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Abstract

Significance: The expansion of functional near-infrared spectroscopy (fNIRS) systems toward
broader utilities has led to the emergence of modular fNIRS systems composed of repeating
optical source/detector modules. Compared to conventional fNIRS systems, modular fNIRS
systems are more compact and flexible, making wearable and long-term monitoring possible.
However, the large number of design parameters makes understanding their impact on a probe’s
performance a daunting task.

Aim: We aim to create a systematic software platform to facilitate the design, characterization,
and comparison of modular fNIRS probes.

Approach: Our software—modular optode configuration analyzer (MOCA)—implements
semi-automatic algorithms that assist in tessellating user-specified regions-of-interest, in inter-
connecting modules of various shapes, and in quantitatively comparing probe performance using
metrics, such as spatial channel distributions and average brain sensitivity of the resulting
probes. There is also support for limited parameter sweeping capabilities.

Results: Through several examples, we show that users can use MOCA to design and optimize
modular fNIRS probes, study trade-offs between several module shapes, improve brain sensi-
tivity in probes via module re-orientation, and enhance probe performance via adjusting module
spatial layouts.

Conclusion: Despite its simplicity, our modular probe design platform offers a framework to
describe and quantitatively assess probes made by modules, opening a new door for the growing
fNIRS user community to approach the challenging problem of module- and probe-parameter
selection and fine-tuning.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is an emerging neuroimaging technique to
non-invasively measure brain activity using non-ionizing light.1 Unlike functional magnetic res-
onance imaging (fMRI)2 that requires high-strength magnetic fields and large scanners, fNIRS
utilizes near-infrared (NIR) light to detect brain activation by measuring the associated hemo-
dynamics. The portability of fNIRS positions it as a competitive imaging modality to address
some of the challenges of conventional neuroimaging techniques, such as fMRI and magneto-
encephalography, including a lack of wearability for continuous monitoring, limited temporal
resolution, and need for subject immobility during use.3 It has shown great promise for safe and
long-term monitoring of brain activity and is increasingly used in studies for behavioral4 and
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cognitive neurodevelopment,5–8 language,9,10 psychiatric conditions,11,12 stroke recovery,13 and
brain–computer interfaces.14–16

Despite exponential growth in the number of applications17,18 and publications3 in recent
years, many fNIRS systems still employ fiber-based cart-sized instrumentation19 that place limits
on both channel density and the use of fNIRS in natural environments. Although fiber-based
high-density20 and portable21 fNIRS systems have been demonstrated, the use of fragile fiber
optics cables, stationary external source/detector units,22,23 and the need for individual and spe-
cialized headgear for specific tasks have motivated the fNIRS community to investigate more
flexible modular and fiber-less designs.24,25

The modular fNIRS architecture is based on utilizing elementary optical source and detector
circuits (modules) as repeating building blocks to form a re-configurable probe.24 This modular
architecture offers significantly improved portability, scalability, flexibility in coverage, and fab-
rication cost.24 By avoiding the use of fragile optical fibers, modular fNIRS systems permit the
use of light guides to directly couple light sources and detectors to the scalp, significantly reduc-
ing signal loss due to fiber coupling. The lightweight and compact modules also make wearable
fNIRS and continuous monitoring in mobile environments possible.3,26 In addition, the ability to
use both intra-module (within a single module) and inter-module (source and detector on differ-
ent modules) channels allows for high-density probes with varying source-to-detector separa-
tions (SDS) that increase measurement density and tissue depth sampling, resulting in enhanced
signal quality, and easy removal of physiological noise.27

Despite these perceived benefits, the task of designing a modular fNIRS probe can quickly
grow in complexity as the number of modules increases. While parameters can be empirically
determined when designing a single module, understanding the trade-offs among a large array of
parameters, including module shape, module size, optode quantities, and optode locations,
and each parameter’s effects on the final probe can become a daunting task. Not only do most
published modular fNIRS studies largely focus on the design of a single module without address-
ing the effect of these module- and probe-level parameters on the final probe, the current liter-
ature also does not provide a means to compare probes composed of different module designs.

Aside from the challenges of determining these modular probe core parameters, other factors,
such as mechanical, ergonomic, safety, usability, optoelectronic, and data communication
considerations24 also play important roles in achieving the desired performance. For example,
mechanical features such as optical coupling and electronic circuitry encapsulation must be
considered alongside ergonomic considerations, such as comfort, weight, and robustness.
Additionally, the use of high-density light sources in such modular probes brings about addi-
tional safety considerations, such as heat dissipation, driving voltage, and battery life. Moreover,
optoelectronic considerations arise from the use of specialized optodes with narrow emission
bandwidths, high gains, low noise, and fNIRS-optimized wavelengths. Not only are these
specialized optodes more expensive due to their niche applications and characteristics, they also
require more complex control electronics for driving optodes and acquiring data. With such
dense coverage, complex encoding strategies such as frequency28 multiplexing become a neces-
sity for obtaining high-density data acquisition to achieve sufficient spatial and temporal res-
olution. Finally, while previously reported modular fNIRS systems often employ daisy-chain
communication protocols to connect multiple modules on a single bus,29–33 the design of physi-
cal inter-module connections,34 the synchronization method between modules,24 and the transfer
of acquired data become increasingly complex with high module counts and branching
connections.

Along these lines, a number of fNIRS data analysis packages exists.35–37 However, they focus
on the statistical analysis of the data35–37 to enhance its quality and provide guidance on post-
processing steps such as motion artifact correction.35 While some other tools exist to assist in the
probe design,38–41 most of these tools are designed to work in a highly constrained design space,
where the probe parameters are mostly pre-determined by the user. As a result, the best practices
and trade-offs in modular probe design such as tessellation, connection, or re-orientation are
poorly explored and understood. Therefore, the community is in great need of an easy-to-use
software tool to assist the exploration of and quantitative comparisons among countless param-
eter choices in a modular probe design and to perform a limited degree of optimization within a
well-constrained configuration.

Vanegas, Mireles, and Fang: MOCA: a systematic toolbox for designing and assessing modular functional. . .

Neurophotonics 017801-2 Jan–Mar 2022 • Vol. 9(1)



A fully automated probe design and optimization pipeline is impractical without application-
dependent design constraints. Instead, we report a simplified, easy-to-use software toolbox to
help designers navigate the vast parameter space of a modular probe. We also share a number of
fundamental modular probe design strategies, discovered through our explorations via this tool-
box that were not widely recognized or previously studied. The entire workflow has been imple-
mented into an open-source, MATLAB-based toolbox called Modular Optode Configuration
Analyzer (MOCA).42 MOCA supports a list of commonly used module shapes, user-defined
optode layouts, and region-of-interest (ROI) coverage, and can produce quantitative performance
metrics, such as distributions of source–detector (SD) separations, sensitivity maps, and spatial
multiplexing groupings. These performance metrics also allow comparisons between different
designs of modular probes. Although MOCA is not designed as a fully automated software that
produces “optimal” probes regardless of application, its unique capability to describe and sweep
modular probe parameters in operator-guided interrogations offers valuable perspective to start
approaching the complex modular hardware design problem and make informed comparisons
between well-constrained design choices.

The remainder of the paper is outlined below. In Sec. 2, we discuss the relevant design con-
siderations when developing a modular probe using MOCA. We specifically focus on the param-
eterization of the modules, processes required to assemble modules into functional probes, and
related performance metrics for system characterization and comparisons. In Sec. 4, we dem-
onstrate MOCA’s capability in designing full-head probes using a variety of module shapes and
compare their trade-offs regarding channel density, SD separations, and average brain sensitiv-
ities. Furthermore, we utilize MOCA to showcase potential improvements to published fNIRS
probes by altering module orientations, spacing, and staggering layouts. In Sec. 5, we highlight
a number of generalizable design strategies that were discovered via our experiments using
MOCA, including the importance of considering module orientations, tiling strategies, and
module spacing tuning, among others.

2 Modular Probe Parameters and Performance Metrics

A diagram showing the overall design process of a modular fNIRS system is shown in Fig. 1.
Specifically, the three parts describing MOCA’s workflow are (1) the design parameters describ-
ing a single module design; (2) the processes and parameters used to assemble the modules into a
probe; and (3) the derived performance metrics used to characterize the resulting probe. MOCA
starts with the definition of essential module parameters (shown in the left column in Fig. 1),
applies those parameters along with probe-level constraints to a probe-generation process
(center column in Fig. 1), and derives quantitative performance metrics of the resulting probe
(shown in the right column in Fig. 1). Arrows in Fig. 1 define dependencies between the
derived performance metrics and the input parameters. For example, to calculate the probe’s
channel distribution, one must define the module geometry, ROI, and optode layout design
parameters.

2.1 Essential Module-Level Design Parameters of fNIRS Modular Probes

The basic building block of a modular probe is an fNIRS module. It is typically in the form of
an optoeletronic circuit made of a rigid29,30,33,43 or rigid-flex44,45 substrate with on-board light
sources, optical sensors, auxiliary sensors, microcontrollers, and other communication electron-
ics. A modular probe is subsequently constructed by replicating and interconnecting multiple
identical modules. Therefore, the design decisions regarding the module-level parameters are
highly important and directly impact the functionalities and restrictions of the resulting probe.

2.1.1 Single module geometry

The shape of a module is one of the key parameters when designing a modular system. In pub-
lished literature, simple polyhedral shapes, especially equilateral polygons (square, hexagon,
etc), are typically used due to their simplicity to fabricate, analyze, and tessellate over a target
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ROI. It is also possible to design probes that combine multiple polygonal shapes, such as a
combination of hexagonal and pentagonal modules. Such hybrid-shape modular systems may
bring advantages in tessellating curved surfaces, but they also require more complex analyses.
MOCA supports a number of built-in module shapes including three equilateral polygons
(triangle, square, and hexagon). In such cases, the module edge length is the only shape param-
eter that needs to be defined. One should be aware that a small-sized module requires a large
number of boards to cover a given area, thus resulting in higher fabrication cost and higher
complexity in assembly and analysis. Moreover, a small module size also limits the maximum
intra-module SDS. Shorter SD separations are known to be more sensitive to superficial tissues
rather than brain activities. On the other hand, a small-module size provides better probe-to-scalp
coupling when a rigid-board–based module is used. MOCA provides support for user-specified
arbitrary polygonal modules, defined by a sequence of two-dimensional (2D) coordinates.
Subsequent analyses of these user-defined arbitrary modules shapes only use the bounding box
of these polygons when varying probe-level parameters.

2.1.2 Target regions-of-interest

An ROI refers to the area of the scalp directly above the cortex for which brain activities are
expected to occur.46 For simplicity, here, we focus on designing probes based on the coverage of
a 2D ROI. For generality, MOCA specifies an ROI geometry as a closed polygon made of a
sequence of 2D coordinates. Users need to specify at least three Cartesian coordinates to define
a closed ROI. In the future, MOCA can potentially be expanded to support three-dimensional
(3D) surfaces as ROIs through the use of 3D surface tessellation tools, such as the Iso2Mesh47

mesh generator and 3D photon transport modeling tools, such as NIRFAST48 and Monte Carlo
eXtreme49 (MCX).

2.1.3 Optode layout within a single module

Optode layout refers to the spatial arrangement of optical sources and light sensors within the
boundaries of a single polygonal module. In MOCA, each source and detector position is defined
by a set of discrete 2D coordinates relative to the module’s center. The 2D coordinates define the
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Fig. 1 Workflow of module-level design parameters (left column; blue) used in probe-level proc-
esses (center column; red) to produce performance metrics to characterize a probe (right column;
green). Performance metrics are organized top to bottom from least complex (two parameters
needed) to most complex (four parameters needed). Arrows trace how parameters are used
to derive specific performance metrics.
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center of the active area of the light-emitting diode (LED), laser, or photo detector. The physical
dimensions of the optodes as well as the size and location of electronic components needed to
drive each optode are not considered. The SD separations between all combinations of SD pairs
are derived based upon the optode positions.

2.1.4 Maximum source–detector separation and maximum short separation
channel

MOCA also considers the maximum SD separation (SDSmax) as a key design parameter.
Typically, SDSmax is determined by the signal-to-noise ratio of the detected signal.50 A large
SDS has low detector sensitivity due to the exponential decay of light intensity as SDS increases.
This maximum separation limits the number inter-module channels that emerge from a particular
tessellation of modules over an ROI. By default, MOCA considers any SDS below 10 mm to be a
short-separation (SS) channel. This threshold can be manually changed to fit any specific optode
performance or probe application. MOCA uses 30 mm as the default SDSmax.

51,52 MOCA
bounds the SD range by the SS channel threshold and the SDSmax.

2.2 Probe-Level Assembly Process Parameters

A modular probe is constructed when multiple modules are arranged to form a non-overlapping
coverage of the ROI area. The final probe is dependent on the tessellation (the number of
modules and the spacing between them) and the orientation of each individual module in the
probe.

2.2.1 Exploring module tessellation and probe spacing

MOCA provides a process to tessellate modules over a user-defined 2D polygonal ROI, which is
generally known as the “tiling” problem in computational geometry.53 Here, a “complete tes-
sellation” refers to the tiling of an ROI using a single module shape without overlapping or
leaving a gap in coverage. Each of the three built-in polygons (triangle, square, and hexagon)
has the ability to cover a 2D area.54 MOCA performs the tessellation by first tiling the module
shape along a horizontal axis starting at the lowest vertical coordinate of the ROI until the width
of the row composed of adjacent modules is wider than the width of the corresponding segment
of ROI the row is tiled over. It then repeats this row-generation process until the height of all
the rows combined is larger than the maximum height of the defined ROI. This dimension com-
parison in both axes accounts for module shapes with non-vertical and non-horizontal sides. For
irregular module shapes, MOCA uses the maximum width and maximum height of the defined
polygon as the bounding box to create a tiling grid of the module over the ROI. Using the maxi-
mum width and height of the ROI as a guide for tiling ensures the full ROI is covered. Although
MOCA offsets and flips the three equilateral polygon shapes to prevent gaps, irregular module
shapes have inherent gaps between modules when tessellated. Additionally, MOCA accepts
manually defined tessellations by reading a sequence of coordinates defining the center of mod-
ules to specify each individual module’s location within the ROI. Following tessellation, each
module is assigned a unique index and an adjacency matrix is constructed to represent which
modules are next to one another.

To extend the flexibility of probe creation, users can change probe spacing, the minimum
distance between adjacent modules in all directions. Additionally, a module can be manually
deleted from the tessellation to allow the probe to more closely follow the boundaries of the
ROI or better represent intentional empty spaces in the probe. When individual modules are
removed from the probe, the adjacency matrix is re-calculated from the resulting probe.

2.2.2 Guiding module orientation and connection routing

Module orientation refers to the rotation of the module along the normal direction of the ROI
plane. In a complete tessellation of the three equilateral polygon shapes, MOCA appropriately
flips and translates modules to prevent gaps and overlaps. For tessellations of irregular shapes,
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each module is simply placed in the same orientation as it was originally defined. After probe
generation, MOCA allows the user to manually change the orientation of individual modules
based on their assigned indices. For asymmetric optode layouts, changing the module orientation
alters the SDS of inter-module channels, resulting in different performance metrics.

Additionally, MOCA creates a single sequential path to connect all modules to form a linear
data communication bus, referred to as the “routing” process. In such a path, all modules are
connected and every module is visited exactly once—a classic problem known as the Hamilton
path55 in graph theory. In most configurations, a Hamilton path is not unique, and computing
such a path is known to be an NP-hard problem, i.e., problems that do not have a polynomial
complexity when the node number grows. However, due to the limited module numbers
commonly used in an fNIRS probes, an exhaustive search of the adjacency matrix can typically
identify all Hamilton paths in a given tessellation with no more than a few minutes of compu-
tation. For any computed path, MOCA then orients each module based on the angle of a vector
defined by the center of the oriented module and the center of the following module in the path.
The orientation angle is relative to the horizontal axis.

2.3 Performance Metrics to Characterize Probes

Each metric described below changes as module- and probe-level parameters are altered either
manually or through MOCA’s sweeping functions. MOCA not only helps unravel the complex
interplay between choices of different parameters, but also guides the probe designer in making
trade-offs between conflicting design targets—improving one metric may come at the risk of
worsening another. We have chosen the following set of essential performance metrics due to
their ability to easily inform a breadth of end-user probe requirements such as cost, weight, depth
sensitivity, and sampling rate estimates.

2.3.1 Total module and optode counts

Based on the module design and tessellation, MOCA computes the total number of modules, nm,
needed to cover the ROI. In addition, MOCA also outputs the total number of sources (ns) and
detectors (nd) of the final probe. All modules, sources, and detectors of an assembled probe are
given unique identifiable index numbers (mi, si, and di, respectively). Module and optode counts
are performance metrics outputted by MOCA from which cost, weight, and power estimates can
be deduced.

2.3.2 Inter- and intra-module channel distribution

For any assembled probe, MOCA generates histograms of the SD separations for all combina-
tions of SD pairs. Particularly, it outputs separately the distribution of inter- and intra-module
channels that are below the SDSmax previously defined by the user. These channel distributions
aid the user in designing the probe based on the targeted application and population. For exam-
ple, shorter channels are more applicable to infant populations. Additionally, MOCA outputs
channel density, a metric commonly used for fNIRS probe bench marking. Channel density is
defined as the number of channels, nchannels, divided by the area of the ROI.24 Furthermore,
MOCA can provide a spatial plot overlaying channels on the assembled probe, allowing for
visual inspection of low channel density areas within the probe.

2.3.3 Spatial brain sensitivity

Brain sensitivity (Sbrain) refers to the magnitude of the measurement signal change at a detector
given a localized perturbation of optical properties of brain tissue.56 A higher Sbrain value sug-
gests the probe is more sensitive to the anticipated brain activation. It is calculated from the
spatial probability distribution of photons scattering through complex tissue as they travel from
the source to the detector.57 Although modeling 3D head/brain anatomies and 3D-based light
simulations have been reported, including several related works from our group,47,49,58,59 we
deliberately chose a simplified layered-slab head model and 2D based probe layout as default
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models to evaluate a modular probe in MOCA. Such a decision was largely motivated by (1) sig-
nificantly faster computation and pre-/post-processing to accommodate fast sweeping of a large
parameter space, and (2) avoiding another added layer of complexity when probe design is
coupled with underlying brain anatomy in a 3D head model. A comparison between Sbrain com-
puted by 2D and atlas-based analyses is provided in Sec. 4. Nonetheless, MOCA can export 2D
probe data to established 3D probe modeling toolkits, such as AtlasViewer41 and MCX,49 to
perform more advanced analyses when 3D head models are necessary.

MOCA uses a five-layer slab model consisting of tissue imitating the scalp, skull, cerebral
spinal fluid (CSF), white matter (WM), and gray matter (GM) to determine the spatial sensitivity
profile for each SD pair in a probe.60 The thickness of each tissue layer in the slab is set to the
average thickness of that tissue type computed using the top half of a tetrahedral brain model.61

We define the brain region as the combination of GM andWM tissues. The optical properties and
resulting thicknesses for each tissue type are summarized in Table 1.

For each SD pair in the assembled probe, 3 × 108 photons are simulated using our in-house
3D Monte Carlo photon transport simulator, MCX,49 using a pencil beam source and a single
1.5-mm radius detector placed at the surface of the slab at its corresponding SDS. In a voxelated
grid, Sbrain is defined as a ratio dividing the region-wise summation of the sensitivity matrix
in each brain tissue region by the summation of the entire sensitivity matrix for each source–
detector separation,57 i.e.,

EQ-TARGET;temp:intralink-;e001;116;299Sbrainðs; dÞ ¼

P

r∈ΩGM

Jðr; s; dÞ þ P

r∈ΩWM

Jðr; s; dÞ
P

r∈Ω
Jðr; s; dÞ ; (1)

where the sensitivity matrix, also known as the Jacobian (J), is computed using the adjoint
Monte Carlo method.62 In addition to Sbrain, MOCA also calculates the average brain sensitivity
for the entire probe, Sbrain, based on all the SD separations above the SS threshold. SS channels
are excluded in the calculation of Sbrain because, by definition, they are designed to only sample
superficial layers.57

2.3.4 Spatial multiplexing groups

The density of assembled modular probes may impact the probe’s temporal sampling rate when
illuminating each source sequentially. MOCA introduces spatial multiplexing, an encoding strat-
egy that can potential accelerate data acquisition by simultaneously turning on multiple light
sources at the same time. Because of the high attenuation of light in the head and brain tissues
at large separations, MOCA can ignore the cross-talk of light sources that are far away from a
given detector and assign sources into spatial multiplexing groups, or SMG, so that all sources

Table 1 Optical properties used in the slab model for calculating brain sensitivity based on Fang
et al.58 The thickness of each layer is derived by dividing the total tissue volume by the tissue’s
surface area from a tetrahedral five tissue brain model.61 The absorption coefficient, μa, is the
average path a photon will travel in the medium before being absorbed. Similarly, the scattering
coefficient, μs, defines the average path length of photons before a scattering event. Anisotropy, g,
is a unit less measure of the amount of forward direction retained after a single scattering event.

Tissue type μa (mm−1) μs (mm−1) g Thickness (mm−1)

GM 0.020 9.000 0.89 7.25

WM 0.080 40.900 0.84 4.00

CSF 0.004 0.009 0.89 2.73

Skull 0.019 7.800 0.89 3.29

Scalp 0.019 7.800 0.89 4.23
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within an SMG can be turned on simultaneously. By default, MOCA uses the SDSmax as the
minimal distance between sources. This distance, however, can be defined by the user. Notably,
unlike frequency multiplexing, spatial multiplexing does not require extra energy-intensive hard-
ware or post-measurement separation of combined signals.

The search for the SMG starts by randomly specifying a source position as the seed; a circle
of radius SDSmax centered at the seed position is drawn and a random source outside of this circle
that is at least 2 × SDSmax away is picked; the above process repeats until no additional source
can be found. Once an SMG is identified, a new source that does not belong to any existing SMG
is selected as the new seed for the next SMG and the above process repeats until every source is
allocated. The total number of spatial multiplexing groups, nSMG, depends on the tessellation of
the module over the ROI as well as the choice of the seed position. As with channels, the nSMG

are for a single wavelength. Thus, when estimating the total sampling rate of the probe using
dual-wavelength sources, the control unit must cycle through each group twice (once for each
wavelength).

In addition to nSMG, MOCA calculates the spatial multiplexing ratio (SMR), defined as
SMR ¼ ns∕nSMG. This ratio is interpreted as the acceleration factor of the data acquisition speed
when using spatial multiplexing. For example, for a 20-source probe, an nSMG of 5 can accelerate
the data acquisition by a factor of SMR ¼ 20∕5 ¼ 4 fold.

3 Additional Functionalities

MOCA was created as an exploratory tool to interrogate specific design parameters and reveal
the trade-offs, within a well-constrained search space, regarding specific design decisions.
MOCA possess functions to facilitate changing probe-level parameters and exporting the desired
probe for use in existing probe design tools such as AtlasViewer.

3.1 Parameter Sweeping

3.1.1 Altering spacing between modules

An optional parameter during module tessellation is probe spacing—a uniform distance assumed
between adjacent modules. The spacing sweep function varies the probe spacing within a user-
defined range in user-defined increments. For the three built-in polygons (triangle, square, and
hexagon), spacing is increased between all adjacent sides of the modules within the probe. For
arbitrary shapes, spacing is added to the horizontal and vertical sides of the rectangular bounding
box. The number of modules required to cover the ROI is continuously adjusted as probe spacing
is varied. The performance metrics for each of the resulting probes are reported by MOCA as a
function of probe spacing.

3.1.2 Exhaustive search of module orientations

MOCA provides a limited orientation enumeration function to re-orient modules through a
predefined number of orientations. For the three built-in polygons, the default number of re-
orientations per module is simply the number of sides of the polygon. For arbitrary shapes, the
default number of re-orientations is four based on the bounding box. Additionally, a user can
describe the number of orientations for any shape. MOCA re-orients modules in evenly spaced
angle increments. An exhaustive search is performed using the number of modules in the probe
and the number of user-defined orientations. Each probe resulting from each permutation of
module re-orientations is characterized by MOCA and reported as a function of various probe
layouts.

3.1.3 Staggering rows of modules

Staggering modules refer to shifting a row (or column) of tessellated modules in the x (or y) axis.
Staggering is performed on tiling grid probe layouts. Adjusting this probe-level parameter is
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particularly useful for improving probes composed of modules with symmetrical optode layouts,
where re-orienting modules does not affect SDS, or when high-density probes are needed, where
probe spacing cannot be increased. A user defines both the range and increment by which to
offset a particular row. Each resulting probe is analyzed and the corresponding performance
metrics are calculated. MOCA then reports a plot of the Sbrain, SMR, and the number of channels
for each staggered probe.

3.2 Exporting Probe for Use in AtlasViewer

MOCA performs its analysis of module- and probe-level parameters on an infinite slab model
derived from the Colin27 atlas. When 3D analysis is desired, MOCA can export the probe layout
to a “.sd” file for use in “SDgui” — a built-in tool of AtlasViewer41 used for creating and editing
.sd files. To properly represent a modular probe layout in AtlasViewer (which treats all optodes
individually without a reference to a module), MOCA first translates the module-level param-
eters by creating fixed/rigid springs between all optode pairs (source–source, source–detector,
and detector–detector) within each module. These fixed springs maintain the relative optode
layout within each module while permitting bending at the junctions between springs.
MOCA then adds fixed springs between each inter-module channel (SD pairs between modules
with distances below the SDSmax) to translate the probe-level parameters (spacing, orientation,
staggering). As an additional constraint, MOCA adds flexible springs (springs of length -1) for
inter-module channels above the SDSmax. Finally, to register the probe to the surface of the
selected atlas, MOCA adds three dummy optodes to the exported “.sd” file. All three optodes
are placed at the midpoint between the minimum and maximum x coordinates of all optodes in
the probe. The y coordinate of the first, second, and third dummy optodes are set to the minimum
y coordinate, midpoint, and maximum y coordinate of all optodes in the probe, respectively. The
first, second, and third dummy optodes are assigned to the Fpz, Cz, and Oz positions, respec-
tively, in the standard 10–10 system. This places any MOCA-designed probe at the top of an
atlas by default. A user can change the dummy optode anchors to re-position the probe on an
atlas. The exported .sd file can then be loaded into AtlasViewer for placement on a generic or
subject-specific atlas (Fig. 2).

4 Results and Practical Examples

In this section, we first validate the Sbrain derived from a simplified five-layer slab model against
previously published atlas-based Sbrain results.56 Then we demonstrate how the module-level
parameters of MOCA can be used to characterize and compare full-head probes composed
of different choices of elementary module designs. Lastly, we show examples using
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Fig. 2 Example probe exported for use in AtlasViewer.41 (a) A four-module probe with three
sources (red circles) and two detectors (blue crosses) plotted using MOCA. Intra- (blue) and
inter-module (orange) channels are shown in solid lines. (b) Imported probe in SDgui. Solid lines
represent fixed springs. Dashed green lines represent flexible springs between sources and
detectors. Three dummy optodes (numbered 21, 22, and 23) are shown in black. (c) The resulting
probe in AtlasViewer registered to an atlas using the dummy optodes as anchors.
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MOCA’s assembly processes as investigational tools to potentially improve existing designs by
altering probe-level parameters, such as probe spacing, module orientations, and the staggering
of modules within an assembled probe.

4.1 Slab-Based Brain Sensitivity Corresponds with Atlas-Based Sensitivity

Figure 3 shows Sbrain calculated using our five-layer slab model at SD separations ranging from 1
to 60 mm in 1-mm increments (blue line). We also overlay full-head averages of Sbrain and stan-
dard deviations at 20, 25, 30, 35, and 40 mm separations from a previously published study56

using the Colin27 atlas.
Simulations on a five-layer slab model show an increase in Sbrain as SDS increases.

Additionally, Sbrain for SD separations below 10 mm is <1.17%. At 20-, 25-, 30-, 35-, and
40-mm separations, the maximum difference between the atlas-based and slab-based Sbrain val-
ues is <0.6%. Figure 3 shows that using 2D approximation of the ROI and a layered brain struc-
ture provides a reasonable trade-off between accuracy and computational efficiency, especially
for high-density probe characterization.

4.2 Comparison between Sample Modules of Various Shapes

MOCA allows the comparison of a wide range of fNIRS module designs by quantifying the
effects of probe-level design parameters on a probe’s performance. As a showcase, here we
report the results from a comparison of three equilateral module shapes (square, hexagon, and
triangle) with the same optode layout tessellated over a 200 × 200 mm ROI, derived from the
average surface area of the top half of an adult male head.63 Square29–31 and hexagonal32,33,43

fNIRS modules have been extensively studied in literature and are chosen here for a quantitative
comparison. While an equilateral triangle has not been reported in published module designs, we
include it here because of the potential suitability for better tessellation of a 3D surface in future
extensions. With this comparison, we want to demonstrate both the scalability of MOCA in
analyzing full-head probes and how performance metrics change across module-level design
decisions.

As mentioned above, MOCA systematically tessellates the target ROI using the module
geometry and assigns each module an index number. If not considering within-module optode
locations, only translation is needed for both square and hexagon modules to completely cover a
region. For the triangle shape, MOCA rotates every other triangle and its optodes 180 deg to fill
the ROI without leaving any gaps. No other probe-level parameter changes are made for this
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Fig. 3 Results comparing brain sensitivity derived from finite slab models used by MOCA and
atlas-based models. The blue line shows calculated brain sensitivity based on a five-layer slab
model for SD separations from 0 to 60 mm in 1-mm increments. Overlaid in black are the brain
sensitivity results calculated from an atlas by averaging brain sensitivity for fixed source–detector
separations across nineteen locations in the international 10–20 system.56
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comparison. Probe spacing is set to zero. The default SS threshold is set to 10 mm, and the
SDSmax is set to 30 mm. The minimum distance between sources used in calculating SMGs
is set to 2 × SDSmax. To avoid simultaneously changing multiple parameters and only focus
on module shape, an identical optode layout made of two sources and two detectors is used
in all three module designs in this example. The edge-length of the square is set to
33.33 mm, determined by the average length of three previously reported square-shaped module
designs.29–31 The edge-length of the hexagon and triangle is set to 20.68 and 50.65 mm, respec-
tively, calculated to achieve the same area as the square module. The three module designs as
well as the tessellation of the hexagon-based probe over the ROI are shown in Fig. 4. The derived
performance metrics for each of the three sample probes are summarized in Table 2. The results
that follow are only applicable for the specific module- and probe-level parameters chosen for
this showcase.

4.2.1 Effect of module shape on channel separation distributions

Figure 5 shows a histogram of the SD separations of the full-head (200 × 200 mm area) probe
composed from the three selected module shapes. Table 2 shows that the number of modules
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Fig. 4 Elementary module designs used in a full-head comparison. (a)–(c) The perimeter of the
square, hexagon, and triangle-based module designs, respectively. The optode layout of all three
shapes is identical. Red circles represent sources while blue crosses represent detectors.
(d) Tessellation of the hexagon module over an ROI. The dashed green line outlines the
200 × 200 mm ROI.

Table 2 Summary of quantitative performance metrics derived by MOCA when tessellating the
three elementary module shapes over a 200 × 200 mm region of interest.

Row Performance metric
Square-based

probe
Hexagon-based

probe
Triangle-based

probe

1 Total modules (N) 36 42 40

2 Total optodes (N) 144 168 160

3 Total channels (N) 324 405 496

4 Intra-module channels (N) 180 237 336

5 Inter-module channels (N) 144 168 160

6 % of channels that are inter-module (%) 55.56 58.52 67.74

7 Average brain sensitivity (%) 7.52� 1.95 6.50� 2.44 8.83� 3.10

8 Average intra-module brain sensitivity (%) 6.44� 2.10 6.44� 2.10 6.44� 2.10

9 Average inter-module brain sensitivity (%) 8.82� 0.00 6.54� 2.66 9.94� 2.86

10 Spatial multiplexing groups (N)] 9 8 13

11 Spatial multiplexing Ratio 8 10.5 6.15
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needed to cover the ROI varies for each shape due to the complete coverage constraint enforced
by MOCA for this showcase [Fig. 4(d)]. Since each module utilizes the same optode layout, the
intra-module channel distributions [blue bars in Figs. 5(a)–5(c)] are simply scaled by the total
numbers of modules needed to completely cover the ROI. The SDS of inter-module channels are
dependent on the module shape, resulting in varying inter-module channel distributions between
all three probes [orange bars in Figs. 5(a)–5(c)].

For this particular example, the triangle-based probe reports both the highest number of total
channels [Fig. 5(d)] and the largest SD separations of all three tessellated probes [Fig. 5(c)]. The
hexagon-based probe appears to have the shortest inter-module channels [Fig. 5(b)]. Due to its
symmetry and given the SDSmax setting, the square-based probe happens to have all SD sep-
arations at 24 mm. Notably, the triangle-based probe adds the most inter-module channels,
almost twice the number of intra-module channels [Fig. 5(d)], while also requiring two fewer
modules than the hexagon-based probe (Table 2, Rows 1–5). Figure 5(d) also shows that the
number of inter-module channels is greater than the number of intra-module channels for all
three probes.

4.2.2 Combining intra- and inter-module channels for brain sensitivity

The Sbrain values derived from the three probe designs, grouped by intra-module channels, inter-
module channels, and all channels, are summarized in Fig. 6. Only channels above the SS thresh-
old and below the SDSmax are used. Despite having the fewest total channels (Table 2, Row 3),
the square-based probe results in a higher Sbrain than the hexagon-based probe. For the square-
and triangle-based probes, the use of inter-module channels increases the probe’s Sbrain as com-
pared to simply using intra-module channels alone. For the hexagon-based probe, Sbrain com-
puted using only intra-module channels is similar to that when using only inter-module channels
(6.44% versus 6.54%). Due to having the same optode layout, the intra-module Sbrain is the same
for all three probes.

4.2.3 Effect of module shapes on improving sampling rate

The total ns compared to the nSMG arising from the tessellation of each module over the ROI are
compared in Fig. 7(a). The total number of sources for the square-, hexagon- and triangle-based
probes are 72, 84, and 80, respectively. Figure 7(b) overlays the first SMG over the triangle-
based full-head probe. Using the nSMG for each probe (Table 2, Row 10), the SMR (the ratio
between ns and nSMG) is 8, 10.5, and 6.15 for the square-, hexagon-, and triangle-based probe,
respectively. This result indicates that the hexagon-based probe’s sampling rate can benefit the
most when using group-based spatial multiplexing.

(a) (b) (c) (d)
SD separation (mm)

T
ot

al
 c

ha
nn

el
 c

ou
nt

s 
(N

)

SD separation (mm) SD separation (mm)

Fig. 5 Channel distributions and total channel counts resulting from the tessellation of the three
elementary module shapes over a 200 × 200 mm region of interest. (a)–(c) Resulting intra- and
inter-module channel distributions for square, hexagon, and triangle module-based probes.
(d) The total channel count of each probe grouped by intra- and inter-module channels.
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4.3 Improving Existing Probes through Probe-Level Parameter Alterations

The ability to compute performance metrics from basic design parameters allows users to explore
probe-level alterations and potentially improve existing probes using MOCA. Here, we simulate
and alter published examples to demonstrate how even simple module layout changes such as
rotating selected modules, altering probe spacing, and staggering modules can potentially
improve published probe designs.

4.3.1 Effect of optode orientation on probe characteristics

Re-orienting modules within existing probes alters the SDS distribution and, consequently, the
probe’s Sbrain and SMR. In Fig. 8, we simulate a 36 mm2 square module in a probe configuration
inspired by the μNTS fNIRS module described in Chitnis et al.29 The modules in the initial

(a) (b)

Fig. 7 Spatial multiplexing group results from the tessellation of the square-, hexagon-, and
triangle-based probes. (a) Comparison of total number of sources (orange) and total number
of spatial multiplexing groups (green). (b) The triangle-based module tessellation with sources
(red circles) and detectors (blue crosses). The dashed red circles indicate the effective region
(30-mm radius) of each of the nine sources in the first spatial multiplexing group. The nine sources
turned on simultaneously in this group are indicated by filled in red circles.
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Fig. 6 Resulting average brain sensitivity organized by intra- and inter-module channels for
square-, hexagon-, and triangle-based probes tessellated over a 200 × 200 mm region. SS chan-
nels are excluded in all calculations.
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tessellation are oriented in the same direction as in the original paper [Fig. 8(a)]. In our inves-
tigation, the spacing between each module is set to 5 mm and the SDSmax is set to 30 mm. Each
module has two sources and four detectors, resulting in 8 intra-module channels per module
ranging from 8 to 29 mm. A total of 256 different probe configurations result from exhaustively
re-orienting each module individually by 90 deg. Without losing generality, a subset of 128
layouts are shown in Fig. 8(b) to show the range of the variations.

Of the 256 possible layout configurations, eight of those layouts result in a maximum average
brain sensitivity of 9.87%. These eight layouts also achieve the minimum number (nSMG ¼ 4) of
spatial multiplexing groups. The intra- and inter-module channel distribution and channel count
resulting from the MOCA analysis of the original probe layout are shown in Fig. 8(d).
Figure 8(c) shows the same four-module probe but constructed with the bottom-left and top-
right modules rotated 90 deg clockwise, corresponding to layout number 66 in Fig. 8(b).
Using MOCA, the spatial channel plot overlaid onto this re-oriented probe shows a denser cover-
age of the center of the ROI compared to the original probe layout. The channel count distri-
bution of this re-oriented probe is shown in Fig. 8(e). As expected, the intra-module channels in
Figs. 8(a) and 8(c) are identical. However, re-orienting the two modules produces a shift toward
longer separation inter-module channels that are known to be more sensitive to brain tissues.
The number of inter-module channels within the 10- to 20-mm range decreases from 8 to 4 and
the number of 29-mm separation inter-module channels increases from 2 to 12 upon re-orienting
the two modules. The re-orientation of modules not only allows the probe to have more long-
separation (LS) channels, it also increases the total number of inter-module channels from 14 to
20 [Figs. 8(d) and 8(e)]. Additionally, Sbrain of the probe increases from 8.56% to 9.87%
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Fig. 8 A four-module probe simulated using MOCA. (a) All modules are oriented in the same
direction. Red circles represent sources and blue crosses represent detectors. An exhaustive
search of all combinations of orientations for each of the four modules results in 256 possible
layouts. The average brain sensitivity and number of spatial multiplexing groups for the first
128 layouts are shown in (b). The original layout (layout number 1) is highlighted in the red square.
An example layout with the maximum possible brain sensitivity (layout number 66) is highlighted in
the green square. (c) A visual representation of layout 66 with the bottom-left and top-right mod-
ules rotated 90 deg clockwise with respect to orientation in (a). Intra- and inter-module channel
distribution resulting from the original layout is shown in (d). Channel counts resulting from the
probe configuration in (c) are shown in (e). (d) and (e) In both channel distribution histograms,
intra- and inter-module channels are shown in blue and orange, respectively. Dark orange indi-
cates overlapping histogram counts.
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[Fig. 8(f)] while the number of spatial multiplexing groups, and subsequently the probe’s
sampling rate, remains the same.

4.3.2 Effect of probe spacing on probe performance

Probe spacing—the distance between edges of adjacent modules in a probe—is a parameter that
can vary the resulting channel distribution and channel density of a probe by altering the relative
distances between optodes on neighboring modules. To investigate the effect of this parameter, in
Fig. 9, we simulate the probe layout described by Zhao et al.,33 which utilizes hexagonal shaped
LUMO fNIRS modules developed by Gowerlabs.64 The length of each side of the hexagonal-
shaped module used in our investigation is set to 18 mm and each module contains three sources
and four detectors. The SDSmax is set to 30 mm. A uniform spacing is set between all adjacent
modules. Probe spacing is varied from 0 to 30 mm in 1 mm increments.

When all modules are densely packed with a spacing of 1 mm, the probe results in 328 total
channels (184 of which are inter-module channels), an Sbrain of 5.95%, and 12 SMGs. When the
probe spacing is increased to 6 mm, the number of channels and spatial multiplexing groups
remain the same while the Sbrain increases [Fig. 9(b)]. The increase in Sbrain arises due to the
overall increased distances between sources and detectors of inter-module channels which sam-
ple deeper into the brain tissue. This results in a local maximum Sbrain of 7.87%.

When we increase probe spacing to 8 mm, the inter-module channel separations increase to
above the SDSmax. This decreases the number of usable inter-module channels and the probe’s
Sbrain. The SMR remains unchanged between 6- and 8-mm probe spacing. Above 11 mm, the
increase in probe spacing increases the relative distance between adjacent sources, allowing
more sources to be turned on at the same time and decreasing the nSMG needed. This trend
continues as we increase probe spacing. Consequently, the probe’s Sbrain reaches a minimal pla-
teau of 3% at 15 mm spacing and beyond because only intra-module channels above the SS
threshold remain within the SD range [Fig. 9(b)]. Similarly, since modules are further apart,
the nSMG continues to drop which increases the SMR (and the sampling rate of the probe when
spatial multiplexing encoding is utilized). At 29-mm spacing, the SMR value is 12 due to only
three spatial multiplexing groups needed (one for each of the three sources on each module).

4.3.3 Effect of staggering modules on probe characteristics

Staggering adjacent modules within a high-density probe can increase inter-module SD sepa-
rations to improve performance. To demonstrate the effect of staggering on the resulting probe,
in Fig. 10 we simulate a 42 mm2 square module in a 3 × 1 layout configuration inspired by
M3BA modules.30 Each of our simulated modules contain two sources and two detectors.
The probe was staggered by translating the center module between 0 mm and 42 mm along
the horizontal axis.

(a) (b)

Fig. 9 An analysis of hexagonal modules in a twelve-module probe. (a) Green arrows indicate the
distances between modules as probe spacing varies. (b) The total channel count, average brain
sensitivity, and the SMR at probe spacing values between 1 and 30 mm. Module orientations are
held constant.
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In Fig. 10(a), we overlaid the intra- (blue) and inter-module (orange) channels over the three-
module probe. The resulting channel distribution shows 12 intra-module channels at 28 mm and
4 inter-module channels at 14-mm SD separations [Fig. 10(b)]. The Sbrain of this probe using all
channels is 8.79% [Fig. 10(c)]. When analyzed separately by intra- and inter-module channels,
the Sbrain using only intra-module channels (10.75%) is larger the Sbrain when using only inter-
module channels (2.9%) since in this tessellation intra-module channels are larger and probe
deeper into the tissue.

In Fig. 10(c), we show the effect of staggering the tessellated module layout by translating the
center module along the horizontal axis. This alteration increases the inter-module channel sep-
arations. Consequently, the Sbrain due to only inter-module channels increases until the inter-
module channel separations are larger than the SDSmax. The Sbrain using all channels increases
from 8.79% in the original tessellation to a maximum of 10.95% in the staggered tessellation at
26 mm. The nSMG between the two layouts remained the same until a staggering amount of
31 mm at which point the sources are far away enough to group them together [Fig. 10(f)].

5 Discussion

Through the case studies shown in Sec. 4, we demonstrate the high complexity in designing a
modular probe, where even adjusting a single parameter may have a profound impact on other
parameters and the overall performance. Despite the fact that MOCA only permits operator-
guided parameter interrogation in a well-constrained problem, the results from the above experi-
ments did reveal a number of important design strategies that were not previously discussed in
literature, including the effect of module re-orientation, fine-tuning the space between modules,
and module staggering to potentially improve existing fNIRS probes.

Figure 5 reveals that despite having the same optode layout, probes composed of different
module shapes covering the same ROI result in different channel distributions. Although the
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Fig. 10 An analysis of square modules in a three-module probe. (a) A traditional three-module
tessellation. Red circles represent sources and blue crosses represent detectors. (b) The resulting
intra- and inter-module channel distribution from the probe layout in (a). (c) The average brain
sensitivity for each layout resulting from module staggering separated by intra- and inter-module
channel contributions. (d) The center module staggered by 26 mm, resulting in increased channel
separation for inter-module channels, as shown in (e). (f) The total channel count and the number
of spatial multiplexing groups of the probe layout as the center module is staggered between
0 and 42 mm.
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inter-module channels are identical between modules, the resulting total number of channels is
related to the number of modules needed to cover the ROI. The effect of module shape on chan-
nel distribution is complex and requires a tool such as MOCA to thoroughly investigate. Certain
module geometries result in optodes closer to the module’s edges, effectively shortening inter-
module channels in completely tessellated probes. Because the optode layout in Fig. 4 is not
completely symmetric and each module shape is an equilateral polygon, each individual module
can be re-oriented without overlapping while maintaining the complete tessellation of the probe.
While not altering intra-module channel distributions, these orientation configurations spatially
alter channel locations and alter inter-module channel separations. The results from Fig. 5 also
show how some individual module shapes may be more appropriate for certain subject popu-
lations. For example, the high count of 19-mm inter-module channel separations in the hexagon-
based probe make it better suited for infant populations. An important takeaway is that the num-
ber of inter-module channels of an assembled probe is not a simple multiplicative factor of the
number of intra-module channels. These results demonstrate the dependency a probe’s derived
characteristics have on module shape even when different modules have the exact same optode
layout.

The results in Fig. 6 provide a counter-example where higher channel density due to
increased inter-module channels may not necessarily improve all performance metrics of a
probe. Despite having fewer total channels than the hexagon-based probe, the square-based
probe results in a higher average brain sensitivity (Sbrain) due to larger inter-module channel
separations. This reveals the trade-offs in performance metric improvement, emphasizing the
need for Sbrain to be considered in conjunction with channel distribution when comparing probes.
Additionally, this analysis reveals that the use of inter-module channels in addition to intra-
module channels does not always lead to increased Sbrain for probes based on different module
shapes. In fact, the use of only inter-module channels increases the average penetration depth for
the square- and triangle-based probes due to the larger channel separations. However, for the
hexagon-based probe design in this example, Fig. 6 shows that the contribution to Sbrain from
using only intra- or only inter-module channels differed by merely 0.1%. These results show that
adding inter-module channels to intra-module probes will not always result in improved Sbrain.
Thus, users of this particular hexagon-based probe may benefit from the simplicity and faster
sampling rate of using only intra-module channels rather than implementing a potentially com-
plex data acquisition method to capture inter-module channels. Although ignoring inter-module
channels can increase sampling rate without affecting Sbrain for this particular probe, it does result
in fewer channels and lowers the channel density of the probe. Through this complex example,
we show that it is non-trivial to consider all constraints in a modular probe. MOCA is positioned
as a tool to help designers challenge hypotheses, explore alternative designs, and quantify vari-
ous trade-offs.

Figure 7 shows that the hexagon-based probe can achieve the highest sampling rate among
the three configurations if a spatial multiplexing encoding strategy is implemented. The frame
rate of a sequential encoding strategy is dependent on the total number of sources (ns) because
each source needs to be turned on and sampled once. Spatial multiplexing allows multiple
sources within a group to be turned on simultaneously, allowing the sampling rate to increase
by a factor of ns∕nSMG, defined as the SMR. Therefore, despite having the lowest sampling rate
when sampled sequentially due to the highest ns (Table 2, Row 1), the hexagon-based probe has
the fastest sampling rate of the three probes when spatial multiplexing is used due to the low
nSMG [Fig. 7(a)]. These results demonstrate that a probe’s sampling rate can be increased not
only through firmware changes or advanced electronics, but also by using different module
shapes with the same optode layout.

While MOCA’s ability to change module-level parameters helps design new fNIRS modules,
its ability to sweep through probe-level parameters helps potentially improve existing ones.
Figure 8 shows how probes based on published modules can potentially improve Sbrain at no
increased cost and without re-designing modules by altering the orientations of modules that
make up the probe. The orientation changes in layout 66 [Fig. 8(c)] increase the channel density
at the center of the ROI, but also increase the number of inter-module channels by 43%. The
emerging inter-module channels also have larger source–detector separation (SDS) and contrib-
ute to an increase in Sbrain without changing the SMR. The re-oriented probe in Fig. 8(c) is only a
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representative case of how a 2 × 2 probe composed of square modules can be potentially
improved and is exhaustive only because the number of possible orientations of each of the four
modules were limited to 4, resulting in 44 ¼ 256 probe layouts to analyze. Additionally, the re-
orientation of modules causes changes to performance metrics due to the asymmetry of the
optode layout within each module. If the optode layout was symmetric, re-orienting modules
would have no effect on either inter- or intra-module channels.

In Fig. 9, we investigated the effect of spacing between modules on the derived performance
metrics of a probe composed of hexagonal-shaped modules. The results suggest that varying
module spacing does have an impact on Sbrain. Since optodes are generally placed near the edges
of the modules to maximize intra-module channel separations, dense probes with modules near
one another tend to have shorter inter-module channel separations. This trend becomes more
apparent as the size of the module increases. Increasing the probe spacing increases the distance
between optodes on neighboring modules, thus increasing the Sbrain in the process. This increase
in Sbrain, however, has a local maximum. As shown in Fig. 9, further increasing probe spacing
leads to a drop in the number of inter-module channels as their SD separations become greater
than the separation limit (SDSmax). Additionally, increasing the distance between modules
reduces the number of multiplexing groups (nSMG) which increases the SMR and consequently
the probe’s sampling rate. Once the probe spacing exceeds the user-specified SMG diameter, one
source on each module can be turned on at the same time because each source would be outside
the other’s “effective” region. Because the distance between sources on the same module does
not change, a different SMG is required for each source within a module. Thus, the limit to the
minimum nSMG is equal to the number of sources on a single module, revealing a minimum
improvement in sampling rate due to spatial multiplexing encoding. Compared to a sequential
sampling strategy, a spatial multiplexing encoding strategy will increase a probe’s sampling rate
by at least a factor equal to the number of sources on one module. Figure 9 shows that probe
spacing can both alter nSMG to help meet sampling rate requirements and alter inter-module
channel separations to meet channel distribution needs.

Figure 10 shows that staggering a probe layout can increase Sbrain in dense probes.
Simulations using a published module shape30 with zero probe spacing results in inter-module
channels of 14-mm separations. These channels are too long to be SS channels and too short to
be LS channels. Staggering spatially increases inter-module channel separations while maintain-
ing the compactness of a probe [Fig. 10(c)]. This improvement works with square or rectangular
modules since staggering is done by translating user-specified modules along a horizontal or
vertical axis. For module designs with symmetrical optode layouts, we recommend staggering
probe layouts by translating every other module row by half of the module’s maximum width in
one axis [Fig. 10(f)]. This ensures the optodes from the translated module are well separated
from modules of the adjacent rows.

The results above are derived from investigating the module- and probe-level design param-
eters that MOCA currently supports. However, this only represents a small subset of the general
parameters previously used in evaluating a modular probe.24 For example, user feedback-based
design parameters not yet accounted for in MOCA include conformability (a module’s ability to
conform to a curved surface), subject comfort, and safety limits such as operating voltage and
heating effects. Source output power and module weight each require external instrumentation
measurements while noise-equivalent power and dynamic range calculations require lab-specific
phantoms. Power consumption depends on the type of optodes used as well as the control
electronics of the individual module while a probe’s battery life can be adjusted using existing
off-the-shelf components. Each of these design parameters are based on specific electronic or
material components chosen for a particular module design. MOCAwas built to easily scale and
incorporate more complex mechanical-, ergonomic-, safety- and experiment-specific consider-
ations in the future as those design parameters are evaluated.

There are limitations to MOCA’s current minimal subset of design parameters. First, the
ability to re-orient, increase spacing, or stagger modules assumes that modules can be connected
in any orientation. This is true for many published modular designs where cables of different
lengths can be easily connected to the top of a module, but does not necessarily apply to more
sophisticated designs that have embedded printed flex connectors or utilize headgears with pre-
determined mounting locations. Second, MOCA does not currently support multiple module
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shapes within the same probe or different optode layouts on different modules. Third, MOCA’s
channel count output does not include wavelength number as a multiplier. This approach allows
one to quickly scale the channel distribution and channel counts when dual-wavelength or triple-
wavelength sources are utilized. Similarly, the nSMG is also defined for a single wavelength.
Thus, when estimating the total sampling rate of the probe using multi-wavelength sources, the
control unit must cycle through each group multiple times (once for each wavelength). Fourth,
MOCA’s analysis is based on the coordinates of the center of an optode’s active area and does
not account for the actual size of optode package, the shape of the optode’s active area, or any
master control unit needed to control a series of modules. Despite being able to place optodes
near the edge of modules in MOCA, designers may face constraints in practice imposed by the
fabrication process due to board materials, sizes, and electrical routing needed to drive these
optoelectronics. In general, module shapes with large interior angles allow optodes to be placed
closer to the module’s perimeter. Fifth, MOCA’s probe-level functions are only one way of inter-
rogating parameters in a systematic way. These functions vary parameters in discrete increments
(fixed number of orientations, a set spacing range, and user-defined translation amounts) and
therefore only explore a subset of all potential probe layouts. They do not determine an optimal
probe configuration—they assist in improving existing probes by adding design constraints
(holding module-level parameters constant) and allowing a user to identify design choices that
improve performance for their particular application. Finally, MOCA can output 2D optode lay-
outs but relies on other existing software, such as AtlasViewer,41 to perform 3D head contour
registration. It does, however, automatically add spring relationships to embed modular aspects
into an exported probe. For example, the distance between all optodes (both sources and detec-
tors) within a module are fixed, while inter-module channels can vary slightly. This ensures that a
physically rigid electronic module does not transform when registered to a surface. In addition,
the performance metrics output by MOCA are currently based on a 2D probe layout and do not
account for changes in SDS if the probe is wrapped on the 3D surface of a head.34 Consequently,
2D derived metrics may underestimate the number of channels when a probe is made to conform
to the scalp. This may result in an increase in the number of total inter-module channels for a
probe. However, by working in 2D, MOCA can both help unearth design and performance rela-
tionships, as well as drastically constrain the vast potential design space by helping researchers
converge on the module- and probe-level parameters that most impact performance.

6 Conclusion

We have developed a MATLAB-based modular probe design toolbox, MOCA, with the goal of
providing fNIRS developers with a systematic yet easy-to-use software platform to navigate the
large design space of modular fNIRS probes and provide metrics-based guidance. MOCA sim-
plifies the design problem with module-level parameters, such as size, shape, and optode layout
as well as probe-level parameters, such as the maximum SDS and ROI geometry to characterize a
modular probe. It offers the ability to perform operator-guided sweeping of probe parameters,
such as orientation, spacing, and module staggering offset, helping designers explore alternative
designs that potentially improve upon existing probes or outline spectra of trade-offs. MOCA is
quantitative, guided by application-specific fNIRS performance metrics, including channel
distribution, average brain sensitivity, and spatial multiplexing groups, making it possible for
quantitative characterization and comparison between various design decisions. Applying
MOCA in several case studies, we identified several valuable design considerations that have
not been widely recognized, including the importance of fine-tuning module orientation, spac-
ing, and staggering distance. In the meantime, these case studies also demonstrate the complexity
of modular probe optimization, where multiple variables compete and eventually lead to alter-
native designs with various trade-offs. While MOCAwas not designed to provide full automa-
tion for complex probe design and optimization, it offers fNIRS probe designers a suite of
powerful tools, including module tiling, routing, re-orientation, and fine-tuning of module spac-
ing and staggering offset, with each outcome quantified by meaningful performance metrics.
MOCA is expected to attract more research interests toward developing next-generation modular
fNIRS systems.
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