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ABSTRACT. Significance: Near-infrared laser illumination is a non-invasive alternative/comple-
ment to classical stimulation methods in neuroscience but the mechanisms under-
lying its action on neuronal dynamics remain unclear. Most studies deal with high-
frequency pulsed protocols and stationary characterizations disregarding the
dynamic modulatory effect of sustained and activity-dependent stimulation. The
understanding of such modulation and its widespread dissemination can help to
develop specific interventions for research applications and treatments for neural
disorders.

Aim: We quantified the effect of continuous-wave near-infrared (CW-NIR) laser
illumination on single neuron dynamics using sustained stimulation and an open-
source activity-dependent protocol to identify the biophysical mechanisms underly-
ing this modulation and its time course.

Approach: We characterized the effect by simultaneously performing long intracel-
lular recordings of membrane potential while delivering sustained and closed-loop
CW-NIR laser stimulation. We used waveform metrics and conductance-based
models to assess the role of specific biophysical candidates on the modulation.

Results: We show that CW-NIR sustained illumination asymmetrically accelerates
action potential dynamics and the spiking rate on single neurons, while closed-loop
stimulation unveils its action at different phases of the neuron dynamics. Our model
study points out the action of CW-NIR on specific ionic-channels and the key role of
temperature on channel properties to explain the modulatory effect.

Conclusions: Both sustained and activity-dependent CW-NIR stimulation effec-
tively modulate neuronal dynamics by a combination of biophysical mechanisms.
Our open-source protocols can help to disseminate this non-invasive optical stimu-
lation in novel research and clinical applications.
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1 Introduction
Effective neural stimulation is an essential tool to study brain dynamics. Many techniques have
risen since the first use of electrical, chemical, and mechanical stimulation, e.g., see Refs. 1–4.
Optical methods are also widely spread, as they allow visualization5 and stimulation in a less
invasive manner. One example is optogenetics,6–9 which is effective in modifying neural activity
with high spatio-temporal resolution. Another example of non-invasive stimulation is transcra-
nial magnetic stimulation,10 which is succeeding in clinical applications. However, they both
present limitations such as the need to genetically modify the living system or restricted spatial
precision, respectively. In this context, infrared laser stimulation is an optical technique that has
risen in popularity in the last decade. From its first applications,11,12 studies have shown its ability
for modulating action potentials (APs) in different systems.13–19 Beyond its potential as a research
stimulation technique, it has also been tested for clinical use, e.g., in Parkinson’s disease, revers-
ing brain age-related effects or depression treatment.20–24 This neural stimulation method is so
attractive because of the wide range of possibilities that can provide for non-invasive neuromo-
dulation offering high temporal and spatial precision.

The identification of the biophysical source of infrared neuromodulation is still under dis-
cussion as it has strong implications for applications in multiple contexts. It is difficult to asso-
ciate this modulation to a single specific cause, since neural systems have distinct biophysical
components reactive to the irradiation. However, most of the results point to a photo-thermal
effect where the excitation driven by the laser stimulation might be caused by temperature
gradient.25 In addition, different candidates to explain the change in neural activity have been
suggested, such as capacitance,17,26 specific modulation of channels sensitive to temperature as
TRPV4,27 acceleration of ionic channels,13 or altering the Ca2þ cycle possibly mediated by
modulation of mitochondrial activity.23,28,29

Distinct types of infrared laser and action modes, in terms of the power, duration, frequency
of stimulation, and wavelength have been used in previous studies, see Refs. 11, 12, and 30. The
effect is highly dependent on the stimulation configuration. Most works have focused on pulsed
lasers to induce spiking activity due to their stronger temperature gradient production. However,
some clinical studies have successfully applied continuous-wave (CW) laser for brain
stimulation.23

The use of closed-loop techniques has a large potential in neuroscience, for both physio-
logical and clinical research studies,2,31–37 since they allow adjusting the stimulation to the con-
text of the ongoing neural dynamics and the specific condition of the targeted system/subject.
Some of these tools have been developed with open-source approaches, including optical tech-
niques, e.g. Refs. 38–42, promoting the accessibility, reproducibility, and standardization of the
studies and methods. However, near-infrared (NIR) lasers have been used with fixed/periodic
stimulus and, to the best of our knowledge, they have not been exploited in activity-dependent
protocols.

Here, we explore the effect of continuous-wave near-infrared (CW-NIR) laser on the dynam-
ics of individual neurons in sustained and activity-dependent stimulation protocols. We employ a
laser with constant optical power density on the sample for these two modalities. In the first case,
the laser stimulation is sustained—the duration of the illumination is constant for more than
1 min—and in the second case, it is driven in an activity-dependent manner implemented by
the open-source RTXI43 Linux software—the onset of the stimulation is determined by ongoing
neural events and delivered transiently through software control. We studied the effect of
CW-NIR illumination focused on neurons with spontaneous tonic firing. Combining experimen-
tal results with modeling analysis allowed exploring the candidates that can explain the observed
neuromodulation. We present a novel procedure for NIR laser stimulation to dissect and inter-
vene in the waveform dynamics through activity-dependent stimulation. By interlacing results
from theoretical simulations and sustained and activity-dependent stimulation, we identify the
dynamical elements behind AP dynamics under CW-NIR modulation. We discard any single
candidate of the biophysical effect as the joint experimental and model analyses indicate that
laser illumination affects multiple membrane factors simultaneously.
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2 Materials and Methods

2.1 Intracellular Recordings
The experimental data were obtained using intracellular electrophysiological recordings with
sharp electrodes in the neurons of Lymnaea stagnalis. This animal model was used because
of the easy accessibility of the neurons that are distributed and organized in different ganglia,
with a distinct function associated to each one of them. For the experiments, we chose the right
parietal ganglion (RPG) since it is one of the largest ganglia in the system and so are its neurons.
In addition, many neurons in this ganglion are usually spontaneously active and present a tonic
spiking that can last for hours. It is also convenient of this animal that its neural activity is slow,
which allows us to explore the modulation of the AP dynamics at multiple time scales with larger
resolution in the electrophysiological recordings. Membrane potential was recorded using 3 M
KCl filled electrodes and a DC amplifier (ELC-03M, NPI Electronic, Hauptstrasse, Tamm,
Germany). Recordings were acquired at 10 KHz using an A/D board (PCI-625 with a
BNC-2090A DAQ device, National Instruments).

2.2 Lymnaea stagnalis Preparation
The neural system was isolated from the rest of the body to perform the electrophysiological
recordings. The body shell was removed, along with other visceral parts above the neural system.
Then, all nerves attaching the system to the body and the buccal ganglia to the buccal mass were
cut, so the system was isolated [see Fig. 1(a)]. The preparation was immersed in a saline solution
(in mM: 51.3 NaCl, 1.7 KCl, 1.5MgCl2 · 6H2O, 4.1 CaCl2 · 2H2O, 5 HEPES, corrected to pH
7.8 with 4 MNaOH). The sheath above the ganglia was reduced using protease (Sigma type XIV)
to facilitate access to the neuron with the sharp electrode. All procedures followed the European
Commission and Universidad Autónoma de Madrid animal treatment guidelines.

2.3 Spike Waveform Characterization Parameters
For both experimental recordings and model simulations, APs were detected as the maximum
point over a threshold, and each waveform was segmented 100 ms before and after the peak
temporal reference. For the superposition of APs (Figures in Secs. 3.1 and 3.2), the waveforms
were aligned in the x axis by the peak and in the y axis by the first point of the waveform voltage
values.

For the waveform shape characterization, we used four metrics: duration, amplitude, depo-
larization, and repolarization slopes. They are depicted in Fig. 1(b) and defined as follows:

• Duration: Time interval between the two points at half width of the AP.
• Amplitude: Difference between minimum and maximum voltage values in the waveform in

the analyzed segment.
• Depolarization slope: Slope in the depolarization phase (previous to the peak) measured

1 ms before and after the half width point reference.
• Repolarization slope: Slope in the repolarization phase (after the peak) measured 1 ms

before and after the half width point reference.

These metrics were used for the quantitative analysis of the change in experimental record-
ings and model simulations. In Sec. 2.7, we describe the quantification methodology for the
waveform metric change as well as for the comparison between the experimental and model
results.

2.4 Temperature Estimation
To estimate the CW-NIR laser induced temperature change, we used the open-pipette method
employed in previous experimental studies to measure the temperature variation during the
illumination.15,44–46 We calibrated the resistance and temperature relation using a thermistor
(EPCOS, 10 kΩ) to measure the temperature in the preparation solution in the range from
23°C to 29°C. We used two protocols: injecting a constant current to calculate the resistance
change from the voltage recording and injecting pulses of a specific current value. From the
resulting recording slope of the linear regression, we computed the conversion from voltage
to temperature. For the estimation of the temperature change during the laser stimulation, we
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measured the voltage change during short intervals of laser illumination and the temperature
value at its saturation plateau. This estimation is represented in Fig. 1(c).

2.5 Continuous-Wave NIR Laser Stimulation
The experimental results presented here were obtained using a CW-NIR diode laser in single
TEM00 operation and 830 nm wavelength output (Integrated Optics 0830L-13A-NI-PT-NF).
The diode laser output was coupled to a single-mode optical fiber to efficiently guide the laser
beam to the sample. To adapt the divergence of the laser beam to the fiber optic output, an
aspherical lenses-collimator (Thorlabs, F280FC-850) was installed. An achromatic doublet with
focal length f ¼ 50 mm was used to focus the laser beam on the sample (Thorlabs AC127-050-
B-ML). The experiments were performed with a laser output power of ∼90 mW and a power

–

–

–

(a)

(c)

(e) (f)

(d)

(b) (i) (ii)

(iv)(iii)

Fig. 1 (a) Illustration of the laser beam focused on a neuron in the right parietal ganglia at maxi-
mum power showing a sharpened form due to the angle. (b) Representation of waveform shape’s
metrics: (i) Spike duration at half width. (ii) Spike amplitude between the maximum and minimum
voltage values. (iii) Depolarization slope at half width. (iv) Repolarization slope at half width.
(c) Open-pipette temperature estimation method. Each row in the panel represents pulsed and
continuous current delivery for the estimation, respectively. For both examples: left column, tem-
perature and voltage relation. Right column filtered mean of voltage recordings from short illumi-
nation intervals in the pipette. (d) Simulation of the CGC-model representing the voltage dynamics
during an action potential and the corresponding ionic currents defined in the model (INaP, INaT, IA,
ID, ILVA, IHVA). The units in the y axis are specified in the legend. (e) Activity-dependent protocol
scheme. Neurons were recorded intracellularly and their voltage signals were processed in real-
time with the RTXI software. Using the spike prediction algorithms, the shutter was triggered at the
desired action potential phase illuminating the neurons. (f) Examples of illumination offset, defined
as the time interval from the end of the illumination to the peak of the spike.
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density over the sample of 146 W∕cm2. The grazing incidence of the laser beam on the sample
created a quasi-elliptical spot, with a minor axis of ∼34 μm, as shown in Fig. 1(a).

The laser was attached to a micro-manipulator (Siskiyou MX160), allowing micrometer
precision of the beam placement over the neuron and optimization of the beam focus. The focus-
ing was performed using a binocular microscope (Nikon SMZ-1500) coupled to a CCD camera
(XCAM1080PHA, ToupTek Photonics, Zhejiang, China).

For the activity-dependent stimulation experiments described below, the CW-NIR laser light
was blocked with a mechanical shutter (Thorlabs SH05, Newton, New Jersey). The shutter was
triggered by a TTL signal upon the real-time detection of neuronal voltage events [see Sec. 2.9
and Fig. 1(e)]. The shutter utilized in this work had a ∼8 ms delay from the trigger signal, which
might be a limitation for neural stimulation in fast spiking cells. The slow spike dynamics in the
neurons used for this research are compatible with this restriction, and the protocol was devel-
oped considering this limitation.

2.6 Sustained CW-NIR Stimulation Protocol
After the isolation of the Lymnaea stagnalis neural system, we searched for suitable neurons in
the RPG, i.e., cells with spontaneous activity preferably with fast activity and shoulder or sym-
metrical type in the spike waveform. Once the target neuron was identified, the laser was set-up.
A lens with focal distance of f ¼ 50 mm was used and no polarizer was installed on the optical
path. Guided with the microscope camera, the laser spot was located and then placed first over
the ganglion and subsequently over the specific neuron where the electrode was recording the
activity. At this point, the laser was focused with the micro-manipulator adjusting the focal dis-
tance. Finally, the laser power was increased to the above mentioned value for the experiments.

Once the laser spot was over the neuron while the membrane voltage was simultaneously
recorded at the soma with the intracellular electrode, we followed the protocol described below to
measure the effect of the CW-NIR laser on the activity of the neuron:

1. First control. The spontaneous activity in the neuron was recorded for 1 to 3 min,
depending on the spiking frequency of the cell. During this control, there was no
external modulation of the neuron apart from the possible alteration by the intracellular
procedure.

2. Laser stimulation. The laser was on during the same lapse of time than in the first control,
stimulating the neuron with a constant optical power density. There was no modification in
laser parameters during this time.

3. Recovery. After the illumination was off, a second control was performed, under the same
conditions as the first one. During this recovery control, the activity in the neuron after the
effect of the laser was recorded.

The sequence involving control, laser, and recovery trials was replayed in each experiment
(day and individual) for five times. Between each trial, the laser illumination was supervised to
ensure that the spot was still over the neuron, guaranteeing that the procedure had as low varia-
tion as possible. Also, the laser was only turned off during the controls, it was not set aside, since
that would have forced to redo the set-up for every trial altering the reproducibility between trials.
The effect for each trial of a given day was very similar. For the analysis in Sec. 3.1, the trial with
the strongest effect in the day was selected.

2.7 Statistical Analysis
The statistical significance analysis in the data obtained from the sustained CW-NIR stimulation
protocol in Sec. 3.1 was performed applying a paired T-test to the four spike waveform metrics
characterized here [see Fig. 1(b)]. Data from distinct experiments were gathered and paired by
recordings of control-laser and control-recovery. The null-hypothesis tested was that control
group was equal to the laser group and that the control group was equal to the recovery group,
respectively. Since we performed the test in the four waveform metrics—spike duration, depo-
larization slope, repolarization slope, and amplitude—we applied the Bonferroni correction, thus
we considered high significance when ρ < 0.01∕4.
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To compare recordings from different neurons, we normalized the change between the laser
and the control conditions for each waveform metric using the following expressions for
electrophysiological data:

EQ-TARGET;temp:intralink-;e001;114;700metric changeexperimental ¼
jμðmetriclaserÞ − μðmetriccontrolÞj

jμðmetriccontrolÞj
; (1)

where μðmetriclaser∕controlÞ is the mean of the corresponding metric for all waveforms in a given
laser stimulation or control trial.

Analogously, to compare the change between the distinct model simulations, we normalized
the change in the parameter-driven simulated variability range using the following expression:

EQ-TARGET;temp:intralink-;e002;114;614metric changemodel ¼
jmetricmin−metricmaxj

jmetricmaxj
; (2)

where metricmin ∕max refers to the minimum or maximum value of the corresponding waveform
metric resulting from the model simulations in the considered parameter range.

For the comparison between experimental data and model simulations in Sec. 3.2, we
defined an experimental reference for each metric as the general mean and standard deviation
for all experiments (N ¼ 23). This allowed us to define a range of change due to the laser effect to
which the model values could be compared. The mean of metric experimental change (MEC)
was defined as

EQ-TARGET;temp:intralink-;e003;114;493μMEC ¼ 1

N

XN
i¼1

jμðmetricÞlaser − μðmetricÞcontrolji
jμðmetricÞcontrolji

: (3)

Here, μðmetricÞlaser and μðmetricÞcontrol represent the mean values for each experiment i in
laser stimulation and control trials, respectively, where the index i ranges for all the experiments,
with N being the number of experiments.

Thus, the percentage change in waveform from the model simulations, as described in
Eq. (2), was mapped to this reference range: ðμMEC � 2σMECÞ, with σMEC being the standard
deviation of the MEC. To visually represent this range, we utilized a color gradient with the
background_gradient option in DataFrame style in Python. The equation for mapping these
values is

EQ-TARGET;temp:intralink-;sec2.7;114;354Gradient value ¼ value − Vmin

Vmax−Vmin
:

Here, value represents the percentage change in the model simulation for a specific metric,
while Vmin and Vmax represent μMEC − 2σMEC and μMEC þ 2σMEC, respectively, with μMEC and
σMEC being the specific mean and standard deviation corresponding to the metric specified in
value. Since all changes are in absolute value, the lower bound for Vmin is 0.

All data analyses were performed in Python, the scripts are available in a GitHub repository
at: https://github.com/GNB-UAM/Garrido-Pena_Modulation-neural-dynamics-by-CW-NIR-
stimulation.

2.8 Neuron Models
The theoretical study was carried out simulating the laser modulation on the neurons in three
conductance-based models: (i) the classic Hodgkin–Huxley model47 defined by Eq. (4), com-
posed of two active ionic channels: INa and IK, and a leakage current; (ii), a N3t neuron model,48

with two compartments and defined by Eqs. (5) and (6), which represents a neuron in the
Lymnaea stagnalis’s feeding CPG,49 and (iii) a model from Lymnaea stagnalis, which simulates
the CGC neuron located in the cerebral ganglia with a shoulder type spike waveform.50 This
model is described by six different ionic channels: persistent and transient sodium currents
(INaP, INaT), transient and delayed rectifier potassium currents (IA, ID), and low-voltage-
activated and high-voltage-activated calcium currents (ILVA, IHVA), described by
Eqs. (7)–(13). The CGC neuron model is the one used for the temperature dependence study
since it has the most detailed description in terms of combination of channels. Figure 1(d) shows
the dynamics of each channel in this model during an AP:
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EQ-TARGET;temp:intralink-;e004;117;736Cm
dV
dt

¼ Iinj − INa − IK − IL; (4)

EQ-TARGET;temp:intralink-;e005;117;696τm
dVS

dt
¼ iinj − iL;S − iT − iec;S − isyn; (5)

EQ-TARGET;temp:intralink-;e006;117;668τm
dVA

dt
¼ −iL;A − iNaT − iK − iec;A; (6)

EQ-TARGET;temp:intralink-;e007;117;640Cm
dV
dt

¼ Iinj − INaT − INaP − IA − ID − ILVA − IHVA; (7)

EQ-TARGET;temp:intralink-;e008;117;612INaT ¼ gNaTm3
∞hðV − ENaÞ; (8)

EQ-TARGET;temp:intralink-;e009;117;593INaP ¼ gNaPr3ðV − ENaÞ; (9)

EQ-TARGET;temp:intralink-;e010;117;575IA ¼ gAa4bðV − EKÞ; (10)

EQ-TARGET;temp:intralink-;e011;117;556ID ¼ gDn4ðV − EKÞ; (11)

EQ-TARGET;temp:intralink-;e012;117;538ILVA ¼ gLVAc3∞d∞ðV − ECaÞ; (12)

EQ-TARGET;temp:intralink-;e013;117;519IHVA ¼ gHVAe3fðV − ECaÞ: (13)

2.8.1 Temperature dependence in the model

To simulate the temperature dependency in the neuronal activity, aQ10 factor was incorporated to
every dynamical equation in the model (i.e., conductances and activation gates). Q10 represents
the temperature sensitivity in each channel, and it was included as a new factor as shown
in Eqs. (14) and (15), with i ¼ NaT;NaP; A;D;LVA;HVA for Eq. (14) and
i ¼ h; r; a; b; n; d; e; f for Eq. (15). The capacitance was also defined as temperature dependent
(CT) with a linear relation to the difference of temperature in Eq. (16):

EQ-TARGET;temp:intralink-;e014;117;403giðTÞ ¼ ḡiQ
i
T−T0
10

10 ; (14)

EQ-TARGET;temp:intralink-;e015;117;362ϕiðTÞ ¼ ϕ̄iQ
i
T−T0
10

10 ; (15)

EQ-TARGET;temp:intralink-;e016;117;338CT ¼ c0 þ c0γðT − T0Þ: (16)

where ḡi, ϕ̄i, c0 are the original values used in the model and γ ¼ 0.05.

2.9 Activity-Dependent Laser Stimulation Protocol
For stimulating the neurons depending on their ongoing activity, a closed-loop protocol was
designed in the RTXI real-time software.43 This hard real-time tool allows an easy integration
of new modules to read ongoing activity, process it online and send feedback in the form of
analog signals. The real-time module designed for this experiment followed the scheme shown
in Fig. 1(e). After processing the signal in RTXI, a TTL pulse was sent to the controller opening
the laser shutter for the desired time, thus stimulating the neuron during that time interval.
Simultaneously, the neural activity was recorded, along with the TTL and the shutter feedback
(recording the shutter delay with respect to the on signal).

The main challenge in this protocol is the identification of the specific phase of the spike
waveform to deliver the stimulus, i.e., predicting the spike, since spontaneous neural activity has
intrinsic variability that requires the online adaptation of specific thresholds instead of a hand-
tuned preset value. For this purpose, the protocol relied on the reference values from the previous
spike at a specific time interval from the peak. The voltage threshold was calculated based on the
voltage value measured in the previous spike and recalculated at each action potential. Thus, after
each spike, the threshold for the spike prediction was updated using the following equation:

EQ-TARGET;temp:intralink-;e017;117;115V threshold ¼ V½tspike½i − 1� − τ�; (17)

where τ is the selected time for the prediction before the spike and tspike is the time instant of the
spike peak.

Garrido-Peña et al.: Modulation of neuronal dynamics. . .

Neurophotonics 024308-7 Apr–Jun 2024 • Vol. 11(2)



This prediction is effective for stereotyped spikes when only low amplitude subthreshold
oscillations occur, but it is limited in other scenarios. Therefore, for neurons or action modes of
the same neuron when it was necessary to stimulate before the depolarization rise, another refer-
ence was used: the area of the recorded voltage. In this other mode of the protocol defined in
Eq. (18), the voltage was accumulated along the activity and the sum was reset after each spike:

EQ-TARGET;temp:intralink-;e018;114;676Varea ¼
Z

V½spikei�

V½spikei−1�
VðtÞ: (18)

The stimulation was triggered when the area reached a specific threshold, which was pre-
dicted as in the voltage case, or hand-tuned. For the detection of the minimum point to reset the
voltage area, we used an RTXI module based on RTHybrid, a real-time software that includes
automatic adaptation algorithms to handle the ongoing variability of the recordings36,37,40 avail-
able in a GitHub repository at: https://github.com/GNB-UAM/rthybrid-for-rtxi/tree/master/
rthybrid_burst_analysis. The use of each mode of the protocol in the experiment was decided
depending on the specific requirements of the recorded activity.

Using this detection protocol, we assessed the effect of the illumination at different phases of
the AP in the range from 100 ms before the spike peak to 80 ms after the spike peak. The illu-
mination interval was 58 ms, validated as the minimal duration for effective stimulation in the test
trials. The RTXI module programmed for this study is available in a GitHub repository available
at: https://github.com/GNB-UAM/spike_predictor.

3 Results

3.1 Sustained CW-NIR Laser Stimulation Effect on Single Neuron Dynamics

3.1.1 CW-NIR laser effect on spike waveform

In this paper, we performed experimental triplets of control, sustained CW-NIR laser stimulation
and recovery recordings (for details see Sec. 2.6). This protocol provided a reference for the
characterization of the laser effect. The data analyzed in this section correspond to the sponta-
neous activity of neurons from the RPG of Lymnaea stagnalis, under no stimulation other than
the laser illumination when specified.

Left panels in Figs. 2(a) and 2(b) illustrate the stereotyped waveform of the AP from two
experiments in two distinct neuron types present in the RPG with symmetrical and shoulder spike
shapes, respectively. Note that the two neuron types differ not only in spike waveform but also in
duration. In the example shown in Fig. 2(a), the duration of the spike was ∼20 ms whereas the
one shown in Fig. 2(b) was ∼40 to 50 ms. To characterize the sustained CW-NIR laser stimu-
lation in terms of change and recovery, the three stages of the protocol—control, laser, and recov-
ery—are represented in all panels. The superimposition of the spike waveforms (∼40 and 110
spikes for each trial, panels (a) and (b), respectively) for the same recording are aligned in the x
axis by the spike peak and in the y axis by the voltage amplitude of the first point of the wave-
form, together with the trial mean spike represented with a wider line. Note how the control and
recovery traces overlap for both neuron types, illustrating the resumption of the spike dynamics
shortly after the laser stimulation ceases [see aligned spikes in Figs. 2(a) and 2(b)].

Figures 2(a) and 2(b) illustrate that the variability was very small in amplitude, duration, and
in depolarization or repolarization slopes between the spikes within the same trial in both neuron
types. However, during CW-NIR laser stimulation, the change in AP waveform shape was
notable with respect to the control and the recovery. This change was most clear in the spike
duration, which was the result of changes in both depolarization and repolarization slopes.

The right panels (ii) in Figs. 2(a) and 2(b) show bar charts that quantify the change in terms
of spike duration, amplitude, depolarization slope, and repolarization slope. These metrics were
used to characterize the AP waveform and its possible change during the laser illumination [see
also Fig. 1(b) and Sec. 2.3]. Each one of these metrics is represented on the right panels as the
absolute value of the difference of the laser stimulation to the control recording normalized by the
mean control value (see Sec. 2.7). For both neuron types, there was a change in duration and in
the slopes, with the largest change being in the repolarization slope (around 26% for the sym-
metrical spike type neuron and 86% for the shoulder type). The alignment illustrated in the left
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panels shows that the change in amplitude was minimal in comparison to the rest of the metrics.
Although both neuron types showed an effect of the sustained CW-NIR laser stimulation in the
AP waveform, the change in the shoulder neuron type was larger for duration and slopes. This
may be due to specific channels that generate the shoulder shape of the spike, which may allow
for a wider range of change in the spike dynamics, especially in terms of the repolarization slope.

Figure 2(c) displays the results of multiple experiments following the same protocol
described above, represented in violin plots as the normalization of each experiment with respect
to the mean of the first control of the respective metric for each spike detected during control,
laser, and recovery. To avoid possible bias from the natural evolution of the intracellular record-
ings, in this figure, we only included experiments where the activity was recovered within 10%
change in firing rate with respect to the control. For each trial, only stereotyped waveforms were
considered and large deviations (in the form of zscore < −0.1 in the normalized duration) were
filtered out. The variability characterized in the control violins represents the variation within
controls, which was also the most homogeneous in terms of density distribution. This is rep-
resented for each one of the selected spike waveform characterization metrics as in
Figs. 2(a) and 2(b)—duration, depolarization slope, repolarization slope, and spike amplitude
[see Fig. 1(b)].

The results shown in Fig. 2(c) are consistent with the described change in the illustrative
individual experiments shown in Figs. 2(a) and 2(b) in the same figure. On the one hand, the
activity recovered its initial characteristics after the CW-NIR laser stimulation ceased for every
metric, i.e., the recovery (green violins) returned to the same level as the control (blue violins).
The differences in these distributions are mainly caused by the natural variability in the biological
system. Also, as all values are normalized to the mean of the first control, it can be expected that

(a)

(c)

(b)
(i) (ii) (i) (ii)

(a)(a)(a)(a)(a)((a)((a)((a)((((a)((a)((((a)((((a)

((((c)

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)
(i) (ii) (i) (ii)

Fig. 2 Effect of sustained CW-NIR laser stimulation on the spike waveform for two distinct neuron
types. For all panels: control, laser, and recovery are color-coded in blue, red, and green, respec-
tively. (a) Characterization of no shoulder-shaped-type neuron. (b) Characterization of shoulder-
shaped-type neuron. (ai) and (bi) Superimposition of spike waveforms in a recording correspond-
ing to a symmetrical and shoulder spike neuron, respectively. The spikes were aligned to the peak
for the x axis and to the onset for the y axis, the mean is depicted in darker colors. (aii) and (bii) Bar
charts quantify the change using the difference from laser to control normalized by the mean con-
trol value for metrics: duration, depolarization, and repolarization slopes, and amplitude. (c) Violin
plots representing the variation of the experiments with respect to the control (N ¼ 23) for shoulder
and symmetrical types together. For each metric of the waveform, the control, laser, and recovery
recordings are normalized to the first control. From left to right: duration, depolarization slope, repo-
larization slope, and amplitude. Asterisks over the violins indicate that the metric change was
highly significant [Bonferroni correction, (ρ < 0.01∕4), see Sec. 2.7].
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the distributions may diverge more in laser and recovery violins than in control violins.
A separate analysis for the two neuron types is available in Fig. S1 in the Supplementary
Material.

Regarding the change during the laser stimulation, for every waveform metric except ampli-
tude, we can see in Fig. 2(c) how the overlapping of the distributions is minimal. The distribution
for the duration was the most homogeneous, whereas the variation for depolarization and repo-
larization slopes had different density distributions, being the repolarization slope the one pre-
senting a larger change in most cases. This can be explained by the variety of neurons in the
collected data, the change in the slopes differed from one type of neuron to another. Thus, the
distribution of variability was different. Some laser stimulation recordings presented a milder
change than others. The slight change along neurons of the same type was likely due to the
physical restrictions of the setup in each experiment: the angle of the laser, the laser focusing,
the maximum power used, and the overlaying tissue. Overall, considering these factors, we can
see that stimulating with the sustained CW-NIR laser resulted in a significant change of the spike
waveform. In the case of the amplitude, the change was very small.

We performed statistical tests on these data and confirmed that the changes in duration,
depolarization, and repolarization slopes were highly significant (ρ < 0.01∕4) when comparing
control and laser samples. The amplitude change was not highly significant, and so were not the
changes in any metric comparing control and recovery samples (see Sec. 2.7).

This combination of changes points out different biophysical candidates that might be
involved in the modulation of the global change in both slopes or specific channels involved
in the CW-NIR laser effect, since the depolarization and repolarization slopes were affected dif-
ferently, while the amplitude did not change, and for distinct neuron types, the characterized
metrics had different variations (i.e., the repolarization slope in the shoulder-shaped neuron type
was reduced to a greater extent than in the symmetrical type). In Sec. 3.2, we assess these pos-
sible candidates using a computational model.

3.1.2 CW-NIR laser effect on spiking rate

During the identification of the biophysical effect at different phases of the AP dynamics on
single neurons, we identified a robust acceleration of the AP (a shorter duration of the spike
waveform). This could also point to an acceleration of the tonic activity of the neurons.
Pulsed NIR laser stimulation has been proven effective as a stimulation technique, mainly elicit-
ing APs in silent neurons at specific combinations of pulse duration and intensity.11,12,17,18 Thus,
we also assessed the effect during sustained CW-NIR infrared laser stimulation on the spiking
frequency in long stimulation recordings (1 to 3 min).

To avoid possible bias originated from intrinsic properties of the neuron and the circuit in
which it was integrated, we only considered recordings where the neurons effectively recovered
their control activity rate after the stimulation (i.e., absolute recovery change within 10% from the
initial control). The activity frequency was characterized by the absolute firing rate (AFR) for
control, laser, and recovery, and by a histogram of inter-spike intervals (ISIs), i.e., the time inter-
val from peak to peak.

In Fig. 3, the mean firing rates for control, laser, and recovery are represented along with
their standard error of the mean. Figure 3(a) depicts the general change in frequency for the
neurons, showing the neural activity trend to excitation in the mean. In Figs. 3(b) and 3(c), this
set of triplets is divided into two groups depending on the difference between the laser and the
control, classified as no change when the difference between the control and laser was less than
10% [Fig. 3(b)], and as excitation for the opposite case [Fig. 3(c)]. There is no representation of
inhibition in this panel, since there was not any experiment that fulfilled the criteria of a 10%
negative change during the laser stimulation with respect to the control. Note how cases where
the activity increases are the most consistent ones (12 out of 23) and that even in the set classified
as unchanged, the mean of the AFR during laser stimulation is larger than the controls. These
results support an excitatory tendency during CW-NIR sustained stimulation.

The AFR hinders some characteristics of the neural activity, such as the refractory period or
the presence of bursting activity, which might also influence the firing frequency study. Thus,
Fig. 3(d) displays the ISI histogram for each experiment showing again the triplets of control,
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laser, and recovery, for each sample. Experiments showing excitation are highlighted in a red
square. Note that for most cases classified as excitation, the ISIs tendency is to be reduced, which
is observed in the laser histogram at the left of the control and the recovery. Note that there are
some experiments where the laser ISI histogram seems to overlap with the controls and the recov-
ery [see Fig. 3(d), subpanels (2,A), (3,A), and (2,C)] but still the mean AFR of the laser recording
was 10% higher than the control. In these situations, even though the activity was faster under
stimulation, the time between spikes did not show a proportional change, which can be due to a
modulation in the refractory period that compensated for the spike acceleration. Under the laser
modulation, we also found that some neurons would start firing in shorter ISIs, tuning the tonic
spiking into pair spiking similar to small bursts, e.g., Fig. 3(d) and [2,F].

Overall, our results in this subsection show a larger tendency to a frequency increase in
response to the NIR illumination indicating that it is possible to achieve neuronal excitation under
sustained CW-NIR laser stimulation. It is also important to highlight that inhibition was not
found in any of these experiments with sustained CW-NIR laser stimulation during tonic firing
activity.

(a)
(b)

(c)

(d)

Fig. 3 Firing rate and ISIs analysis for the CW-NIR laser stimulation. (a) AFR in all experiments
(N ¼ 23). (b) AFR for cases from the experiments in (a) with no change during laser illumination
(N ¼ 11); (c) AFR for experiments from (a) showing an increase in the firing rate (N ¼ 12); (d) ISI
histograms for control, laser, and recovery for each experiment (blue, red and green, respectively).
Cases showing increased excitation in their firing rate (sample in c) when illuminated by the CW-
NIR laser are highlighted in a red square.
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3.2 Model Analysis for Constraining Candidates to Explain the Effect of
CW-NIR Laser Illumination in the Spike Dynamics

Computational models are a powerful tool to assess the source of neural dynamics where all
variables involved are accessible. By considering membrane potential recordings alone, it is dif-
ficult to understand the contribution of the biophysical candidates in the underlying dynamics
shaping the AP. While it is especially hard to carry out experiments using chemical and/or elec-
trophysiological techniques to selectively block or compensate channels to mimic the observed
CW-NIR laser effect, the simultaneous accessibility to all the variables in a model provides a
unique tool to dissect the contribution of all biophysical candidates. Thus, to further explore the
source of the experimentally observed CW-NIR effect, we analyzed the spike generation dynam-
ics in three different conductance-based models assessing the change in the most likely candi-
dates to be affected by the laser stimulation: modulation of membrane capacitance and ionic
channels. More specifically, we modulated (i) the capacitance and the conductance of the active
ionic channels—INa and IK—in the standard Hodgkin–Huxley (HH) model47; (ii) the conduct-
ance of ionic channels—INaP, INaT, ID, IA, IHVA, ILVA—and capacitance in a Lymnaea stagnalis
CGC neuron model with a shoulder-shaped waveform;50 and (iii) the capacitance in a two-
compartment model—where the fast and slow dynamics are segregated—in a Lymnaea stagnalis
buccal ganglion neuron (N3t) model.48 The implementation of these models is available in the
open-source model library Neun in a GitHub repository at: https://github.com/GNB-UAM/neun
and the code for the simulations can be accessed in a GitHub repository at: https://github.com/
GNB-UAM/Garrido-Pena_Modulation-neural-dynamics-by-CW-NIR-stimulation.

The model parameters were modulated to investigate and compare their effect to that of the
CW-NIR laser stimulation on the neurons, and to evaluate the interrelationship between the
observed changes. To identify changes in the spike dynamics similar to those observed under
the CW-NIR laser illumination, in this section, we covered a complete range of values in the
parameter space of each biophysical candidate. The criteria for driving the parameter exploration
were the preservation of tonic spiking in the activity and the assessment of a realistic range of
values. As our initial hypothesis did not assume that the CW-NIR laser effects were exclusively
photo-thermal, model parameter changes were applied with no temperature description. Further
down in Sec. 3.2.3 we present a detailed study considering the temperature dependency of the
biophysical candidates.

The results of this study are shown in Fig. 4. The analysis for each model is sorted by the
explored biophysical candidate—capacitance, sodium channels, potassium channels, and cal-
cium channels. Thus, Figs. 4(a)–4(d) show the superposition of all spike waveforms from the
simulations for the range of explored model parameter values of each candidate. The table in
Fig. 4(e) represents how well the different model candidates reproduce the observed experimen-
tal effect. For each metric and biophysical candidate, there is a percentage of change in the model
calculated as the change from minimum to maximum normalized with the maximum value
(analogously to the quantification in Fig. 2, see also Sec. 2.7). The background color in each
cell represents the ability of each model parameter modulation to produce results similar to the
change in the experimental results. The color gradient (represented in the color bar) takes as
reference the mean of the MEC quantification, considering the range of ðμMEC � 2σMECÞ (see
Sec. 2.7). The mean change and its standard deviation were computed as the normalized differ-
ence between mean values for each control and laser experimental pair for all experiments. These
reference values are shown for each metric in the first row of the table in Fig. 4(e) to compare
them with the model results. Thus, dark purple corresponds to values two times the STD of the
mean over or under the mean, and white represents the midpoint between those two values, i.e.,
high similarity to the experimental modulation. For example, in the case of capacitance in the HH
model, the change in duration was minimal 3.2%, while the mean change in the experimental
observation was 32%, this color is then represented in dark purple, since 3.2% is not in the
defined range (32� 20). On the other hand, the change in depolarization slope for this model
(28.3%) is depicted in light purple, since it is in the defined range and close to the mean
MEC (23� 12).
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3.2.1 Change in capacitance

Capacitance has been one of the most discussed biophysical candidates to be affected by IR laser
illumination.17,18,26,51 A change in capacitance has a direct effect on the spiking frequency and
exerts a global modulation on all ionic currents, so many studies have discussed this change both
experimentally and theoretically. Here, we explored the CW-NIR modulation of capacitance in
three different conductance-based models: in the Hodgkin–Huxley model, used in other studies,
in the CGC–Vavoulis model, which presents a variety of channels, and in the N3t–model, which
is the only one with more than one compartment and, thus, has two distinct capacitance values.

(a)

(d)(b)

(c)

(e)

Fig. 4 Modeling study of the CW-NIR laser stimulation effects due to isolated biophysical changes
that alter the spike waveform. (a)–(d) Superposition of spike waveforms in each model by modu-
lating a single biophysical candidate. The background colors correspond to each simulated model.
In (a), the capacitance is changed for the HH and CGC neuron models, and in the two compart-
ments for the N3t neuron model. (b) The spike waveforms changing the conductances of Na chan-
nel currents: INa from the HH-model, INaP and INaT, from the CGC-model. (c) The modulation of K
conductances in ionic currents: IK in the HH-model and ID and IA for the CGC-model (from left to
right). (d) The modification of the calcium current conductances in the CGC-model (IHVA and ILVA).
Table in (e) represents the quantification of the changes in the spike metrics when tuning each
parameter for every model. Each cell contains the waveform change normalized to the maximum.
The color gradient represents similarity based on the standard deviation of the normalized exper-
imental change. Dark purple corresponds to low similarity (2σMEC or larger) and white to high sim-
ilarity. The quantified experimental reference (MEC) is annotated in the first row of the table.
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Figure 4(a) shows the waveforms of each simulation. In the case of the HH-model, there was
a mild change in duration, mainly caused by the depolarization modulation, and a change in
amplitude larger than what was observed experimentally. The CGC-model exhibited a similar
tendency to the HH-model but with an extreme case at a low value of capacitance 0.5 μF∕cm2,
where moderated changes in depolarization and amplitude were combined with a large change in
the repolarization, and consequently in the duration. This modulation made capacitance a better
candidate for reproducing the experimental results in the case of the CGC neuron, preserving the
metrics’ change interrelations, i.e., the combination of a minimal change in amplitude and a large
change in duration, together with a larger change in repolarization than in depolarization slope. In
the N3t neuron, we can see contrasting results for the two different compartments. In the com-
partment containing slow currents, the change in amplitude was the most striking, seemingly
conditioned by both slopes. In the case of the fast current compartment, the main change was
observed in repolarization rather than depolarization, which is more similar to the experimental
outcome.

These results are quantified in the table in Fig. 4(e). The HH-model showed a change com-
parable to the experimental one only for the depolarization slope. The CGC-model reached plau-
sible values in terms of the interrelation between metrics (large change in duration generated by a
larger change in repolarization than in depolarization slope), but it exceeded the experimental
references. The change in amplitude was larger than seen in the experimental results for most
parameters (dark purple). It is especially clear in the case of the two-compartment model (N3t
neuron), in which the modulation of capacity in the slow compartment resulted in a large change
in amplitude. In contrast, the small change in amplitude in the fast compartment was the most
similar value with respect to the experimental results (light purple).

By changing the capacitance, we achieved some of the expected changes, but achieving the
desired results for all four metrics simultaneously was not possible. Therefore, modulating
capacitance alone does not reproduce the experimentally observed effects, especially regarding
the combined change, e.g., a large change in repolarization and a small change in amplitude, a
larger change in repolarization than in depolarization. It was only when the fast compartment of
N3t was modified that relations between these four metrics matched the above relationships. But
note that changing the capacitance in the slow compartment is equivalent to changing several
ionic currents simultaneously, not just a single current property.

3.2.2 Ionic channels

The other mechanism to explain the laser modulation that we assessed here was a direct effect on
the ionic channels involved in the generation of APs. These channels are activated in a sequential
manner, and each of them is directly involved at distinct stages of the AP generation. They have
been discussed in the laser stimulation literature13,44,45 by a direct effect of maximal conductance,
and channel opening and closing dynamics due to thermal effects, e.g., in calcium channels.16,27

These candidates were assessed here in the two single-compartment models, the HH-model due
to its wide use in computational neuroscience and the Vavoulis-CGC model for its variety of
channels (including calcium currents) and accurate reproduction of the observed neural wave-
form shape. Note that in the CGC-model analysis, all current types are in pairs of high and low
conductance as well as fast and slow dynamics, having two currents for sodium, potassium, and
calcium [see Fig. 1(d) in Sec. 2].

In Fig. 4(b), the spikes from the simulations for each sodium current in the HH and CGC
models—INa, and INaP and INaT, respectively—are superimposed. For the three currents, we
observed modulation in both depolarization and repolarization slope, which resulted in a change
in duration. Although the change in duration is close to the experimental outcome, the change in
the depolarization is larger than in repolarization [see Fig. 4(e)], which is contrary to the exper-
imental results, as it is also the change in amplitude for INa, and INaP. However, for the channel
INaT, the change in amplitude was smaller, falling closer to the experimental range for amplitude
and duration, but the change in depolarization exceeded the experimental range and the repola-
rization change was limited in the context of shoulder type neurons (the waveform type that
reproduces CGC-model). Although the change of sodium channels alone generated a similar
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change in duration in relation to the experimental results, the rest of the metrics did not replicate
those results.

Analogously, in Fig. 4(c), simulations for potassium currents (IK and ID and IA, respec-
tively) are represented for HH and CGC models. For the three currents, the major change was
in the repolarization slope followed by the depolarization [see quantification in Fig. 4(e)].
This combination resulted in a modulation of the duration that lay in the range of similarity
to the experimental results, with the exception of the amplitude, which does not correspond
to the experimental results. It is especially applicable in the case of IK in HH-model and in the
conductance of the strong potassium current gD of the CGC-model. Note that for the IA current,
although the combination of changes was comparable to the experimental change, their range
was not, so a change in this current alone was not considered a plausible candidate. Thus, a
change in potassium channels reproduced the experimental results for the duration and the two
slopes overall, but it was limited due to an excessive change in amplitude.

In order to inspect the CGC-model in detail, we also simulated the changes in the calcium
currents—IHVA and ILVA—for this model. These currents have a key role in the generation of the
shoulder shape in the spike [Fig. 4(d)]. Both created a similar change in the repolarization slopes,
as well as in the depolarization, which is also close to the experimentally observed modulation.
For duration, IHVA better matched the change, but this modulation was also accompanied by a
large change in amplitude which was not observed in the experimental results. On the other hand,
ILVA had one of the minimum effects on amplitude but, contrary to experimental results, its effect
on the duration was also minimal, although the depolarization and repolarization slopes had a
comparable change to the experimental observations. Therefore, altering each calcium channel
effectively reproduced the desired change in the slopes but the modulation in duration and ampli-
tude occurred in the same proportion, which does not match the experimental results.

The results described in this section indicate that each candidate can be modulated to bring
the waveform closer to the experimentally observed results, but when changed separately they
account only for a partial set of metrics matching. The desired combination of changes for dura-
tion, slopes, and amplitude was not achieved by tuning only one parameter at a time. However,
some of the candidates came close to this combination. Considering the ionic current candidates,
the one that was closer to the in vivo stimulation was potassium current, which reproduced a large
range of change in the repolarization, depolarization, and duration, though exceeding the change
in the spike amplitude. This is relevant in terms of maintaining the observed interrelation of the
metrics. Considering the range of change reached, the calcium channels were the best candidates
for the reproduction of the experimental repolarization slope modulation, allowing a wide range
of values and generating the shoulder-shaped waveform. We also saw how capacitance in single-
compartment models was not enough to reproduce the results. It was only when the capacitance
was modified separately in two compartments, that the change reproduced the CW-NIR laser
stimulation better. This points to a mechanism for explaining the CW-NIR laser effect with con-
tribution from several candidates at the same time where specific factors might be of greater
importance, such as the potassium channel in the case of shoulder-shaped neurons.

3.2.3 Change of spike dynamics considering temperature modulation
in the model

Most studies in laser stimulation point out to a photo-thermal effect, e.g., see Refs. 17, 24, 25, 44,
45, 52, and 53. Thus, in this section, we include a model analysis with temperature modulation.
We selected the CGC-model from Ref. 50 since it is the richest model in terms of variety of
channels and ability to mimic the spike waveform of shoulder-type neurons. To study global
temperature dependence in the model we added a Q10 coefficient, representing the temperature
sensitivity in the model parameters. The value for this parameter is usually applied to different
channel properties and kinetics in a range from 1 to 4.54–57 Thus, we choose 3 as a common value
for Q10, as an average general value used in the literature,17,44,45,58–60 and also proposed as a
universal value for Q10 to characterize temperature dependency for biochemical processes.61

We estimated the temperature change under laser stimulation at maximum power following
an open-pipette method, with a resulting temperature increase of 1°C to 2°C [see Sec. 2.4 and
Fig. 1(c)]. Note that our CW-NIR laser wavelength is at one of the lowest absorption bands of
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water, so the open-pipette method probably underestimates the change in temperature in the
neuron, being the change in the temperature caused not only by water heating but also by heating
the tissue. In addition, the reported temperature range of laser-induced variation in the literature is
wide, depending on the system, the estimation technique and whether it comes from a model or
an in vivo estimation.17,45,62 Therefore, in our simulations, we explored a wider range than our
experimental estimation, considering 5°C as a reference and the quantification of the change up
to 10°C.

Figure 5 shows the change in the spike waveform caused by variations in temperature. The
Q10 factor was added to every dynamical equation in the model (i.e., conductances, activation
gates, and capacitance, see Sec. 2.8.1). In Fig. 5(a), we show the changes in the waveform for
ΔT ¼ 0°C to 5°C, represented as superimposed waveforms in (ai), and its quantification in (aii)
normalized to the maximum, which is analogous to the previous sections (see Figs. 4 and 2):
jmax−min j∕jmax j. Note how both the spike waveform shape and the quantification of the
changes are similar to the experimental results. We can observe changes in duration, depolari-
zation, and repolarization slopes, with a very small change in amplitude. The modulation
obtained by combining these parameters was not achieved by tuning them separately. It is impor-
tant to highlight that as the temperature increased (red lines), the spike got narrower by the cor-
responding alteration in slopes and duration, which supports the hypothesis that the observed
effect in single neurons of Lymnaea stagnalis might be, to a large extent, caused by temperature
gradient. In Fig. 5(b), there is a comparison of different temperature changes for the same Q10

value in the model. Note that the relation of each parameter to the change in temperature is
different, being the repolarization slope the one with the strongest relation, increasing much more
rapidly than the duration or the repolarization slope. This points to a main role in the change from
some of the channels, especially those that have more tolerance to change. This relation in the
repolarization is similar to the comparison of the two neuron types analyzed in the experimental
results [Fig. 2(a)], where the main difference was present in the repolarization.

Analogously to the simulations in the previous sections, we characterized the variations in
the waveforms for each individual candidate, varying the temperature only for one ionic channel
at a time, with a similar result as in Fig. 4, where no candidate alone could reproduce the effect
(see Fig. S2 in the Supplementary Material). To further explore these candidates and relations, we
repeated the model simulation with temperature variations up to 5°C but canceling the temper-
ature dependency in one channel at a time. Note that overriding the temperature dependence of
some of the channels at a time is only possible in a theoretical environment like this, which allows
us to expose the role of each channel in relation to the temperature modulation. The results are
also reported in (Fig. S2 in the Supplementary Material) showing the waveform variations for
temperature dependency for one channel at a time, and its suppression for one channel at a time,
along with the quantification of the change as the percentage of change (see Sec. 2.7).

(a)

(i) (ii)

(b)

Fig. 5 Waveform change in the CGC-model due to ΔT temperature variation. (ai) The spike wave-
form superposition for distinct ΔT values. Spikes are aligned to the initial value of each waveform.
(aii) The normalized change in the waveform is depicted for all metrics (duration, depolarization,
and repolarization slopes and amplitude). (b) The change in response to temperature variation
from 1°C to 10°C (Q10 ¼ 3) in the normalized metrics.
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Exploring the waveform change during temperature variation showed that the most similar
change to the experimental laser modulation was reached in the models with the temperature
dependency description in all parameters. We showed that, for most currents as the temperature
increases, the experimentally observed modulation relations were maintained, changing in dura-
tion and repolarization slope, with a larger change in repolarization slope and a mild change in
amplitude. This is also supported by excluding temperature dependency from isolated ion
channels and proposing temperature dependency for one channel at a time (Fig. S2 in the
Supplementary Material). Furthermore, it is in agreement with the results of the modeling sweep-
ing the parameter space for distinct candidates without a specific description of the temperature
(see Sec. 3.2), which showed that no modulation of an individual candidate but a combination of
them can explain the experimental quantification.

3.3 Activity-Dependent Stimulation to Assess the Laser Effect at Distinct
Stages of the Spike Dynamics

So far we have shown how sustained CW-NIR laser affects neural activity by modifying the
dynamics of spike generation. In Sec. 3.2, we used a conductance-based model to theoretically
assess the spike evolution and the different candidates involved in the modulation of the AP
generation (i.e., ionic channels and capacitance). To address this effect in an experimental setting
is a complex task. Usually, it is accomplished using chemicals to block or open specific
channels.13 This is not a generalizable method in different systems and individuals, and it restricts
the channel study to a system with a detailed description of the specific neuron being recorded.
We chose instead to assess the spike generation dynamics at different stages, which implies
modifying the activity of several channels at a time in a precise timing relative to the spike gen-
eration dynamics. This task is only experimentally feasible with an activity-dependent stimula-
tion protocol.

In infrared stimulation literature, the most spread technique has been pulsed illumination
which stimulates at a fixed frequency. Although this approach has been effective in some tasks,
such as eliciting neural activity, it has limited possibilities in the context of precision and adapt-
ability. Thus, with the activity-dependent protocol proposed here, we also provide an open-access
alternative to the widely used fixed-frequency pulsed laser stimulation protocols, which usually
depend on a specific combination of restrictions from manufacturers, controllers, and diode laser
availability. In addition, a closed-loop approach provides further means to deal with the history-
dependent nature of neural dynamics and its partial observability.34

Here, we propose a closed-loop stimulation protocol where we can differentiate between the
phases of the AP and illuminate the neurons only at certain intervals of the spike generation
dynamics. In this protocol, the laser illumination was controlled by a mechanical shutter trig-
gered by the prediction of events in the voltage signal. A real-time software system ran the pre-
diction algorithm and triggered the illumination for short periods of time at different phases of the
spike generation when distinct channels were active [see Sec. 2.9 and Fig. 1(e)]. The prediction
of the events was computed by two algorithms, one based on a voltage threshold updated at each
spike peak occurrence and a second one that calculated the voltage area from the hyperpolari-
zation (minimum) to the next hyperpolarization. Based on this prediction, the illumination was
triggered at the specified time before the spike occurrence (see Sec. 2.9 for details on these algo-
rithms). The implementation of these algorithms is available as a module for the real-time, open-
source system RTXI43 in a GitHub repository available at: https://github.com/GNB-UAM/
spike_predictor/.

Figure 6 shows the outcome of the application of this closed-loop protocol, with a stimu-
lation interval lasting 58 ms. The timeline in the figure represents the offset of the illumination,
i.e., the time that corresponds to the end of an illumination interval to the peak of the AP [see an
illustration exemplifying the illumination offset in Fig. 1(f)]. The offsets were in the range from
60 ms before the AP peak up to 80 ms after its occurrence (this wide range is required because of
the natural slow dynamics of Lymnaea stagnalis’s neurons). Each row in the figure represents the
change in relation to the mean of the respective control trials for every illumination range. The
change is represented for the three metrics in which we observed modulation during sustained
illumination—duration, repolarization, and depolarization slopes, respectively. The different
stimulation intervals are grouped by the time offset from the illumination to the peak of the
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AP. The spike shown in the figure is plotted as a reference of the phase of the AP in which the
illumination finished. Recovery and sustained laser references are also represented at the left and
right of each row, in green and red, respectively. For the three metrics here displayed, we can see
how as the illumination offset got closer to the spike, the change was larger, and then recovered,
as the illumination interval covered less the AP, resulting in an arch-shaped trend. Although this
trend is visible for the three parameters characterized, it is manifested to a different degree in each
of them. Note also that there was a temporal shift of the laser effect depending on the instant of
stimulation. The maximum change value and the initialization of the recovery were different for
the depolarization and for the repolarization. The effect on each of these metrics directly
depended on the spike phase when the laser was illuminating the neuron. Thus, this variation
of the laser effect points to a distinct modulation on each channel. The magnitude of the change
under the sustained laser stimulation was larger than that observed at any of the phases addressed

Fig. 6 Study of the laser effect at different stages of the spike waveform with an activity-dependent
stimulation protocol. The panels quantify the change induced by the laser stimulation at distinct
illumination offsets, time intervals from the end of the illumination to the peak of the spike. Top
panel shows a spike waveform from the experiment as a time reference for the offset—time 0
corresponds to the spike peak. Boxplots represent the difference of each metric with respect
to the control. All illumination intervals, pictured in the blue boxes, had the same duration of
58 ms, and spikes were grouped by the illumination offset. Recovery and continuous laser refer-
ence are also shown in green and red boxes at the left and right in the figure, respectively. The
spike metrics selected here were duration, depolarization, and repolarization slopes, second, third,
and fourth rows, respectively.
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with the activity-dependent protocol. This may be caused by a heating delay during the stimu-
lation, although there was no difference between the first and last spikes in the sustained laser, the
opening time of the laser shutter might have been smaller than the heating time necessary for the
neuron to reach the maximum effect.

Figure 7 agglutinates the results from five different closed-loop experiments, all of them
normalized to the mean of the control and sustained laser references for each day, as minimum
and maximum values, respectively. The arch trend is maintained. Again, note that the maximum
effect for each spike metric occurs at a different stage. For the depolarization, the maximum
change was found at the range of −20 to 0 ms, which corresponds to stimulation during the
whole depolarization. A fast rise when the illumination ceased right after the spike can be seen
(i.e., (0–20] range), since it corresponded to stimulation during the depolarization and repola-
rization. In the repolarization, this trend was slightly delayed, reaching the maximum difference
from the control at (20–40]. Such changes were also reproduced in the duration. This points to a
modulatory effect of the laser depending on the stimulation instant. Previous to −20 ms, the laser
was illuminating the neuron while all ionic channels were starting to activate, especially those
involved in the process of depolarization. However, those channels involved in the repolarization
and hyperpolarization were also active earlier than the peak. This is why we can see a difference
in all three metrics even at the early ranges of the AP generation (e.g., −80 ms).

Using the activity-dependent protocol, we were able to assess the neural activity at different
stages of its dynamics in a controlled way. The results from these experiments showed that it is
possible to modify the AP generation in a temporally precise manner and that the effect of the
CW-NIR laser illumination is dependent on the instant of the stimulation. This sets the basis for
assessing the biophysical sources of the effect impacting distinct channels without modifying the
system condition. Also, it is a proof of concept demonstrating the possibility of developing laser
stimulation protocols driven by specific neural activity events in an accessible and freely avail-
able real-time tool.

4 Discussion

4.1 Singularity of the Sustained and Activity-Dependent CW-NIR Stimulation on
Neural Dynamics

Advantages of infrared laser neuromodulation beyond its non-invasive nature include its relative
simplicity regarding stimulation protocol design, good penetration depth, and the possibility to
implement highly selective spatio-temporal stimulation delivery. The effectiveness of future
applications will depend on a clear understanding of the mechanisms of the neural dynamics
modulation.

Fig. 7 Normalized change for grouped values of spike duration, depolarization, and repolarization
slopes at distinct illumination offsets in the activity-dependent stimulation protocol. Each value in
each group was normalized to the mean of its corresponding day controls as a minimum value and
the mean of the continuous laser recordings for each day as the maximum value. The maximum
value for each metric is marked by a black circle.

Garrido-Peña et al.: Modulation of neuronal dynamics. . .

Neurophotonics 024308-19 Apr–Jun 2024 • Vol. 11(2)



Most previous studies used protocols involving high-frequency pulsed lasers under the
assumption that CW laser stimulation paradigms do not provide significant activation or
neuromodulation.11,14,18,24,63,64 Their focus involved heating the neurons to elicit spiking activity.
The laser wavelengths used were mostly in the range of 1800 nm, close to a water absorption
band. Here, we explored a different approach, using a 830 nm CW-NIR laser in sustained and
activity-dependent triggered stimulation instead of pulsed illumination at a fixed frequency. This
setup has a promising future for clinical applications for long-term stimulation and patient-based
treatments.

We assessed the action of sustained and activity-dependent CW-NIR stimulation to unveil
the biophysical sources of the observed modulation of neuronal dynamics. We combined exper-
imental and theoretical methods to analyze this effect. First, we quantified the change in AP
waveform dynamics and on the inter-spike intervals by comparing triplets of long intracellular
recordings of control, laser stimulation, and recovery. We found that sustained exposure to
830 nm CW laser effectively modulated the spike waveform in a reversible manner. We showed
this modulation in two different neuron types, illustrating the generalization of the effect. We
observed a stronger effect on duration and repolarization, followed by a less strong change in the
depolarization slope and a minimal change in amplitude. The neuron dynamics were restored
after stimulation. It is important to highlight that here we presented modulation of tonic sponta-
neous activity, not elicitation of spiking activity as in most previous studies.11,12,17,45 We also
showed a tendency to increase the spiking activity under sustained stimulation, not limited
to a specific time/intensity configuration of laser pulses as it is most frequently done in the
literature.12,14,24,65 Although there are previous studies discussing the inhibitory ability of infra-
red-laser illumination,19,66–68 we did not find evidence of any direct CW-NIR inhibitory effect.
Note that the origin of tonic spiking was affected by the intrinsic properties of the cell and the
synaptic inputs within the circuit, e.g., the illuminated neuron might be triggering inhibitory or
excitatory feedback from other neurons, complicating the analysis. This explains the lack of
excitation in a subpopulation in Fig. 3. Spontaneous neural activity and the nature of the living
preparation used may naturally tend to decrease the firing rate.

4.2 Biophysical Explanation of the CW-NIR Modulation Through Modeling and
Activity-Dependent Stimulation

The results of sustained CW-NIR illumination alone cannot discard previously suggested mech-
anisms, such as cytochrome oxidase22,23 or calcium release from internal storage.29 The fact that
the illumination directly affects the spike waveform but does not always translate into an
increased firing rate may indicate that there is more than a single mechanism involved.
Moreover, our analysis of sustained laser stimulation does not point to a slow change such
as the one expected with the liberation of Ca2þ caused by a mitochondrial modulation,28,29 since
we observed a minimal delay between the illumination onset and the modulatory effect, and the
illumination cessation and the recovery. The short exposure in the activity-dependent experiment
with quick response time also points to a short timescale effect, such as a direct effect on the ionic
channels.

Conductance-based models allowed us to identify the most compatible biophysical explan-
ation to the CW-NIR modulation. We evaluated the capacitance and distinct ionic channels in the
parameter space of three conductance-based models, which would be highly costly experimen-
tally. We concluded that all candidates explored contributed to partial reproduction of the wave-
form modulation, but none was sufficient to explain the full observed effect. Capacitance is one
of the most discussed candidates.17,18,26,69 However, in our modeling study, capacitance alone was
not able to reproduce the modulation. Although the isolated modification of any channel resulted
in a limited explanation of the CW-NIR change, late activation channels such as potassium—
preserving the depolarization-repolarization change relation—or high-activated calcium—
necessary for shoulder-shaped modulation—seem to play a key role in reproducing the observed
effect.

Temperature-dependent simulations validated that the best explanation for the sustained
laser action is a combined modulation of channels, reproducing the observed change for ampli-
tude, duration, and slopes. This supports previous studies’ hypothesis that the photo-thermal
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interaction is key in the NIR laser effect.15,16,25,27,44,45,53 We selectively excluded one channel
from the temperature dependency at a time in the CGC-model, which cannot be performed exper-
imentally. We found ID and INaP channels to be critical for the activity modulation, radically
changing the waveform when altering temperature dependency. Also, canceling the temperature
dependency of IHVA largely changed the amplitude, indicating its importance in preserving the
observed amplitude-repolarization relation during the modulation.

Finally, a closed-loop protocol allowed altering the AP at distinct generation phases. We
presented a new open-source protocol for spike prediction to stimulate at precise times around
the occurrence of the APs. The outcome of the CW-NIR effect at distinct time intervals in relation
to the timing of the spike’s peak highlighted the importance of the stimulus delivery time. By
changing the illumination instant, we shifted the effect on the waveform shape, getting different
maximum metric changes at different stages of the AP generation.

These changes in the waveform open a discussion about the biophysical source of this
effect. With short closed-loop illumination intervals (<60 ms), we observed a controlled modu-
lation of neural activity smaller than the effect during the sustained laser illumination. In the
open-pipette estimation, the maximum change for the steady-state temperature value (1°C to 2°
C) was reached after 1 s and the change after 50 ms was only of 0.1°C. This estimation was
performed on the preparation’s solution, and our laser wavelength is far from the intense water
absorption bands. So temperature change could be higher in the neuronal membrane, as the
specific heat capacity of the water is ∼30% larger than the estimated on the membrane.62 This
would result in a faster temperature increase under heat-inducing stimulation. Also, in the
model, we observed a change similar to the experimental results with ΔT ≥ 5°C. Thus, the
modulation might not be caused by simply heating the surrounding water. In the sustained
stimulation, there might be additional modulation sources such as an effect on the mitochon-
dria as it has been discussed in previous studies,23,28,29 which we cannot discard as adding to the
modulation of ionic channels. However, the effect observed during the activity-dependent
stimulation is unlikely to have other than fast sources, such as ionic-channels. A rigorous char-
acterization of the timescale of the temperature changes induced by the CW-NIR and the asso-
ciated instantaneous voltage dynamics could provide further insight on the fast and slow
biophysical mechanisms underlying the waveform modulation. This is particularly relevant
for the design of fast activity-dependent protocols to produce the observed effect safely with
minimal biophysical perturbation. An accurate characterization of the relation between temper-
ature and neuronal dynamics under CW-NIR stimulation requires novel highly precise proto-
cols to measure the membrane temperature and fast non-periodic electro-optical shutters
controlled by real-time software technology.

4.3 Applications for Research and Clinical Use
The open-source approach described in this paper can be generalized for any animal and prepa-
ration. In addition, our protocol leaves plenty of possibilities for other closed-loop stimulation
methodologies, including clinical interventions. We provided an open-access repository with the
code to reuse our protocols and the module for RTXI, which can be used with any control hard-
ware including fast electro-optical shutters.

Regarding the non-invasive nature of the CW-NIR laser effect, we could not observe any
damage to the cells linked to the stimulation in our experiments. We can hypothesize that stimu-
lation from a laser with higher power could be tolerated by neurons. The recovery of the neural
dynamics after illumination does not mean that the CW-NIR laser stimulation cannot be
employed to address laser-driven plasticity in protocols designed for this goal. We have shown
that sustained CW-NIR laser effectively accelerates neural dynamics in single neurons affecting a
combination of biophysical mechanisms. Also, our results indicate that novel research and clini-
cal applications of the excitability increase of laser stimulation must rely on a careful selection of
the stimulus parameters and the timing of the illumination. In this context, the results of our
pioneer activity-dependent infrared laser stimulation provide a novel approach to adapt the
modulation of neural dynamics to specific applications, particularly in the field of personalized
treatments including stimulation-driven plasticity.
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