-
scale overcomplete wavelet scheme to reduce them.

Third, many researchers viewed deblocking as a restora-
tion problem, and proposed restoration-based deblocking
methods. The POCS-based method was a representative
approach of the restoration-based methods for deblocking.42

In the POCS-based methods, prior information was repre-
sented as convex sets for reconstruction, and blocking arti-
facts were reduced by iteration procedures. The POCS based
methods were very effective for reducing blocking artifacts
because they were easy to impose smoothness constraint
around block boundaries. In 2003, Kim et al.11 proposed
a new smoothness constraint set (SCS) and an improved
QCS to improve performances of the POCS-based methods.
Furthermore, the TV-based methods were actively studied
for image deblocking. TV provided an effective criterion for
image restoration, and thus could be successfully used as
prior information for image deblocking.13,43 In 2004, Alter
et al. proposed a constrained TV minimization method to
reduce blocking artifacts without removing perceptual fea-
tures. In 2010, a human visual system (HVS)-based TV
method using a new weighted regularization parameter was
proposed by Do et al.44 In 2007, a FoE prior45,46 was success-
fully applied to image deblocking by Sun and Cham.10 In this
method, the image deblocking problem was solved by the
MAP estimation, based on the FOE prior. In addition, they
employed the narrow quantization constraint set (NQCS) for
further PSNR gain.47 Consequently, this method achieved a
high PSNR gain and produced state-of-the-art results on
deblocking.

4.3 Sparse Representation Based Image
Deblocking

Recently, sparse representation has been actively studied to
solve various restoration problems in image processing.48–52

Some researchers have made significant contributions to

Table 1 Average PSNR and SSIM values of different methods.

Measure Bicubic
Example-based

(Ref. 25)
Neighbor embedding

(Ref. 26)
Position-patch

(Ref. 5)
Convex optimization

(Ref. 7)

PSMR 24.5388 26.0954 26.3758 28.1613 28.2437

SSIM 0.7278 0.7544 0.7444 0.8146 0.8178

Table 2 Deblocking filters for video coding standards.37

Standard Deblocking filter

H.261 Optional in-loop filter

MPEG-1 None

MPEG-2 None, post-processing often used

H.263 None

MPEG-4 Optional in-loop filter, post-processing
suggested

H.264 Mandatory in-loop filter, post-processing
suggested
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image denoising, restoration and SR using sparse represen-
tation. Sparse representation assumes that original signals
can be accurately recovered by several elementary signals
called atoms.50,53 Thus, it has been proven very effective
for image restoration tasks. Inspired by recent results of
sparse representation, we provided a novel deblocking
method based on sparse representation.48 To remove block-
ing artifacts, we obtain a general dictionary from a set of
training images using K-singular value decomposition (K-
SVD) algorithm, which can effectively describe the content
of an image. Then, an error threshold for orthogonal match-
ing pursuit (OMP) is automatically estimated to use the dic-
tionary for image deblocking by the quality of compressed
image. Our deblocking method is comprised of two main
procedures: generation of a deblocking dictionary using
K-SVD algorithm, and image deblocking by the deblocking
dictionary. That is, the deblocking dictionary is generated in
the training stage, and blocking artifact reduction is per-
formed in the testing stage.

4.3.1 Deblocking dictionary design using K-SVD
algorithm

In the training stage, image patches are selected to generate a
dictionary for image deblocking. From the image patches, a
deblocking dictionary is trained by the K-SVD algorithm.
Here, to solve the optimization problem, the batch-OMP
method is used.54 The K-SVD algorithm is an iterative
method to generate an overcomplete dictionary that fits train-
ing examples well. It is simple and designed to be truly direct
generalization of the K-Means algorithm.52–56 In general, it
alternates between sparse coding and dictionary update while
training.

Let X̄ ¼ ½x1; : : : ; xp� be an n × P matrix of P training
patches of n-length pixels, used to train an overcomplete dic-
tionary D of size n × K with P ≫ K and K > n. For gener-
ating D, the objective function of the K-SVD algorithm is
defined as follows:55,57

min
D;Θ

kX̄ − D · Θk2F subject to kθik0 ≤ S; (5)

where S is a given sparsity level, Θ ¼ ½θ1 : : : θp�, and θi is
the sparse vector of coefficients representing the i’th patch in
terms of the columns of D ¼ ½d1 : : : dK�. The K-SVD algo-
rithm progressively creates the deblocking dictionary D from
an initial dictionary by solving Eq. (5). The full steps of dic-
tionary generation are described in Algorithm 2.

4.3.2 Automatic estimation of error threshold

The deblocking dictionary D is employed to reduce blocking
artifacts. The objective function for image deblocking is as
follows:

min
Θ

kΘk1 subject to kY − D · Θk2 ≤ T; (6)

where Y is the corrupted image by blocking artifacts and T is
an error threshold for OMP. Blocking artifacts are reduced by
optimizing Eq. (6), and we can reconstruct the original
image. As can be expected, an error threshold T of Eq. (6)
should be estimated to use the deblocking dictionary in

reducing blocking artifacts. We can estimate T for OMP
automatically using quality information of JPEG compressed
images. The procedures of estimating T are summarized as
follows.

First, the standard deviation of the quantization noise, σN ,
is estimated as shown in Fig. 8. Since the blocking artifacts
mostly occur around the block boundaries, σN is computed
from the intensity difference Diff between two boundary pix-
els on both sides of a boundary between two blocks as
follows:

Algorithm 2 Dictionary generation by the K-SVD algorithm.

Step 1: Initialize a dictionary D (an overcomplete DCT dictionary)
Step 2: Repeat n times (n: number of training iterations)

a) Sparse coding stage: compute θi using OMP for
i ¼ 1;2; : : : ; P

min
D;Θ

kX̄ − D · Θk2F subject to kθik0 ≤ S

b) Dictionary update stage: update the dictionary atom dk and
coefficient θk for k ¼ 1; 2; : : : ; K

b-1) Obtain the set of all indices corresponding to the training
patches that use dk and θk .

b-2) Compute the matrix of residuals Ek :

Ek ¼ X̄ −
X
j≠k

d j − θj

b-3) Restrict Ek by selecting only the columns corresponding
to those elements that initially used dk in their represen-
tation, and obtain Ek

R .
b-4) Apply SVD decomposition Ek

R ¼ UΔVT , and update
dk ¼ u1, θk R ¼ Δð1;1Þ · v1 where Δð1; 1Þ is the largest
singular value of Ek

R ; and u1 and v1 are the correspond-
ing left and right singular vectors, respectively.

Fig. 8 Block discontinuity estimation:Diff is the absolute value of one-
half the intensity difference between two pixels; two pixels s1 and s2
belong to Block1 and Block2, respectively; and IðsÞ is the intensity of a
pixel s. Here, Diff is computed between two boundary pixels on both
sides of a boundary between two blocks.
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Diff ¼ jIðs1Þ − Iðs2Þj
2

; (7)

where Diff is the absolute value of one-half the intensity dif-
ference between two pixels, s1 and s2. In computing Diff,
only horizontal or vertical block discontinuities are consid-
ered as mentioned in Ref. 34. In the figure, pixels s1 and s2
belong to Block1 and Block2, respectively; IðsÞ is the inten-
sity of a pixel s. Accordingly, we compute σN of the com-
pressed blocky image from Diff.

Then, T is computed based on σN . In the previous works
for image denoising,34,53,57 Told is obtained by the following
equation:

Told ¼ C · σN: (8)

Here, the noise gain C is set to 1.15. In the JPEG coding
standard, the most important parameter is the quality q,

which contains a value between 0 and 100. The higher q
is, the less image degradation due to compression is; how-
ever, when q is high, the resulting file size is large. For image
deblocking, we found that Told fits well when Told is only 10
by various experiments. In other cases, Told do not follow the
distribution of the error threshold T of Eqs. (6) by (8).
Instead, we found that Tnew∕Told follows nonlinear distribu-
tion according to a given quality q as shown in Fig. 9. Thus,
we modify Eq. (8) as follows:

Fig. 9 Distribution of the error threshold according to quality: the red
line is the actual distribution of the error threshold.

Fig. 10 Test images: (a) Barbara, (b) Lena, (c) Boat, (d) Peppers, (e) Baboon, and (f) Fruits.

Fig. 11 The general dictionary by K-singular value decomposition
(K-SVD) using 100,000 image patches (total 512 atoms are learned
with each atom of size 8 × 8 pixels).
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Tnew ¼ Told ·

�
a

qþ b
þ c

�
¼ C · σN ·

�
a

qþ b
þ c

�
; (9)

where a, b, and c are the control parameters, and their appro-
priate values are adjusted by experiments. Here, a, b, and c
are set to be 20, 10, and 0, respectively. Consequently, the
error threshold for OMP is computed by Tnew of Eq. (6), and
used to solve Eq. (3). As a result, we get deblocked results of
JPEG compressed images by the learned dictionary D.

As shown in Fig. 10, six typical images were used for the
tests, Barbara, Lena, Boat, Peppers, Baboon, and Fruits,
whose sizes were 512 × 512 pixels. In the training stage,
total 91 natural images provided by the Yang et al.’s
work51 were used to generate a general dictionary. Dictionary

size and all parameters including C, a, b, and c of Eqs. (8)
and (9) are determined on the training data set. In addition,
the dictionary was trained from randomly sampled 100,000-
image patches using K-SVD, i.e., the size of each patch
is 8 × 8 pixels. Thus, the size of the training data was
64 × 100;000 pixels. We performed the experiments until
q was 20 because the blocking effects mainly occur when
q was from 0 to 20.36 The dictionary with the 512 atoms
is used in our experiments. Figure 11 shows the generated
dictionary from the training data. Figures 12 and 13 show
the JPEG compressed images and their deblocked results
of the Barbara and Baboon images, respectively, according
to different quality values, i.e., q is 1, 5, 10, 15, or 20. It can
be observed that the lower q is, the more blocking artifacts

Fig. 12 JPEG compressed images and their deblocked results of the Barbara image according to different quality values: (a) quality ¼ 1, (b)
quality ¼ 5, (c) quality ¼ 10, (d) quality ¼ 15, (e) quality ¼ 20, (f) the deblocked result of (a), (g) the deblocked result of (b), (h) the deblocked
result of (c), (i) the deblocked result of (d), and (j) the deblocked result of (e).

Fig. 13 JPEG compressed images and their deblocked results of the Baboon image according to different quality values: (a) quality ¼ 1, (b)
quality ¼ 5, (c) quality ¼ 10, (d) quality ¼ 15, (e) quality ¼ 20, (f) the deblocked result of (a), (g) the deblocked result of (b), (h) the deblocked
result of (c), (i) the deblocked result of (d), and (j) the deblocked result of (e).
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Table 3 Performance evaluation results from test images using the proposed and FoE prior-based methods.a

Image Quality Metric JPEG FoE-based method (Ref. 10) Our method Oursþ NQCS (Ref. 47)

Barbara q ¼ 11 PSNR 26.0311 26.7018 26.8194 26.9108

SSIM 0.7761 0.7998 0.7966 0.8081

q ¼ 9 PSNR 25.5054 26.2071 26.3213 26.4032

SSIM 0.7466 0.7780 0.7732 0.7846

q ¼ 5 PSNR 24.0165 24.4042 24.981 25.0092

SSIM 0.6579 0.6751 0.7121 0.7172

Lena q ¼ 11 PSNR 30.7633 31.9666 31.9513 31.9696

SSIM 0.8271 0.8626 0.8627 0.8641

q ¼ 9 PSNR 29.9766 31.3018 31.2704 31.2902

SSIM 0.8069 0.8515 0.8506 0.8521

q ¼ 5 PSNR 27.319 27.7019 28.8602 28.8650

SSIM 0.7394 0.7620 0.8065 0.8070

Boat q ¼ 11 PSNR 28.4561 29.4076 29.3438 29.3956

SSIM 0.77 0.7979 0.7937 0.7997

q ¼ 9 PSNR 27.7544 28.7647 28.6988 28.7522

SSIM 0.7441 0.7789 0.7721 0.7794

q ¼ 5 PSNR 25.4801 25.8192 26.6330 26.6683

SSIM 0.6514 0.6708 0.6976 0.7030

Peppers q ¼ 11 PSNR 30.7451 32.0341 31.8679 31.8787

SSIM 0.7951 0.8356 0.8324 0.8328

q ¼ 9 PSNR 30.011 31.4735 31.3072 31.3119

SSIM 0.7761 0.8276 0.8239 0.8238

q ¼ 5 PSNR 27.4385 27.8965 29.1197 29.1138

SSIM 0.7074 0.7339 0.7864 0.7854

Baboon q ¼ 11 PSNR 24.5851 24.9784 25.0323 25.0877

SSIM 0.6891 0.6833 0.6789 0.6949

q ¼ 9 PSNR 24.048 24.4971 24.5315 24.5883

SSIM 0.6535 0.6517 0.6424 0.6604

q ¼ 5 PSNR 22.3936 22.5909 23.0026 23.0460

SSIM 0.5245 0.5356 0.5217 0.5389
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occur along block boundaries in the compressed images.
This is because transform coefficients of blocks are quan-
tized independently in BDCT based image compression.
As can be seen in (a)-(e) of the figures, the blocking artifacts
are degrading the quality of picture seriously. In addition, the
blocking artifacts are remarkably reduced as the quality
increases. In the figures, (f)-(j) show the reduction results
of the blocking artifacts by the proposed method. It can
be observed that the proposed method suppresses the block-
ing artifacts efficiently and improves the picture quality,
especially along block boundaries where the block disconti-
nuities are severe.

To provide more reliable performance evaluation of the
results, we compare our method with the latest state-of-
the-art one which is based on the FoE prior.10 It has been
reported that the method has achieved the best deblocked
results in terms of PSNR. As evaluation metrics, the
PSNR and SSIM are considered to measure the quality of
the estimated images. To simulate various types of BDCT
compression, three quantization tables, usually denoted as
Q1, Q2, and Q3, have been commonly used by many
researchers.10,34 The Q1, Q2, and Q3 tables correspond to
a medium to high compression level, similar to what can

be obtained by using JPEG with q ¼ 11, q ¼ 9, and
q ¼ 5, respectively.9 Accordingly, in our experiments, the
values of q are used instead of the quantization tables when
the performance of our method is evaluated because our
method is based on the quality information. Table 3 lists
the PSNR and SSIM values of the deblocked results obtained
by the FoE prior-based method and ours. In the FOE prior-
based method,10 the FoE prior captures the statistics of nat-
ural images, and thus, has been effectively employed for
image denoising and inpainting.45,46 The FOE prior has
been successfully applied to deblocking of BDCT com-
pressed images.10 We have obtained the corresponding soft-
ware for evaluation at http://www.cs.brown.edu/ dqsun/
research/software.html. In the experiments, the FoE filter
size is 5 × 5 pixels and the maximum number of iterations
is 200. In the FoE prior-based method,10 the narrow quanti-
zation constraint set (NQCS)47 have been used for the higher
PSNR gain of deblocked results, and thus we also report the
improved PSNR values by NQCS (see the 7th column).
Combined with the NQCS method,47 our method generally
achieves the best PSNR and SSIM results about the test
images. In the table, the bold numbers represent the best
PSNR and SSIM values of each image at each quality.

Table 3 (Continued).

Image Quality Metric JPEG FoE-based method (Ref. 10) Our method Oursþ NQCS (Ref. 47)

Fruits q ¼ 11 PSNR 30.1973 31.4000 31.3322 31.3977

SSIM 0.7961 0.8391 0.8378 0.8414

q ¼ 9 PSNR 29.4625 30.7641 30.7147 30.7725

SSIM 0.7758 0.8275 0.8262 0.8294

q ¼ 5 PSNR 27.0479 27.5133 28.5934 28.623

SSIM 0.7043 0.7297 0.7819 0.7829

aIn the FoE prior-based method,10 the results combined with the NQCS method47 are reported. The bold numbers represent the best PSNR and
SSIM values of each image at each quality. The unit of PSNR is dB.

Table 4 Mobile phone trends in 5-year intervals.58

Year 1995 2000 2005 2010 2015

Cellular generation 2 G 2.5-3 G 3.5 G Pre-4 G 4 G

Cellular standards GSM GPRSUMTS HSPA HSPALTE LTELTE-A

Downlink bitrate (Mb/s) 0.01 0.1 1 10 100

Battery capacity (Wh) 1 2 3 4 5

Phone CPU Clock (MHz) 20 100 200 500 1000

Phone CPU Power (W) 0.05 0.05 0.1 0.2 0.3

Workload (GOPS) 0.1 1 10 100 1000

#Programmable cores 1 2 4 8 16
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5 Practical Considerations for Mobile Applications
Currently, high-end mobile phones, which are usually
referred to as smartphones, support multiple radio standards
and a rich suite of applications including advanced radio,
audio, video, and graphics processing. They provide more
advanced computing ability and connectivity than contem-
porary feature phones using multiple chips such as a base-
band processor and an application processor. Moreover, it is
expected that new functionalities are being added to smart-
phones at an increasing rate; however, the increases in
battery capacity have not matched increases in functional-
ity.58–62 In fact, battery capacities have not been growing
more than 10%every year, whereas the number of features
and applications.59 Thus, the needs for low power and high
performance are growing at a significantly higher rate. As
listed in Table 4, the present workload of a 3.5 G smartphone
amounts to nearly 100 giga operations per second (GOPS).
This workload increases at a steady rate, roughly by an order
of magnitude every 5 years. The workload is partitioned by
application processing, radio processing, media processing,
and 3D graphics. Among them, about 60% of the workload is
used for radio and application processing. More than 30% of
the workload is assigned to media processing including the
functions such as display processing, camera processing,
video decoding, and encoding. Here, video encoding
requires the most amount of operations, i.e., 17 GOPS. In the
workload for media processing, 10 GOPS is available, and
thus two new functions (e.g., face hallucination and image
deblocking) can be realized using it. Recently, the multicore
architecture for mobile applications has been proposed to
support a workload of 100 GOPS with 1 W.58 We believe
the multicore architecture can be effectively employed for
implementing the new functions.

Another way to implement them is to use the graphics
processing units (GPU)-based parallelization technology.
Fortunately, due to the strong computational locality of
video processing algorithms, video processing is highly
amenable to parallel processing. Such locality makes it pos-
sible to divide video processing tasks into smaller, weakly
interacting pieces for parallel computing.63 The GPU-
based parallelization technology drastically reduces the
amount of operations, and thus, effective parallel architec-
tures and programming also can be used to implement the
new functions for mobile applications.

6 Conclusions
In this article, we provided two core technologies for high-
quality image communications from the point of view of
image processing: face hallucination and compression arti-
fact reduction. The technologies have a close relation to
inverse problems in image processing, and thus, we have
described recent studies and our related research results to
deal with the inverse problems effectively. When image
data are transmitted over mobile communication networks,
data loss inevitably occurs in the high frequency components
of images because of lossy compression techniques. Thus,
the quality of facial regions (i.e., main interests of image
communications) is reduced and several compression arti-
facts inevitably occur. We have demonstrated that convex
optimization and sparse representation can be effectively
employed for solving the inverse problems and achieving
high-quality image communications. In addition, to

implement the technologies in actual mobile devices,
power management is a critical issue due to the limited capa-
city of batteries. Therefore, this article also discusses prac-
tical considerations and possible solutions to implement two
technologies in mobile applications.

Nowadays, displays of many different sizes, including
mobile displays, have come into wide use. They also have
the same problems of high-quality image reconstruction.
We believe the two technologies can be effectively employed
for enhancing image quality in various displays.
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