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Abstract. The Baltic Sea is an optically very complex study object for watercolor remote
sensing because of the high quantity of colored dissolved organic matter, two optically distinct
phytoplankton seasons, high variability in concentrations of optically active substances, and low
sun angles. Despite this, there are numerous remote sensing and modeled chlorophyll-a (Chl-a)
products publicly available for the Baltic Sea. Sixteen openly accessible Chl-a products were
tested with 267 in situ Chl-a measurements that were carried out in Estonian marine waters
during 2016 to 2021. All modeled products and about half of the remote sensing products failed
to produce reliable results. The best-performing remote sensing Chl-a product was Case2/
Regional CoastColour produced from Sentinel-3 ocean and land color imager (OLCI) reflec-
tance with R2 ¼ 0.55, root mean squared error ðRMSEÞ ¼ 4.5 mgm−3, mean absolute percent-
age error (MAPE) = 74%. In addition, eight different band ratio algorithms were applied on
Sentinel-3 OLCI and Sentinel-2 multispectral instrument data. The best remote sensing band
ratio algorithm was derived from top-of-atmosphere reflectance of Sentinel-3 data using
665, 709, and 754 nm bands (R2 ¼ 0.67, RMSE ¼ 3.9 mgm−3, and MAPE = 63%). Our results
show good suitability of Sentinel-3 for Chl-a retrieval. However, the high uncertainties suggest
for the further product development and validation needs.© The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.16.046516]
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1 Introduction

Chlorophyll-a (Chl-a) is the dominant pigment of phytoplankton, and its concentration is often
used as a proxy for phytoplankton biomass making Chl-a one of the most studied indicators of
water quality.1,2 The wide ecological importance of phytoplankton also causes the extensive need
to get accurate Chl-a data at different temporal and spatial scales. Chl-a is an optically active
component, i.e., it affects water reflectance (color). Consequently, it can be estimated by remote
sensing.

The European Space Agency opened a new era in water remote sensing by launching twin
satellites Sentinel-3A and -3B (Sentinel-3) with Ocean and Land Color Imager (OLCI) sensor in
2016 and 2018, respectively. Previous watercolor sensors, such as the medium resolution im-
aging spectrometer (MERIS) on Environmental Satellite (ENVISAT), were one-off scientific
missions while Sentinels Program guarantees now availability of data for decades to come
allowing thus monitoring of water quality. Sentinel-3 is specially designed for marine monitoring
and has 21 well placed spectral bands for that purpose with medium spatial resolution (300-m
pixel). It provides global coverage (at the equator) every two days.3 At the latitude of the Baltic
Sea two Sentinel-3 satellites provide two images per day.

Two identical multispectral instruments (MSIs) onboard the Sentinel-2A and -2B (Sentinel-
2) were launched in 2015 and 2017, respectively. Sentinel-2 was designed for land monitoring
but has proved to be suitable for estimating water quality as well.4 It has 13 spectral bands, which
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offer high resolution optical imagery at 10, 20, and 60 m spatial resolution, depending on the
band. This mission provides global coverage every 5 days.5 At the latitude of the Baltic Sea
a Sentinel-2 images can be acquired every 2 to 3 days.

The Baltic Sea is the world’s largest inland brackish water sea, where the combination of
a large catchment area with a high rate of human activities and a small volume with limited
exchange with the Atlantic Ocean makes it especially sensitive to eutrophication.6 Also, the
Baltic Sea is notorious for its cyanobacterial blooms,7–10 which lead to many serious ecological
problems. Concentration of Chl-a is spatially and temporally very variable in the Baltic Sea.
Moreover, unlike most of phytoplankton, cyanobacteria can move in the water column and the
vertical distribution of cyanobacteria has significant impact on the remote sensing signal.11 There
are two biologically and optically distinct phytoplankton seasons separated by a relatively clear
water period.12 Diatoms dominate the spring blooms and cyanobacteria dominate summer/late
summer/early autumn blooms.

Estonian marine waters include different regions of the Baltic Sea: the Gulf of Finland, the
Gulf of Riga, and the northern Baltic Proper. Those areas belong to the most eutrophicated parts
of the Baltic Sea.13 Furthermore, high spatial and temporal variation of optical properties of
water (the color and transparency) is characteristic for these areas making them an extremely
complex study object for ocean color remote sensing. In addition to great variations in Chl-a
concentrations, a high amount of colored dissolved organic matter (CDOM) received from the
catchment area of the Baltic Sea makes the water dark, lowering the water leaving signal and
requiring highly sensitive remote sensing sensors and very accurate atmospheric correction.4

Highly variable concentration of total suspended matter (TSM) is also characteristic for coastal
waters in Eastern and Southern parts of the Baltic Sea besides Chl-a and CDOM. This is caused
by shallow and sandy coastal areas where wind causes resuspension of sediments. Finally, we
must not forget that the sun angle is low during most of the year in the Baltic Sea area lowering
the water leaving signal detectable by remote sensing sensors and increasing sun and sky glint
which is noise if we want to map water quality parameters such as Chl-a. More than 90% of
signal measured by satellites above water bodies originates from atmosphere not from water.
Therefore, it is obvious that even a small error in atmospheric correction of the dark water
imagery may be as large as the whole body of water leaving signal.

Despite this, Chl-a has been estimated with remote sensing techniques in the Baltic Sea
region numerous times before.4,8,9,14–25 In general, these algorithms can provide high accuracy
at certain times and areas, but usually, the algorithm performance is not adequate in other
conditions. Ligi et al.23 and Simis et al.26 have shown that optical differences between the two
different bloom seasons are so high that seasonal remote sensing algorithms may be needed to
achieve higher accuracy in Chl-a mapping. Regardless of the issues, and even if the statistical
error of the Chl-a products is as high as 100% to 200%, remote sensing has proven to be a
valuable method for monitoring water quality, due to its advantage in temporal and especially
spatial coverage compared with in situ methods.27,28

There are numerous remote sensing and modeled Chl-a products for the Baltic Sea which are
publicly available and can be freely used by all. Their users belong to very different interest
groups from the policymakers (the European Commission, HELCOM, local authorities etc.)
and researchers to the common public. Nevertheless, it is extremely challenging for the end-users
to decide which product to choose. Therefore, the objective of this study was to assess the
performance of the freely available remote sensing and modeled Chl-a products of the Baltic
Sea using in situ observations from Estonian marine waters. Additionally, the performance of
different well known band ratio algorithms (BR) was tested.

2 Materials and Methods

2.1 In Situ Data

The in situ Chl-a data were collected from Estonian coastal and territorial waters during ice-free
periods in 2016 and 2018–2021 (Fig. 1). The total number of sampling stations was 267. Water
samples were collected from the surface layer (between the surface and 0.5-m depth) and stored
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in dark and cold for <10 h before filtering. Depending on particle concentration in the water, 0.5
to 1 l was filtered through two parallel Whatman glass microfiber filters (GF/F pore size 0.7 μm).
Phytoplankton pigments were extracted from the filters with 96% ethanol at 20°C for 24 h and
optical density was measured with PERKIN ELMER Lambda 35 UV/VIS spectrophotometer.
Later, formula by Jeffrey and Humphrey29 was applied and mean of the two parallels was taken
to calculate the Chl-a values.

2.2 Remote Sensing and Modeled Chlorophyll-a Products

Almost all (15 out of the 16) currently available Chl-a products for the Baltic Sea used in this
study are partly or fully based on the data from the Copernicus program (European Union’s
Earth Observation Programme)30 collected with Sentinel-3 OLCI and with the MSI on-board
Sentinel-2. Only eco-hydrodynamic model SatBaltyk uses data of moderate resolution imaging
spectroradiometer (MODIS) and EcoSat.31

Different freely available Chl-a remote sensing (13) and modeled (3) products were gathered,
whereas only the same-day match-ups were used. From 13 different remote sensing products,
five were used in both, high and low spatial resolutions (HR and LR, accordingly), so altogether
21 different Chl-a products were used in this study.

Different atmospheric correction processors [Case-2 Regional/CoastColor (C2RCC),
Case2R/CoastColor-Extreme (C2X), and Case2R/CoastColor COMPLEX32 and POLYMER33]
were used in ESTHub Processing Platform34 to derive some of the Chl-a products (Table 1:
products 1 and 2, and 9–12). Some Chl-a products were produced by EUMETSATor were based
on reflectances produced by EUMETSAT (OLCI WFR Level 2)44 (Table 1: products 3–6). And
some Level 3 and Level 4 (modeled) Chl-a products were produced by the Copernicus Marine
Service30 (Table 1: products 7 and 8, 13, and 15 and 16). The difference between the Level 3 and
4 is that in the Level 4 data the missing values of the daily Chl-a from remote sensing estimates
are optimally interpolated, therefore we consider those as modeled products (Table 1: products
14–16). One Chl-a product was downloaded from SatBałtyk portal31 (Table 1: products 14).
Detailed list with all the match-up selection criteria of all the 21 Chl-a products is brought out
in Table 1.

Fig. 1 The locations of the sampling stations.
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Table 1 Detailed list and description of used remote sensing and modeled products of Chl-a.

Product
name

Satellite
data used Resolution Description

1 C2RCC_S3 Sentinel-3
OLCI Level 1

1 × 1; 300 m C2RCC atmospheric correction and pixel
identification tool (Idepix v1.5)32; pixels with
following raised flags removed from the study:
invalid, sun_glint_risk, cloud_risk, cloud, and
cloud_shadow.

2 POLYMER_
S3

Sentinel-3
OLCI Level 1

1 × 1; 300 m POLYMER L2 v.4.12 atmospheric correction33;
pixels with bitmask 0 used in this study.

3 ST_S3 Sentinel-3
OLCI Level 2

1 × 1; 300 m EUMETSAT product (OLCI WFR) NN: Neural
network-based approach35 for turbid waters; pixels
with following raised flags removed from the study:
cloud, OCNN_fail, AC_fail, highglint, adjac;

4 OC4ME_S3 Sentinel-3
OLCI Level 2

1 × 1; 300 m EUMETSAT product (OLCI WFR) OC4ME:
maximum band ratio semi-analytical algorithm36

for clear waters; pixels with following raised flags
removed from the study: cloud, OC4ME_fail,
AC_fail, highglint, adjac.

5 MCI_S3 Sentinel-3
OLCI Level 3

1 × 1; 300 m MCI37 used to derive Chl-a with linear regression
(Chl-a = 7.94 * MCI + 10.05, negative results
removed) on OLCI WFR reflectances; pixels with
following raised flags removed from the study:
invalid, sun_glint_risk, and bright.

6 FLH_S3 Sentinel-3
OLCI Level 3

1 × 1; 300 m FLH v7.0.038 used to derive Chl-a with linear
regression (Chl-a = 1235.07 * FLH + 6.52) OLCI
OLCI WFR reflectances; pixels with following
raised flags removed from the study: invalid,
cloud, cloud_ambiguous, cloud_margin, highglint,
adjac, and AC_fail.

7 BalAlg_S3 Sentinel-3
OLCI Level 3

1 × 1; 1000 m Copernicus Marine Service product
OCEANCOLOUR_BAL_CHL_L3_REP_
OBSERVATIONS_009_080: BalAlg is an updated
version of multilayer perception neural network.39

8a ONNS_
S3_HR

Sentinel-3
OLCI Level 3

1 × 1; 300 m Copernicus Marine Service product
OCEANCOLOUR_BAL_CHL_L3_NRT_
OBSERVATIONS_009_049: OLCI Neural
Network Swarm (ONNS) v0.9.40

8b ONNS_
S3_LR

Sentinel-3
OLCI Level 3

1 × 1; 1000 m Copernicus Marine Service product
OCEANCOLOUR_BAL_CHL_L3_NRT_
OBSERVATIONS_009_049: OLCI Neural
Network Swarm (ONNS) v0.9.40

9a C2RCC_
S2_HR

Sentinel-2
MSI Level 1

3 × 3 mean;
20 m

C2RCC atmospheric correction and Idepix v1.532;
pixels with following raised flags removed from the
study: cloud_risk, cloud_shadow, and clear_water
(if not raised). In case of two tiles overlapping,
the better matching concentration was considered.

9b C2RCC_
S2_LR

Sentinel-2
MSI Level 1

3 × 3 mean;
60 m

C2RCC atmospheric correction and Idepix v1.532;
pixels with following raised flags removed from the
study: cloud_risk, cloud_shadow, and clear_water
(if not raised). In case of two tiles overlapping,
the better matching concentration was considered.

10a C2X_S2_HR Sentinel-2
MSI Level 1

3 × 3 mean;
20 m

Case2R/ C2X atmospheric correction and Idepix
v1.532; pixels with following raised flags removed
from the study: cloud_risk, cloud_shadow, and
clear_water (if not raised). In case of two tiles
overlapping, the better matching concentration
was considered.
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In addition to the products that were listed in the Table 1, we tested different BR (Table 2) on
top-of-atmosphere (TOA) and bottom-of-atmosphere (BOA) reflectances on both, Sentinel-3
OLCI and Sentinel-2 MSI data. The selected band ratios are based on the best band ratios of
the previous studies in similar region.4,23,45 For Sentinel-3 OLCI C2RCC atmospheric correction
and for Sentinel-2 MSI both POLYMER and C2X atmospheric correction processors were used.

Although, we tested all the BR listed in Table 2, here we presented the details only for the
best results for each satellite sensor. The best BR for Sentinel-3 OLCI (BR8_S3) (1 × 1 300 m
resolution match-up pixels) is from TOA reflectances (using bands on 754, 709, and 665 nm).
BR8_S3 Chl-a was derived using Eq. (1):

Table 1 (Continued).

Product
name

Satellite
data used Resolution Description

10b C2X_S2_LR Sentinel-2
MSI Level 1

3 × 3 mean;
60 m

Case2R/ C2X atmospheric correction and Idepix
v1.532; pixels with following raised flags removed
from the study: cloud_risk, cloud_shadow, and
clear_water (if not raised). In case of two tiles
overlapping, the better matching concentration
was considered.

11a COMPLEX_
S2_HR

Sentinel-2
MSI Level 1

3 × 3 mean;
20 m

Case2R/CoastColour COMPLEX v1.1 atmospheric
correction32; pixels with following raised flags
removed from the study: cloud_risk, agelb_at_max,
adet_at_min, and valid_PE (if not raised).
In case of two tiles overlapping, the better
matching concentration was considered.

11b COMPLEX_
S2_LR

Sentinel-2
MSI Level 1

3 × 3 mean;
60 m

Case2R/CoastColour COMPLEX v1.1 atmospheric
correction32; pixels with following raised flags
removed from the study: cloud_risk, agelb_at_max,
adet_at_min, and valid_PE (if not raised).
In case of two tiles overlapping, the better
matching concentration was considered.

12a POLYMER_
S2_HR

Sentinel-2
MSI Level 1

3 × 3 mean;
20 m

POLYMER L2 v.4.12 atmospheric correction33;
pixels with bitmask 0 used in this study.
In case of two tiles overlapping, the better
matching concentration was considered.

12b POLYMER_
S2_LR

Sentinel-2
MSI Level 1

3 × 3 mean;
60 m

POLYMER L2 v.4.12 atmospheric correction33;
pixels with bitmask 0 used in this study.
In case of two tiles overlapping, the better
matching concentration was considered.

13 HR-OC_S2 Sentinel-2
MSI Level 3

1 × 1; 60 m Copernicus Marine Service product
OCEANCOLOUR_BAL_BGC_HR_L3_NRT_009_
202: The High-Resolution Ocean Colour (HR-OC)
Consortium contains pixel identification (IdePix),
atmospheric correction, in-water processing and
merging and the Chl-a is derived by following
the approach of Lavigne et al.41

14 SatBaltyk_
model

MODIS,
EcoSat Level 4

1 × 1; 1000 m SatBałtyk portal product SatBaltyk: EcoSat
eco-hydrodynamic model SatBaltyk using MODIS
and EcoSat data.31

15 ERGOM_
model

Level 4 1 × 1; 2000 m Copernicus Marine Service product BALTICSEA_
ANALYSISFORECAST_BGC_003_007:
Biogeochemical model ERGOM forecast.42

16 CMEMS_
model

Level 4 1 × 1; 4000 m Copernicus Marine Service product BALTICSEA_
REANALYSIS_BIO_003_012: The Baltic Sea
Biogeochemical Reanalysis is using the ice-
ocean model NEMO-Nordic coupled with the
biogeochemical model Swedish Coastal and
Ocean Biogeochemical model together with
a LSEIK data assimilation scheme.43
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EQ-TARGET;temp:intralink-;e001;116;52163.44 exp−18.41x; (1)

where x is TOA reflectance BR R754/R709–R754/R665 (BR8, Table 2). Match up pixels with
following raised flags removed from the study: invalid, sun_glint_risk, cloud_risk, cloud, and
cloud_shadow.

The best BR for Sentinel-2 MSI (BR3_S2) (3 × 3 mean 20-m resolution match-up pixels) is
from POLYMER reflectances using bands on 704 and 665 nm. BR3_S2 Chl-awas derived using
Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;4261.46 exp2.1204x; (2)

where x is the reflectance band ratio R704/R665 (BR3, Table 2). Only with no masking flags
match-up pixels were considered as valid. In case the match-up point was at the overlap of
two image tiles, the better-matching concentration was considered.

2.3 Statistical Parameters

The in situ dataset is described by basic descriptors like mean, median, first and third quartile
(first and third Q) and standard deviation (StDev).

The performance of the remote sensing products was evaluated using the determination coef-
ficient (R2). R2 is used to analyze how well observed in situ values are predicted by the model
based on the proportion of total variation of outcomes explained by the model; it is calculated
using Eq. (3)

EQ-TARGET;temp:intralink-;e003;116;249R2 ¼ 1 −
P

n
i¼1ðyi − ŷÞ2P
n
i¼1ðyi − ȳÞ2 ; (3)

where ŷ is the predicted value, y is the observed value, ȳ is the mean value of observed y values,
and n is the number of observations. With R2, a p-value is presented, that is showing the stat-
istical significance by describing how likely the data would have occurred by random chance.

To evaluate the errors of the remote sensing products, root mean squared error (RMSE) and
bias were used (in mgm−3). RMSE is a frequently used measure of differences between values
observed in situ and predicted by a model; it is calculated using Eq. (4). Bias shows a systematic
error, and it is calculated using Eq. (5)

EQ-TARGET;temp:intralink-;e004;116;117RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðŷ − yiÞ2
s

; (4)

Table 2 BR applied on top- and BOA reflectances (R), the number in the band
ratio denotes the wavelength (nm) in the centre of the band.

Name Sentinel-3 formula Sentinel-2 formula

BR1 R665/R560 R665/R560

BR2 R665/R709 R665/R704

BR3 R709/R674 R704/R665

BR4 R709 R704

BR5 R754/R665 R740/R665

BR6 (R665 − R709)*R754 (R665 − R704)*R740

BR7 R709 − (R665+R754)/2 R704 − (R665+R740)/2

BR8 R754/R709 − R754/R665 R740/R704 − R740/R665
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EQ-TARGET;temp:intralink-;e005;116;723bias ¼ 1

n

Xn
i¼1

ðŷ − yiÞ; (5)

where ŷ is the predicted value, y is the observed value, and n is the number of observations.
In addition, the uncertainty in the remote sensing products was evaluated using the mean
absolute percentage error (MAPE in %). MAPE measures the percentage error of the estimated
values in relation to the actual values; it is calculated using Eq. (6)

EQ-TARGET;temp:intralink-;e006;116;648MAPE ¼ 100%

n

Xn
i ¼1

���� yi − ŷi
yi

����; (6)

where ŷ is the predicted value, y is the observed value, and n is the number of observations.

3 Results

3.1 In Situ Database

We carried out in situ measurements in five years covering different parts of Estonian coastal
and territorial waters (Fig. 1). More measurements were carried out in the western part of the
Gulf of Finland and around the largest islands, less coverage was in the eastern part of the Gulf of
Finland.

All the measurements were done from March to October, mostly from April to July, when
the most cloud free days occurred (Table 3).

The in situ Chl-a dataset combines 267 unique measurements ranging from 0.4 to
45.9 mgm−3. Although the range is 45.5 mgm−3, then the mean of the dataset is 6.9 mgm−3

and median is 4.9 mgm−3, leaving most of the measured values under 8 mgm−3 (Fig. 2;
Table 4). The Chl-a concentration that exceeds the threshold of 5 mgm−3 is often considered
as bloom in the Baltic Sea. As a background information, the absorption coefficient of CDOM at
a wavelength of 420 nm ranged from 0.42 to 12.84m−1 (mean 1.53 m−1 and median 0.87 m−1)
and TSM from 0.60 to 29.40 (mean 8.45 mgm−3; median 8.06 mgm−3) for the same dataset.

3.2 Chlorophyll-a Products

In this study, we used 16 freely available Chl-a products including 3 modeled and 13 remote
sensing products that are available for the Baltic Sea. Five of the products are available in two

Table 3 The temporal distribution of the in situ Chl-a, n denotes
the number of measurements.

Year n Month n

2016 34 March 12

2018 55 April 54

2019 46 May 53

2020 80 June 43

2021 52 July 50

August 33

September 12

October 10

Total 267 Total 267
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different spatial resolutions (Table 1). The number of found match-ups was from 28 to 262
(Table 5), depending on the satellite data and quality flags used for each product (Table 1).
The products that were based on Sentinel-3 data had generally more match-ups than the ones
based on Sentinel-2 data due to the higher revisit time.

The R2 of the Chl-a products were ranging from <0.001 up to 0.55 given by C2RCC_S3
product. This and maximum chlorophyll index_S3 (MCI_S3) are the two Chl-a products
available with the highest R2, but C2RCC_S3 has better higher MAPE and RMSE than MCI_S3
[Fig. 3(a)].

Generally, products based on Sentinel-3 data were performing better than the products based
on Sentinel-2 or MODIS. The best product based on Sentinel-2 data was POLYMER_S2_HR
[Fig. 3(a)]. The weakest performance was by the C2RCC_S2_LR and the ocean Chl-a products
[fluorescence line height_S3 (FLH_S3), OC4ME_S3]. These results were also not statistically
significant. The uncertainties were high for all the products, MAPE ranging from 66% to 456%.
RMSE ranged from 3.8 to 22.1 mgm−3 (Table 5).

The BR8 (Table 2) based on Sentinel-3 TOA reflectances outperformed all the other Chl-a
products (BR8_S3, Table 5), also the BR3 (Table 2) on Sentinel-2 POLYMER_S2_HR reflec-
tance had high R2 with the lowest MAPE (59%) and RMSE (3.6 mgm−3) of all (BR3_S2,
Table 5) [Fig. 3(b)]. All the R2 from band ratio testing are shown in Table 6. We chose atmos-
pheric processors based on the results of the Chl-a products (C2RCC for Sentinel-3, and
POLYMER and C2X for Sentinel-2).

Fig. 2 Box plot of the in situ Chl-a dataset (n ¼ 267). Gray color shows Chl-a values from first Q to
median, orange from median to third Q, and X marks the mean value.

Table 4 Descriptive statistics of the in situ Chl-a (mgm−3) dataset:
t is the time period, n is the number of the measurements, Q is the
quartile, and StDev is the standard deviation of the dataset.

t 13/04/2016 – 08/10/2021

n 267

Min 0.36

First Q 2.07

Median 4.87

Third Q 7.92

Mean 6.89

Max 45.89

StDev 7.69

Range 45.53
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Table 5 Performance of the different Chl-a remote sensing products: n denotes the number of
match-ups, R2 is the determination coefficient, and p-value is the statistical significance of the
linear regression. MAPE in % and root mean square error (RMSE, mgm−3) show the uncertainties
of the products. Bias is the systematic error. The products are in the decreasing order of the R2.

Chl-a algorithm n R2 p-value MAPE RMSE Bias

BR8_S3 125 0.671 <0.0001 63.3 3.89 0.86

C2RCC_S3 125 0.548 <0.0001 74.2 4.50 −0.88

BR3_S2 77 0.496 <0.0001 58.7 3.64 0.95

MCI_S3 156 0.456 <0.0001 126.6 6.26 −1.30

ST_S3 160 0.393 <0.0001 90.8 5.03 0.62

BaltAlg_S3 28 0.338 0.001 118.8 4.08 1.19

POLYMER_S2_HR 77 0.310 <0.0001 75.5 3.98 0.03

C2X_S2_HR 65 0.268 <0.0001 66.7 4.70 −0.88

COMPLEX_S2_LR 52 0.241 0.0002 128.4 8.79 3.12

COMPLEX_S2_HR 52 0.209 0.0007 127.0 8.88 3.26

C2X_S2_LR 65 0.206 0.0001 66.3 5.27 −0.55

POLYMER_S2_LR 72 0.178 0.0002 75.3 4.23 −0.04

POLYMER_S3 141 0.101 0.0001 113.6 3.78 1.01

ONNS_S3_HR 45 0.078 0.06 94.3 9.23 0.99

SatBaltyk_model 262 0.072 <0.0001 92.4 8.12 −3.24

ERGOM_model 178 0.058 0.001 162.1 10.24 1.96

ONNS_S3_LR 94 0.053 0.03 456.3 22.12 6.98

CMEMS_model 167 0.024 0.05 166.6 10.91 −2.38

HR-OC_S2 42 0.023 0.33 108.1 5.86 1.11

OC4ME_S3 37 0.016 0.45 295.7 14.33 7.17

FLH_S3 163 0.013 0.16 157.3 6.57 0.35

C2RCC_S2_LR 62 0.003 0.69 118.1 6.48 −0.08

C2RCC_S2_HR 62 <0.001 0.97 118.7 6.63 −0.24

Fig. 3 Comparison of the in situ and the best (a) available remote sensing Chl-a products; and
(b) BR for Sentinel-2 (POLYMER_S2_HR and BR3_S2) and -3 (C2RCC_S3 and BR8_S3).
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4 Discussion

The in situ measurements covered the seasonal variations of phytoplankton (spring bloom,
summer minimum and cyanobacteria bloom) giving a good sense of the state in the Baltic Sea
(Fig. 1 and Table 3). About 267 unique in situ measurements showed variability with range of
45.5 mgm−3, but concentrations of Chl-a remained mostly between 2 and 8 mgm−3 (first to
third Q) with average 7 mgm−3 and median 5 mgm−3 (Fig. 2; Table 4).

Only five Chl-a products out of 21 had R2 > 0.3 and only six products had RMSE
< 5 mgm−3 (median of the in situ database). The best performing available Chl-a remote sensing
product was C2RCC_S3 (R2 ¼ 0.55, RMSE ¼ 4.5 mgm−3, MAPE = 74%, and n ¼ 125). This
product has shown good performance also in other parts of the Baltic Sea. Kyryliuk and Kratzer24

tested it in the west coast of the Baltic Sea (Sweden) and found strong relationship with in situ
data (R2 ¼ 0.79 and n ¼ 27). Kratzer and Plowey25 found the similar correlations with our
results (R2 ¼ 0.56 and n ¼ 59) in the North-Western part of the Baltic Sea.

The six products, that had lowest RMSE, were all remote sensing products of Chl-a. Three of
them were the POLYMER Chl-a products (Table 5). While POLYMER products showed one of
the lowest RMSE, then C2X products had lowest MAPE (66% to 67%). Although, MCI_S3,
ST_S3, and BaltAlg_S3 remote sensing products had stronger relationship with in situ, they
also had much higher uncertainties, so those products might not be reliable. In addition, we
can without doubt claim that all model-based products (CEMS_model, ERGOM_model, and
SatBaltyk_model) and almost half of the remote sensing products (C2RCC_S2_HR, C2RCC_
S2_LR, FLH_S3, HR_OC_S3, OC4ME_S3, ONNS_S3_HR, and ONNS_S3_LR) failed to
retrieve Chl-a in Estonian marine waters: R2 < 0.1, MAPE > 90%, RMSE > 5 mgm−3, and
p-value mostly showed no statistical significance and in most of the cases, remote sensing
products outperformed modeled Chl-a products (Table 5). Overall, the C2RCC_S3 and
POLYMER_S2_HR products have reasonably high R2 and lower errors than other products
(Fig. 3 and Table 5).

From eight different band ratios tested, the Sentinel-3 TOA BR2, BR3, BR8, and BOA BR3
and BR8 outperformed all the available Chl-a products for the Baltic Sea (Table 6). The best was
BR8 on TOA reflectances (R2 ¼ 0.67, n ¼ 125, and MAPE = 63%). With Sentinel-2 data the
BRs were not as successful, no BR outperformed the best Chl-a available product (C2RCC_S3).
For Sentinel-2 data, the most successful were BR3 on POLYMER (R2 ¼ 0.50, n ¼ 77, and
MAPE ¼ 59%) and BR8 on TOA reflectances (Table 6). POLYMER showed the best suitability

Table 6 The determination coefficients (R2) for each tested band ratio (BR; the formulae of the
band ratios are in Table 2). The band ratios were tested on: Sentinel-3 OLCI TOA and C2RCC
reflectances (S3 TOA and S3 C2RCC, accordingly); Sentinel-2 MSI TOA, Case-2Extreme, and
POLYMER reflectances (S2 TOA, S2 C2X, S2 POLYMER, accordingly). The highest values for
S3 and S2 are shown in bold. n notes the number of match-ups.

S3 TOA S3 C2RCC S2 TOA S2 C2X S2 POLYMER

n 125 125 66 66 77

BR1 0.139 0.245 0.059 0.214 0.121

BR2 0.554 0.482 0.239 0.269 0.019

BR3 0.598 0.552 0.236 0.267 0.496

BR4 0.013 0.171 0.029 0.145 0.047

BR5 0.028 0.529 0.061 0.200 0.093

BR6 0.228 0.169 0.078 0.013 <0.001

BR7 0.337 0.217 0.324 0.233 0.293

BR8 0.671 0.576 0.380 0.273 0.032
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as atmospheric correction in the Baltic Sea area for Sentinel-2 MSI data. The same conclusion
was made by Warren et al.46 Overall, BR3 and BR8 were the most successful and seemed to
work better with Sentinel-2 and -3 TOA data. The fact that the best BR algorithm was based on
TOA reflectances, is nothing new. The TOA band ratios have been tested before.4,45 Even more,
Soomets et al.45 found also BR8 and BR3 most successful in inland waters with low Chl-a
(∼5 mgm−3 which agrees well with Chl-a median of the present study). Both the BR3 and
BR8 are essentially algorithms that are using the depth Chl-a absorption feature and a peak
at 700 to 710 nm against the Chl-a absorption maximum (reflectance minima). BR8 only
normalizes it to a SWIR band to minimize atmospheric and glint effects. The fact that
empirical algorithms using distinct spectral features in the TOA data perform better than any
other method on atmospherically corrected data suggests that atmospheric corrections still need
improvements.

The high uncertainties of the results are due to the optically complex nature of the Baltic Sea
which has high temporal and spatial variability of the Chl-a and turbidity caused by the high
loads of organic matter and nutrients from the rivers, shipping, or other human activities.10

In the cyanobacterial bloom, that occurs in the Baltic Sea every summer, the Chl-a often vary
by 2–3 orders of magnitude over the distance of a few meters.14 It makes the development of
remote sensing algorithms very difficult as water sample collected in one point may not have
anything in common with concentration obtained for a satellite pixel which is 300 × 300 m in
size.14 The same problem occurs in validation of satellite products—in situ sampling has to be
carried out in very precise location in space and time and even then, may not be useful if water
around the sampling station is very heterogenous.

The best available Chl-a product and the tested BR algorithms showed high errors: RMSE
from 3.6 to 4.5 mgm−3 is too high for the in situ dataset with the median of 4.9 mgm−3 and this
might influence the reliability of the derived concentration of Chl-a. Regardless of the high
errors, the tested BR algorithms show still more promise in accuracy of deriving Chl-a in the
Baltic Sea than any of the evaluated products. Especially, the model (Level 4) results were very
poor and are not useful for smaller nor larger scale analysis. We can say the same to all the
Copernicus Marine Service Level 3 products, except for BaltAlg_S3. This product is competitive
by its results, although it is still not preferable (usable in larger analysis) because of the lack of
valid data. There were only 28 match-ups, which is noticeable less than in any other product.
Because there are still room for improvement in deriving Chl-a in Baltic Sea, it is necessary to
continue validation of the remote sensing products.

5 Conclusions

Both modeled and remote sensing-based, altogether 21 different Chl-a products of the Baltic
Sea, were tested on in situ data collected in Estonian marine waters during 2016–2021.
In addition, eight different empirical band ratio type algorithms were tested on TOA and BOA
reflectances of Sentinel-3 and Sentinel-2. The best performing Chl-a product was C2RCC of
Sentinel-3 OLCI (R2 ¼ 0.55, RMSE ¼ 4.5 mgm−3, MAPE = 74%, and n ¼ 125). All modeled
Chl-a products and about half of the remote sensing Chl-a products failed to produce reasonable
results. The empirical BR with Sentinel-3 data were in fact more successful than any of the
available remote sensing or modelling products: R2 ¼ 0.67, RMSE ¼ 3.9 mgm−3, MAPE =
63%, and n ¼ 125. Our results showed better performance of the TOA reflectance, which
suggests that there is still room for improvement of atmospheric correction methods. Also,
high uncertainties of the retrieved Chl-a concentrations (products or band ratio algorithms)
due to the complex waters of the Baltic Sea, show that future validation and improvement of
Chl-a deriving methods are still needed.
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