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Abstract. A rate-distortion model to measure the impact of near-lossless compression of raw
data, that is, compression with user-defined maximum absolute error, on the information avail-
able once the compressed data have been received and decompressed is proposed. Such a model
requires the original uncompressed raw data and their measured noise variances. Advanced near-
lossless methods are exploited only to measure the entropy of the datasets but are not required for
on-board compression. In substance, the acquired raw data are regarded as a noisy realization of
a noise-free spectral information source. The useful spectral information at the decoder is the
mutual information between the unknown ideal source and the decoded source, which is affected
by both instrument noise and compression-induced distortion. Experiments on simulated noisy
images, in which the noise-free source and the noise realization are exactly known, show the
trend of spectral information versus compression distortion, which in turn is related to the coded
bit rate or equivalently to the compression ratio through the rate-distortion characteristic of the
encoder used on satellite. Preliminary experiments on airborne visible infrared imaging spec-
trometer (AVIRIS) 2006 Yellowstone sequences match the trends of the simulations. The main
conclusion that can be drawn is that the noisier the dataset, the lower the CR that can be tolerated,
in order to save a prefixed amount of spectral information. © The Authors. Published by SPIE under
a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7
.074597]
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1 Introduction

Technological advances in imaging spectrometry have led to acquisition of data that exhibit
extremely high spatial, spectral, and radiometric resolution. As an example, a challenge of sat-
ellite hyperspectral imaging is data compression for dissemination to users and especially for
transmission to a ground station from the orbiting platform. Data compression generally per-
forms a decorrelation of the correlated information source, before entropy coding is carried
out. To meet the quality issues of hyperspectral image analysis, differential pulse code modu-
lation (DPCM) is usually employed for lossless/near-lossless compression, i.e., the decom-
pressed data have a user-defined maximum absolute error, which is zero in the lossless case
and nonzero otherwise.1 DPCM basically consists of a prediction followed by entropy coding
of quantized differences between original and predicted values. A unity quantization step size
allows reversible compression as a limit case. Several variants exist in DPCM prediction
schemes, the most sophisticated being adaptive.2–8

When the hyperspectral imaging instrument is placed on a satellite, data compression is cru-
cial.9–11 To meet the quality issues of hyperspectral imaging, DPCM is usually employed for
either lossless or near-lossless compression. Lossless compression thoroughly preserves the
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information of the data but allows a moderate decrement in transmission rate to be achieved.12,13

The bottleneck of downlink to ground stations may hamper the coverage capabilities of modern
satellite instruments. If strictly lossless techniques are not used, a certain amount of information
of the data will be lost. However, such statistical information may be mostly due to random
fluctuations of the instrumental noise. The rationale that compression-induced distortion may
be less harmful in those bands, in which the noise is higher, constitutes the virtually lossless
paradigm,14 which is accepted by several authors,15 but has never been demonstrated.

This paper faces the problem of quantifying the trade-off between compression ratio (CR)
and decrement in the spectral information content. A rate distortion model is used to quantify the
compression of the noisy version of an ideal information source. The rationale of such a model is
that lossy/near-lossless compression may be regarded as an additional source of noise. The prob-
lem of lossy compression becomes a transcoding problem (cascade of two coding stages inter-
leaved by a decoding stage), which can be formulated as “Given a source that has been
compressed with loss and decompressed, and hence it has already lost part of its information,
what is the relationship between the compression ratio, or bit rate (BR), of the subsequent com-
pression stage and the amount of the information of the original source that is available from the
decompressed bit stream?”

Starting from the observation that the onboard instrument introduces noise on the noise-free
spectral radiance that is acquired and also that irreversible compression introduces a noise that
determines the loss of information between uncompressed and compressed data, this paper gives
evidences, both theoretically and through simulations and compression of raw hyperspectral
data, that the variances of such noises add to each other because the two noise patterns are in-
dependent, thereby increasing the loss of information, but in a way that is predictable and hence
controllable. We guess that this topic is of interest for whoever aims to design a lossy compressor
that is to quantify the compression for any type of data.

The theoretical model is first validated on simulated noisy data. Experiments carried out on
airborne visible infrared imaging spectrometer (AVIRIS) 2006 raw data show that the proposed
approach is practically feasible and yields results that are reasonably in agreement with those
obtained on simulated data. In earlier papers by the authors,16,17 compression was not addressed,
but only noisy acquisition. The problem was approached as an information-theoretic assessment
of the imaging system,18 which means estimating mutual information between two dependent
sources, one unobservable and another observable, from which the noise is preliminarily esti-
mated. The former is the input of the imaging system, and the latter the output. In Refs. 16 and
17, the focus was on estimating the amount of information the source would exhibit if it were
acquired without noise. While the earlier studies motivate progresses in designing instruments
with less and less noise, the present study aims at providing theoretically sound objective criteria
to set quantization step sizes of near-lossless DPCM coders for satellite hyperspectral imagers.

2 Hyperspectral Remote Sensing from Satellite

Since the pioneering mission Hyperion19 in 2001, which opened new possibilities of global Earth
coverage, hyperspectral imaging from satellites has grown in interest, including motivating the
upcoming EnMAP20,21 and PRISMA missions.22

The hyperspectral processing chain represented in Fig.1 consists of three segments: satellite
segment, ground segment, and user segment. The on-board instrument produces data in raw
format. Raw data are digital counts from the analog-to-digital converter (ADC), not yet dimin-
ished by the dark signal that has been averaged in time. Raw data are compressed, with or with-
out loss, and downloaded to the ground station(s), where the data are decompressed, converted to
radiance values, and corrected for instrumental effects (e.g., striping of push-broom sensors).
The calibrated data are geometrically corrected for orbital effects, georeferenced, and possibly
orthorectified. All geometric operations subsequent to calibration have little impact on the qual-
ity of data products. Eventually, data products are stored in archives, generally with highly
redundant formats, e.g., double-precision floating point per pixel radiance value, with spectral
radiance measured in ½W�½m�−2½sr�−1.

When the data are distributed to users, they are usually converted to radiance density values,
which are better accommodated into fixed-point formats (e.g., 16-bit per component, including a
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sign bit). This conversion may lead to a loss of information. The radiance density unit in the
fixed-point format is ½FW�½m�−2½sr�−1½nm�−1, so that any physically attainable value can be
mapped with a 16-bit word-length (15 bitsþ one sign bit, because radiances may take small
negative values after removal of time-averaged dark current from raw data). A finer step
would be 10 times smaller and would require 19 to 20 bits instead of 16. Fixed-point radiance
data are compressed, possibly with loss, and delivered to users. After decompression, in a typical
user application, solar irradiance and atmospheric transmittance are corrected by users to pro-
duce reflectance spectra that may be matched to library spectra in order to recognize and classify
materials. At this step, it may be useful to investigate the effects of a lossy compression of radi-
ance data in terms of changes in spectral angle with respect to reflectance spectra obtained from
uncompressed radiance data.23,24 A more general approach that is pursued in this work is inves-
tigating the loss in spectral information due to an irreversible compression.25 Such a study is
complicated by the fact that the available data are a noisy realization of an unavailable ideal
spectral information source that is assumed to be noise-free.26

3 Signal-Dependent Noise Modeling for Imaging Spectrometers

A generalized signal-dependent noise model has been proposed to deal with several different
acquisition systems. Many types of noise can be described by using the following parametric
model:27

gðm; nÞ ¼ fðm; nÞ þ fðm; nÞγ · uðm; nÞ þ wðm; nÞ ¼ fðm; nÞ þ vðm; nÞ þ wðm; nÞ; (1)

where ðm; nÞ is the pixel location, gðm; nÞ is the observed noisy image, fðm; nÞ is the noise-free
image, modeled as a nonstationary correlated random process, uðm; nÞ is a stationary, zero-mean
uncorrelated random process independent of fðm; nÞ with variance σ2u, and wðm; nÞ is electron-
ics noise (zero-mean white and Gaussian, with variance σ2w). For a great variety of images, this
model has been proven to hold for values of the parameter γ such that jγj ≤ 1. The additive term
v ¼ fγ · u is the generalized signal-dependent noise. Since f is generally nonstationary, the
noise v will be nonstationary as well. The term w is the signal-independent noise component
and is assumed to be Gaussian distributed.

Equation (1) applies also to images produced by optoelectronic devices, such as charge-
coupled device cameras, multispectral scanners, and imaging spectrometers. In that case, the
exponent γ is equal to 0.5. The term

ffiffiffi
f

p
u stems from the Poisson-distributed number of photons

captured by each pixel and is therefore denoted as photon noise.28

Let us rewrite Eq. (1) with γ ¼ 0.5:

gðm; nÞ ¼ fðm; nÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðm; nÞ

p
· uðm; nÞ þ wðm; nÞ: (2)

Equation (2) represents the electrical signal resulting from the photon conversion and from
the dark current. The mean dark current has been preliminarily subtracted to yield gðm; nÞ.
However, its statistical fluctuations around the mean constitute most of the zero-mean electronic
noise wðm; nÞ. The term ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðm; nÞp
· uðm; nÞ is the photon noise, whose mean is zero and whose

Fig. 1 Flow chart of satellite hyperspectral processing chain comprising satellite segment, ground
segment, and user segment. Data are compressed to pass from one segment to another and
decompressed before the subsequent processing.
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variance is proportional to E½fðm; nÞ�. It represents a statistical fluctuation of the photon signal
around its noise-free value, fðm; nÞ, due to the granularity of photons originating electric charge.

If the variance of Eq. (2) is calculated on homogeneous pixels, in which σ2fðm; nÞ ¼ 0, by
definition, thanks to the independence of f, u, and w and the fact that both u and w have null
mean and are stationary, we can write it as

σ2gðm; nÞ ¼ σ2u · μfðm; nÞ þ σ2w; (3)

in which μfðm; nÞ ≜ E½fðm; nÞ� is the nonstationary mean of f. The term μfðm; nÞ equals
μgðm; nÞ, from Eq. (2). Equation (3) represents a straight line in the plane ðx; yÞ ¼
ðμf; σ2gÞ ¼ ðμg; σ2gÞ, whose slope and intercept are equal to σ2u and σ2w, respectively. The inter-
pretation of Eq. (3) is that on statistically homogeneous pixels, the theoretical nonstationary
ensemble statistics (mean and variance) of the observed noisy image gðm; nÞ lie upon a straight
line. In practice, theoretical expectations are approximated with local averages. Hence, homo-
geneous pixels in the scene appear in the variance-versus-mean plane to be clustered along the
line y ¼ mxþ y0, in which m ¼ σ2u and y0 ¼ σ2w. Figure 2 shows an example of scatterplot.

The problem of measuring the two parameters of the optoelectronics noise model [Eq. (2)]
has been stated to be equivalent to fitting a regression line to the scatterplot containing homo-
geneous pixels, or at least the most homogeneous pixels in the scene. The problem now is how to
detect the (most) statistically homogeneous pixels in an imaged scene.29,30

In practical applications, the average signal-to-noise ratio (SNR) is used:

SNRdB ¼ 10 log10

�
f̄2

f̄σ2u þ σ2w

�
¼ 10 log10

�
ḡ2

ḡσ2u þ σ2w
− 1

�
; (4)

where ḡ and g2 are obtained by averaging the observed noisy image and its square, respectively,
the noise being zero-mean. Either σ2u or σ2w may be set equal to zero, whenever the imagery is
known to be dominated by electronic or photon noise, respectively.

4 Information-Theoretic Problem Statement

Let A denote the unavailable source ideally obtained by means of an acquisition with a noiseless
device. Quantization of the data produced by the on-board instrument is set on the basis of instru-
ment noise and downlink constraints. For satellite imaging spectrometers, it is usually 12 to 14
bits per pixel per band (bpppb). Let B denote the noisy acquired source, e.g., quantized with 12
bpppb. The unavailable noise-free source A is assumed to be quantized with 12 bpppb as well. If
the source B is lossy compressed, a new source C is obtained by decompressing the compressed
bit stream at the ground station. If C is converted to radiance values, band scaling gains and
destriping coefficients are applied for each wavelength and the outcome is quantized to radiance
density units. If the radiance source is denoted by D, then radiance values are the result of
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Fig. 2 Calculation of slope and intercept of mixed photon/electronic noise model, with regression
line superimposed.
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reversible deterministic operations (calibration and destriping) which produce real-valued
data, followed by quantization to an integer number of radiance units. If such an operation yields
a one-to-one mapping between raw data and radiance values, then the radiance source
D coincides with C. A simplified model of the rate distortion chain that does not include
the loss possibly introduced by conversion of decompressed raw data to radiance units is dis-
played in Fig. 3.

The problem can be stated in terms of rate-distortion theory31 and constitutes what is denoted
as information-theoretic assessment.16–18 When the source A is corrupted by the instrumental
noise to yield the observed source, B, its entropy HðAÞ is partly lost. HðAjBÞ is the part of
HðAÞ that gets lost after noise addition, if A is no longer available and only the noisy source
B is known. HðAjBÞ is usually referred to as equivocation. The mutual information between A
and B, IðA;BÞ, which is the part of the entropy of A that is contained in B [graphically, the
intersection of the spheres HðAÞ and HðBÞ], is calculated as

IðA;BÞ ¼ HðAÞ −HðAjBÞ ¼ HðAÞ þHðBÞ −HðA; BÞ ¼ HðBÞ −HðBjAÞ ¼ IðB;AÞ; (5)

in which the joint entropy HðA; BÞ is graphically denoted by the union of the spheres HðAÞ and
HðBÞ. The addition of noise causes the overall entropy,HðA;BÞ, to increase because the entropy
of the noise, HðBjAÞ, also denoted as irrelevance, is added to that of A, i.e., to HðAÞ. The term
irrelevance indicates thatHðBjAÞ is not relevant to A, which is the source of spectral information,
but is a measure of the information due to the uncertainty of the random noise introduced by the
instrument.

The term HðAÞ is generally unknown, but the entropy of B, HðBÞ, may be estimated by
compressing the available observed source (raw data) without any loss, e.g., by means of an
advanced DPCM compressor. Once the noise of B has been modeled and measured, the irrel-
evance HðBjAÞ can be estimated as the entropy of the noise realization, which is unrelated to the
spectral information, HðAÞ. IðA;BÞ can be calculated by simply decrementing HðBÞ by the
irrelevance HðBjAÞ. Finding IðA;BÞ is the object of the information-theoretic assessment of
an acquisition system,17 because IðA;BÞ represents the mean amount of useful “spectral” infor-
mation coming from A that is contained in B and, if compression is strictly lossless, also in C,
because in that case C ¼ B.

Now, let us consider the lossy case, i.e., C ≠ B. The lossy compression BR achieved by an
optimized coder will approximate the mutual information between B and C, IðB;CÞ. It is note-
worthy that IðA;BÞ ≥ IðA;CÞ, the equality holding for reversible compression only. The
term IðA;CÞ may be estimated from the noise model and measurements of B and from the
model of the noise introduced by the irreversible compression process, assumed to be
Gaussian for lossy compression or uniformly distributed for near-lossless compression.
Eventually, HðAÞ, whenever of interest, can be estimated by following the procedure described
in Refs. 16 and 17.

Fig. 3 Rate-distortion representation for information-theoretic assessment of lossy compression
of the noisy version of an information source.
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5 Simulation Results

5.1 Synthetic Data

The proposed model has been first assessed on simulated noisy data. A test remote sensing image
has been derived from a very high-resolution aerial photograph [pixel spacing 62.5 cm,
8192 × 8192 pixels, 8 bits per pixel (bpp)] by averaging 16 × 16 blocks of pixels. The final
pixel size is approximately 10 m. The averaging process abates the acquisition noise by
over 20 dB, in such a way that the resulting image (512 × 512 in size, 8 bpp) may be assumed
as noise-free. Additive white Gaussian noise, spatially uncorrelated having σw ¼ 2 and σw ¼ 5,
has been superimposed on the test image to yield two noisy versions, having SNR [Eq. (4)] equal
to 29.41 and 21.45 dB, respectively. Noisy pixel values are rounded to integers and clipped
between 0 and 255. The original test image and its noisy version with σw ¼ 5 are portrayed
in Fig. 4.

The optimized two-dimensional compression method is fuzzy matching pursuits encoder
(FMP),32 which employs a parametrically tunable entropy coding33 and approaches the ultimate
compression more and more closely as the computational cost increases. The BR of the noise-
free image, by definition equal to the entropy of the noise-free source, isHðAÞ ¼ 4.97 bpp. As it
appears from Fig. 4, the test image is highly textured and thus hard to compress. For each of the
two noisy versions, the following amounts have been calculated varying with the allowed maxi-
mum absolute distortion (MAD), ϵ:

1. IðB;CÞ by compressing the noisy image B, with ϵ ¼ 0; 1; · · · ;
2. HðCÞ by reversibly compressing the image C, obtained by decompressing the bit stream

at point 1, for ϵ ¼ 0; 1; · · · ;
3. HðCjAÞ by taking the pixel-by-pixel difference between B and C (compression noise),

adding it to the synthetic noise realization quantized to integer (instrument noise), and
reversibly compressing the outcome, for ϵ ¼ 0; 1; · · · ;

4. IðA;CÞ ¼ HðCÞ −HðCjAÞ, for ϵ ¼ 0; 1; · · · .

All the information parameters defining the model are plotted in Fig. 5 for the two noisy
image versions. By watching the lossless case (ϵ ¼ 0), we can notice that the presence of
the noise makes the original information HðAÞ (almost 5 bpp) produce a mutual information
IðA;BÞ slightly higher than 2 bpp for σw ¼ 2 and 1 bpp for σw ¼ 5. In substance, the blue
plot [IðB;CÞ] represents what we pay in terms of compression BR, and the red plot
[IðA;CÞ] represents what we get in terms of useful (spectral) information. It is noteworthy
that IðA;CÞ vanishes for ϵ ¼ 6 in the less noisy version of Fig. 5(a) and for ϵ ¼ 4 in the noisier
version of Fig. 5(b). It seems that the compression BR is first allocated to compress the noise

Fig. 4 Test images for information-theoretic assessment: (a) Noise-free original. (b) Noisy version
with additive white Gaussian noise having σw ¼ 5.
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with MAD equal to ϵ. Only if such a BR is high enough is the leftover part devoted to the spectral
information.

5.2 AVIRIS 2006 Data

A set of calibrated and raw images acquired in 2006 by AVIRIS has been provided by NASA/Jet
Propulsion Laboratory to the Consultative Committee for Space Data Systems and is available
for compression experiments. This dataset consists of five 16-bit calibrated and geometrically
corrected images and the corresponding 16-bit raw images, not yet diminished by the dark sig-
nal, acquired over Yellowstone, Wyoming. Each image is composed of 224 bands and each scene
(the scene numbers are 0, 3, 10, 11, 18) has 512 lines.7 All data have been clipped to 14 bits (a
negligible percentage of outliers has been affected by clipping) and remapped to 12 bits to sim-
ulate a space-borne instrument, e.g., Hyperion. Figure 6 portrays a sample band (#20, wave-
length between green and red).

The operational steps for implementing the proposed rate-distortion model for quality assess-
ment of on-board near-lossless compression are the following:

1. Take a raw (uncalibrated) hyperspectral sequence.
2. Measure its noise variance (both signal-independent and signal-dependent terms) for

each spectral band.
3. Extract the spatial noise pattern of each band, by applying a denoising filter, e.g., Ref. 34,

and take the difference between original and denoised band.
4. Compress the sequence with the desired loss (e.g., ϵ ¼ 0; 1; · · · ) by means of an opti-

mized coder in order to estimate IðB;CÞ [for ϵ ¼ 0, IðB;CÞ ¼ HðBÞ].
5. Decompress the compressed sequence and compress the outcome without loss, to obtain

HðCÞ, for ϵ ¼ 1; 2; · · · [for ϵ ¼ 0, HðCÞ ¼ HðBÞ].
6. Take the difference between original and decompressed band, i.e., the pattern of com-

pression-induced pixel error values, for ϵ ¼ 1; 2; · · · .
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Fig. 5 Entropy and mutual information parameters estimated from compression bit rates, simu-
lated noise realization, and true map of compression-induced errors: (a) Noisy version with
σw ¼ 2. (b) Noisy version with σw ¼ 5.

Fig. 6 Sample band (#20) of AVIRIS 2006 Yellowstone scene 10.
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7. Add the two patterns of instrumental noise and of compression errors to yield the overall
error map, for ϵ ¼ 1; 2; · · · [for ϵ ¼ 0, the map is equal to the error pattern at step 3].

8. Reversibly compress the overall error map to estimate HðCjAÞ, for ϵ ¼ 1; 2; · · · [for
ϵ ¼ 0, HðCjAÞ ¼ HðBjAÞ].

9. Calculate IðA;CÞ as IðA;CÞ ¼ HðCÞ −HðCjAÞ, for ϵ ¼ 0; 1; · · · .

The noise standard deviation has been measured for Yellowstone 10 (clipped above
14 bpppb and remapped to 12 bpppb) by using the algorithm described in Ref. 35 and is reported
in Fig. 7(a). Apart from marked increments at the edges of the spectral interval due to loss of
sensibility of instruments, the noise standard deviation is approximately constant and always
>1.2. The average is ∼1.7. However, only the electronic, or dark, component of the noise is
reliably estimated because of the presence of the dark signal, which is usually removed on
ground. The photon component is undetermined because bright areas do not produce appreciable
clusters in the variance-to-mean scatterplot. The photon noise variance is expected to be lower
than the electronic one for whisk-broom instruments, as AVIRIS is, but not for push-broom ones,
at least in visible-near infrared (V-NIR) wavelengths.29,30

Figure 7(b) reports lossless compression BRs of AVIRIS 2006 Yellowstone raw scene 10
(clipped and remapped, as above). The compression algorithm is spectral-relaxation labeled pre-
dictor (S-RLP),6 which is an MAD-bounded, i.e., near-lossless algorithm, providing the ultimate
compression attainable for hyperspectral data. In a possible on-board implementation, MMSE
Adaptive-DPCM (MA-DPCM),36 a simplified version of S-RLP, would be preferable. However,
S-RLP is used only to measure the entropy of the various sources and is not required for a prac-
tical implementation.

Let ϵ denote the maximum absolute reconstruction error, also known as MAD or peak error.
The maximum quantization step size Δ yielding MAD equal to ϵ is Δ ¼ 2ϵþ 1 and a quadratic
distortion

D ¼ Δ2 − 1

12
¼ ð2ϵþ 1Þ2 − 1

12
¼ 4ϵ2 þ 4ϵ

12
¼ ϵðϵþ 1Þ

3
; (6)

in which the term ðΔ2 − 1Þ∕12 replaces Δ2∕12 whenever real values that have been previously
quantized to integers are requantized with an integer step size Δ > 1.

Figure 8 reports information parameters for the whole sequence of Yellowstone 10.
Absorption bands, in which the model of noisy information source does not hold because
the spectral signal is practically zero and only noise and dark signals are present, are removed
before averaging the information measures over the spectral bands (all bands are compressed).

When ϵ ¼ 0, C ¼ B, hence IðB;CÞ ¼ IðB;BÞ ¼ HðBÞ. IðB;CÞ is monotonically decreasing
with the mean quadratic distortion, or better with the quantization step size Δ ¼ ð2ϵþ 1Þ,
approximately as IðB;CÞ ¼ HðBÞ − log2ðΔÞ. HðCÞ depends on how much C has been
smoothed by the lossy compression of B, or in other words on how the compression algorithm
works. The term HðCjAÞ represents the entropy of the sum of the two events, both independent
of A, that are acquisition noise and compression errors, which have been verified to be inde-
pendent of one another for DPCM compression in the tests on simulated data. Given the BRs
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Fig. 7 AVIRIS 2006 Yellowstone scene 10: (a) Measured noise standard deviation (thermal/elec-
tronic component only). (b) Bit rate, in bits per pixel per band (bpppb), produced by the S-RLP
codec.

Aiazzi et al.: Information-theoretic assessment of on-board near-lossless compression. . .

Journal of Applied Remote Sensing 074597-8 Vol. 7, 2013



produced by the optimized encoder S-RLP, CRs can be calculated relative to the uncompressed
wordlength of 12 bits. The CR versus MAD characteristic of the actual on-board DPCM coder
will be likely to yield a slightly lower CR.

The analysis reported suffers from a main shortcoming. Photon noise has been disregarded
since its estimation is difficult, also because of the presence of the dark signal, which is not to be
considered in the model [Eq. (2)]. Actually the SNR of AVIRIS 2006 data is extremely high
(over 50 dB, in average), which means that the noise is so weak that it can be reliably estimated
only on the lake. Since the average level of the lake is significantly lower than the average level
of the whole band, a non-negligible fraction of the photon noise term is neglected. However, the
error on the overall noise variance estimation is expected to be <10% by defect. In this case, the
mutual information IðA;CÞ would be overestimated by <0.05 bpppb.

In a practical application scenario, suppose you cannot afford onboard lossless compression
and you have to use lossy compression. For a sample hyperspectral raw image, the method pro-
vides the amount of useful spectral information IðA;BÞ, that is, information pertaining to the
noise-free source and not the acquired noisy source, varying with the amount of distortion intro-
duced by compression on the acquired noisy source. On the other side, distortion can be related
to CR or coding BR, through the rate distortion (RD) characteristic of the coder used in the actual
implementation, i.e., on-board. So, the coder can be designed to preserve a specified amount of
information and not to yield a specified amount of distortion, as happens most usually. The
proposed method can be applied to existing systems, provided that they use DPCM with quan-
tization step sizes that can be uploaded from ground and allow lossless compression to be per-
formed as a limit case. The procedure is summarized by the following steps:

1. Download a sample lossless scene.
2. Measure its noise, or use laboratory noise measurements of the instrument.
3. Run the model on the lossless scene.
4. Find the maximum absolute error, and hence the quantization step size, that yields the

desired amount of IðA;CÞ.
5. Upload the step size to the satellite system.
6. Use such step size to produce compressed data having the desired amount of spectral

information.

6 Concluding Remarks

This study has proposed a rate-distortion model to quantify the loss of useful spectral informa-
tion that gets lost after near-lossless compression, and its experimental setup, such that the infor-
mation-theoretical model may become a computational model. The key ingredient of this recipe
is an advanced hyperspectral image coder providing the ultimate compression regardless of time
and computation constraints (such a coder is not necessary to perform on-board compression, but
only for simulations). Noise estimation is crucial because of the extremely low noisiness of
hyperspectral data that are also richly textured. Noise filtering is also required to extract
noise patterns. The drawback is that denoising filters generally work properly if they know rea-
sonably exact values of the parameters of the noise model they have been designed for.
Preliminary results on AVIRIS 2006 Yellowstone 10 sequence are encouraging, although
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absorption/anomalous bands are likely to contradict the main assumptions underlying the pro-
posed model and should not be considered. The main conclusion that can be drawn is that the
noisier the data, the lower the CR that can be achieved in order to retain a prefixed amount of
spectral information. This happens because the noise-free data can tolerate up to a certain amount
of cumulative noise, i.e., instrument noise plus compression-induced noise. Thus, if instrument
noise is higher, compression noise shall be lower, and vice versa.
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