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Abstract. Surface-water body maps are imperative for effective mosquito larvae control. This
study aims to select a method for the automatic and regular mapping of surface-water bodies in
rice fields and wetlands using Sentinel-1 synthetic aperture radar data. Four methods were
adapted and developed for automated application: the Otsu valley-emphasis algorithm, a clas-
sification method based on the textural feature of entropy, a method usingK-means unsupervised
classification, and a method using the Haralick’s textural feature of dissimilarity and fuzzy-rules
classification. The results were assessed using field data collected during the mosquito breeding
periods of 2018 and 2019 in the region of Central Macedonia (Greece). The Otsu valley-empha-
sis technique provides the highest overall accuracy (0.835). The accuracy is higher at the begin-
ning of the summer (0.948) than at the end of the rice-growing season due to higher density of
vegetation. Results using this method were further assessed during the main larvicide application
period. The presence of vegetation, built-up areas, floating algae in rice-paddies, salt-crust for-
mations in wetlands, and water depth, were found to affect the performance of the algorithm.
AWebGIS platform was designed for the visualization of the produced water maps along with
other data related to mosquito-larvae presence. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.15.014507]
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1 Introduction

Surface-water bodies are important breeding habitats of mosquitoes, thus, surface-water body
maps together with other parameters (meteorological and phenological) are often used as pre-
dictors of mosquito larvae presence.1 Regular monitoring of surface-water bodies in near real-
time (NRT) is necessary for the timely prevention of outbreaks, such as the Rift Valley Fever2 or
the West Nile Virus (WNV). The latter accounts for high numbers of human cases and fatalities,
and for large outbreaks in Greece (during the periods 2010–2014 and 2017–2019, a total of more
than 1.200 human cases were identified) and other European countries. A way of limiting the
number of infections is through the effective mosquito population control, where exhaustive
larviciding is the most commonly used practice worldwide. The mapping of surface-water areas
can be achieved through observation and recording in the field. However, such a process is time-
consuming and costly in human resources and budget,3,4 especially when a wide area needs to be
covered. The use of unmanned aircraft systems (UAS) for the acquisition of aerial photographs
in the areas of interest is considered a widespread practice, but the resources and equipment
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required (UAS, suitable sensors, human resources for the operation of the UAS, and the analysis
of aerial photographs) are prohibitive for large-scale water maps.5 While several studies have
used satellite data (optical and/or radar) to identify surface-water areas at different spatial and
temporal scales, the requirements for an operational surface-water monitoring system for mos-
quito larvae prediction (accuracy, ease of integration, automation, frequency of update, and
robustness under cloudy conditions) are not all met.

Optical data have been used to identify surface-water areas, exploiting the fact that clear
water absorbs almost all near-infrared irradiance, in contrast to the highly reflecting nearby soil
or vegetation. Based on this principle, Ovakoglou et al.6 used time-series of Moderate Resolution
Imaging Spectroradiometer and Landsat images to develop a methodology for monitoring inun-
dated areas in Lake Kerkini (Greece), a water body characterized by a wide fluctuation of the
water level throughout the year. In their study, the data relevant to water-level gauges were
acquired in the field for the dates of interest, whereas it is possible to also automatize this process
through the method proposed by Chemin, Rabbani.7 Lacaux et al.8 used the normalized differ-
ence pond index (NDPI) and the normalized difference turbidity index (NDTI) from Satellite
Pour l’ Observation de la Terre (SPOT)-5 with a spatial resolution of 10 m to detect changes in
lakes (or temporarily formed lakes) with a minimum surface area of 100 m2. Dambach et al.9

used the NDPI, NDTI, and normalized difference vegetation index (NDVI) indices derived from
SPOT-5 data, in combination with data related to soil morphology and hydrology, to analyze the
possible spread of WNV from mosquito populations of the species Culex poicipibe. Vignolles
et al.10 used the NDVI, NDPI, normalized difference water index (NDWI), and modified nor-
malized difference water index (MNDWI) in combination with land use and land cover maps to
identify and analyze possible mosquito habitats in selected areas. From the various indices used,
the NDWI index11 was considered to be directly related to the density of mosquito populations
and in particular to larvae populations.12 However, the use of optical satellite data for the regular
and operational mapping of surface-water bodies has limitations due to cloud contamination of
the images and darkness during night hours.

Remote sensing methods based on the use of radar (microwave) sensors seem to be more
suitable for monitoring water areas, offering the advantage of uninterrupted data supply (day-
and-night) under any weather conditions, and the ability—under certain circumstances—to
detect inundated areas covered by vegetation. The principle of using side-looking radar images
in mapping water bodies is based on the smooth water surface that acts as a specular reflector,
whereas the surrounding environment (soil and vegetation) are diffuse reflectors. The result is
low backscatter at water surfaces, which contrasts to higher backscatter of soil and vegetation
morphology.13 Limitations in using radar data include the minimum size of detectable objects
and the sensors’ positioning in the satellite’s field of view.4 The latter leads to the presence of
shadows or blind areas in the synthetic aperture radar (SAR) satellite images, which are falsely
interpreted as water surfaces.14 Nelson et al.15 point out that maximum accuracy in the acquis-
ition of backscatter values by a SAR sensor over water bodies can be achieved when the inci-
dence angle is high, avoiding this way the effect of the wind (presence of waves), and increasing
the dynamics of the backscatter signal. According to Betbeder et al.,16 the band L of Japan Earth
Resources Satellite-1 and Advanced Land Observation satellites is suitable for mapping and
monitoring dense forest wetlands. SAR waves have the potential to penetrate the forest vegeta-
tion, and the signal interaction with the underlying flooded vegetation produces a double-bounce
mechanism that allows the detection of flooded forest areas. SAR data were used for mapping
water surrounded by different vegetation cover as it was applied for flooded areas mapping,2 rice
field mapping,17 and wetland monitoring.16

Until recently, SAR sensors were characterized by low temporal resolution (revisiting period
24–35 days),13 which negatively affected the systematic and frequent monitoring of changes in
water surfaces. Sentinel-1 data significantly improved the frequency at which SAR data could be
available, which is every six days in Greecewhen utilizing both Sentinel-1a and 1b satellites. Very
high-spatial resolution SAR sensors (such as TerraSAR-X and RADARSAT-2) offer the possibil-
ity of mapping and monitoring the duration of inundation phenomena at the field scale. Flooded
grassland for example has a higher number of polarimetric mechanisms, and higher regression
factors compared to non-flooded areas. Vignolles et al.18 used TerraSAR-X data with a spatial
resolution of 3 m to create a Rift Valley fever virus spread-prevention model. Bourgeau-Chavez
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et al.19 suggested the use of multi-frequency and multi-polarity SAR data for integrated wetland
monitoring. Henry et al.20 concluded that the use of horizontal–vertical polarity radar data offers
improved accuracy in detecting flooded areas, compared to single horizontal–horizontal (HH)
polarity data. Twele et al.21 investigated whether a TerraSAR-X (X-band) based automated flood
monitoring model developed by Martinis et al.22 could be adapted to the use of Sentinel-1 (C-
band) data. They conclude that the HH polarity mode available through TerraSAR-X combined
with the improved spatial resolution of the TerraSAR-X products (3-m spatial resolution instead
of 10-m spatial resolution in Sentinel-1 data) lead to greater accuracy in the detection of surface-
water bodies, and in reducing false alarms. However, wider coverage images should be used for
monitoring of large areas (e.g., at Regional level) such as Sentinel-1 data that are provided free-of-
cost by the European Space Agency (ESA) through the Copernicus scientific hub platform.23

An additional advantage is the capability of acquiring data automatically through an application
program interface (API), making it possible to create automated surface-water detection models
operating at NRT. Various studies have demonstrated the use of Sentinel-1 SAR data for the
detection of inundated areas,21,24–27 with the majority of them suggesting that data of vertical-
vertical polarity capture more accurately the water surfaces compared to datasets with other
polarity modes. Additionally, they suggest the use of the Ground Range Detected (GRD) product
of Sentinel-1, which comes at a spatial resolution of 10 m. Phase information are not available for
the GRD products and therefore, the total size of the files is significantly reduced compared to the
single-look-complex products of Sentinel-1 (1 GB instead of 4 GB), making GRD products more
convenient for operational use (due to the reduced processing power needed) and keeping low the
data storage needs.

The aim of this work is to develop an automated methodology for detecting surface-water
bodies in wetlands and agricultural land using Sentinel-1 data. Of those adapted and tested, the
accuracy was evaluated from a large in-situ dataset. Finally, the impact of environmental factors
was further analyzed. The resulting surface-water maps will be provided to users through a
WebGIS facility and will be used in a decision support system for targeted and effective larvicide
application in mosquito breeding habitats.

2 Materials and Methods

2.1 Study Area

The study area is located in the region of Central Macedonia in Greece (see Fig. 1). The total area
extent is 275 km2 including wetlands (51.5 km2) and rice fields (223.5 km2), which are the main
habitats of mosquito breeding in the region. In particular, the study area includes the following
four wetlands ecosystems: Axios river delta, Galikos river estuaries, Kalochori lagoon, Mikra
swamps, and lagoons of Epanomi and Aggelohori. These wetlands represent the most productive
ecosystems in mosquito larvae in the region of Central Macedonia. The agricultural area of the
plain of Thessaloniki is flat and is served by an open channel irrigation and drainage network.
The main crop is rice, and to a lower extent maize, alfalfa and cotton.

2.2 Sentinel-1 Data Acquisition and Pre-Processing

The Sentinel-1 images used for the testing and comparison of the water detection algorithms
were acquired already pre-processed through the Google Earth Engine (GEE) platform.
Images of two dates during the summer period (June 12, 2019 and August 29, 2019) were used
for the comparison between all water-presence detection methods tested and images of four addi-
tional dates (see Table 1 for the exact dates) were used to further test the method found to provide
the most accurate results (see Sec. 3), and to compare the accuracy achieved between the two
thresholding methods developed (Otsu and Otsu Valley-emphasis, see section Sec. 2.4.1). All
Sentinel-1 images were GRD products acquired in descending orbit direction with the
Interferometric Wide swath instrument mode. The files are georeferenced using the earthly ellip-
soid model of the World Geodetic System 1984 (WGS84). The GRD products are geometrically
corrected using ground elevation information, specified by the product’s metadata.
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The pre-processing routines applied to the Sentinel-1 images by GEE include the application of an
orbit file, the border-noise removal, the removal of thermal noise, and the radiometric and geo-
metric correction of the Sentinel-1 images. More technical details about the GEE pre-processing
routines can be found in Ref. 28. Additionally, the Sentinel-1 toolbox of SeNtinels’ Application
Platform (SNAP) software was used for the application of Lee’s speckle-filter29 on the pre-proc-
essed images, for the reduction of salt-and-pepper effects present in the associated SAR images.30

A 3 × 3 processing window, as suggested by Amitrano et al.26 was used after testing different
window sizes to minimize the speckle noise.

Meteorological data for the days and areas of interest were also used to check the presence of
strong winds, which is reported to affect the accuracy of SAR-based water detection algorithms,
due to the formulation of waves at the water surface.24 Moreover, the Digital Elevation Model of
Shuttle Radar Topography Mission at a spatial resolution of 30 m was used to exclude areas with
altitude over 300 m (out of present study’s scope according to the larviciding application

Table 1 Number of polygons collected, sorted by water condition and land use.

SAR image
acquisition dates

Polygon inundation state Polygon land use

100%
dry Mixed

100%
inundated Total

Rice
fields Wetlands Other

Comparison between
all methods

June 12, 2019 25 24 5 54 20 8 26

August 29, 2019 9 15 10 34 20 6 8

Further testing of the
most accurate method

June 23, 2018 12 30 10 52 25 27 0

May 07, 2019 21 10 17 48 20 21 7

May 25, 2019 2 6 16 24 20 0 4

May 31, 2019 23 22 12 57 20 18 19

Fig. 1 Location of rice paddies and wetlands in the study area.
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protocol), and to produce the height above next drainage (HAND) index31 within the study area.
The HAND index was used to avoid water presence false alarms32 by excluding areas with low
probability of being inundated for consecutive days. The HAND index threshold value of exclu-
sion for the study area was set to be over 15 m (>15 m), which was found after testing and
according to local topography experts to be the value including all areas of interest.

2.3 Field Data

Field data were collected on dates concurrent with the Sentinel-1 images’ acquisition and con-
sist of various wetland and rice polygons within the study area, where the status of water and
vegetation was recorded. The minimum required size of the sampling polygons was set to
approximately 1000 m2 considering the pixel size of the Sentinel-1 data (10 m), to retain suf-
ficient pixels per polygon for the validation process. As a result, the acreage of in-situ sampled
polygons ranged between 963 m2 and 70.7 ha. Additional polygons of other land uses (e.g.,
with other types of crops, buildings, or greenhouses) were also surveyed as they are reported in
relevant literature as common false alarms for water detection algorithms.33 The location of the
polygons was recorded using a GPS and digital photos were taken in-situ. The polygons were
characterized as homogeneous (either completely dry or completely inundated) and hetero-
geneous (with mixed presence of dry and inundated areas, see Table 1). An internal buffer
of 5 m from the perimeter of each polygon was applied to exclude mixed land uses at the
border of the polygons (e.g., roads and canals) of the validation dataset. The additional infor-
mation collected in the field for each polygon is the percentage of vegetation cover and its
height in each polygon, the percentage of the polygon covered by water and its depth.
These characteristics were intended to be used to examine the capability of the SAR images
to detect inundated areas under vegetation and to assess the effect of water depth on water
detection using SAR data.

2.4 Water Mapping Methods

2.4.1 Automated Thresholding Methods

Various studies apply a threshold value on SAR backscatter data to identify inundated areas. The
threshold value can be set manually by a human operator after examining the distribution of
backscatter values on the SAR image’s histogram or can be set automatically as demonstrated
by various studies.34–36 Two methods were tested for the automatic detection of a threshold value
for water presence: (a) the Otsu method37 and (b) the Otsu Valley-emphasis method.34 Both
methods were implemented using Matlab software, providing as output binary images of water
presence in Geotiff format.

Otsu method. The image binarization method developed by Otsu automatically calculates a
threshold value (t) from an image’s pixels value histogram, minimizing the weighted within-
class variance given by the relation:

EQ-TARGET;temp:intralink-;e001;116;229σ2wðtÞ ¼ q1ðtÞσ21ðtÞ þ q2ðtÞσ22ðtÞ; (1)

where q1 and q2 are the sum (Σ) of probabilities (P) for the two classes separated by a threshold
(t), and σ21 and σ22 are variances of these two classes, computed from the histogram of the
L distinct gray-levels of the image, as follows:

EQ-TARGET;temp:intralink-;e002;116;160q1ðtÞ ¼
Xt

i¼1

PðiÞ; (2)

EQ-TARGET;temp:intralink-;e003;116;99q2ðtÞ ¼
XL

i¼tþ1

PðiÞ; (3)
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EQ-TARGET;temp:intralink-;e004;116;735σ21ðtÞ ¼
Xt

i¼1

½i − μ1ðtÞ�2
PðiÞ
q1ðtÞ

; (4)

EQ-TARGET;temp:intralink-;e005;116;683σ22ðtÞ ¼
Xt

i¼tþ1

½i − μ2ðtÞ�2
PðiÞ
q2ðtÞ

; (5)

where class means (μ1 and μ2) are computed as follows:

EQ-TARGET;temp:intralink-;e006;116;643μ1ðtÞ ¼
Xt

i¼1

iPðiÞ
q1ðtÞ

; (6)

EQ-TARGET;temp:intralink-;e007;116;582μ2ðtÞ ¼
XI

i¼tþ1

iPðiÞ
q2ðtÞ

: (7)

The Otsu method works accurately for images with histograms of bimodal pixel value dis-
tribution (i.e., two peaks are present in the histogram), whereas it is less accurate when applied
on histograms of unimodal distribution (i.e., one peak is present in the histogram).

Otsu Valley-Emphasis Method. The modification of Otsu algorithm proposed by Ng34

uses the same basic technique as the original Otsu method but gives more weight to the points
between the two peaks of bimodal distribution histograms (valley) or to the bottom of the histo-
gram (low-value histogram area) in cases of unimodal histograms. The optimal threshold value
(t�) using the valley-emphasis method is computed as follows:

EQ-TARGET;temp:intralink-;e008;116;444t� ¼ ArgMax
0≤t<L

fð1 − PtÞðq1ðtÞμ21ðtÞ þ q2ðtÞμ22ðtÞÞg; (8)

where all the variables remain the same as described in the original Otsu’s method given above,
and ArgMax refers to the inputs -or arguments- at which the function outputs are as large as
possible. Therefore, the Otsu valley-emphasis method is considered to provide improved accu-
racy compared to the Otsu method in cases of unimodal distribution histograms, whereas the
application of the two methods in bimodal distribution images returns comparable threshold
values since both methods attempt to maximize the between-group variance of the histogram.

2.4.2 Method Based on the Textural Feature of Entropy

The classification of pre-processed Sentinel-1 images into K-clusters and the use of the textural
characteristic of entropy have been proposed by Li and Wang38 for the identification of surface-
water bodies. Entropy (ENT) defines the complex degree of an image’s texture and is calculated
using the gray-level co-occurrence matrix (GLCM)39 by the equation:

EQ-TARGET;temp:intralink-;e009;116;250ENT ¼ −
X

i

X

j

pði; jÞ log pði; jÞ; (9)

where pði; jÞ is the ði; jÞ’th entry of the normalized GLCM. The method was adapted for the
needs of the present study and an algorithm was developed (see Fig. 2 for the detailed flowchart)
using as input Sentinel-1 pre-processed images to:

Perform K-means cluster analysis and create an initial mask (image) of areas with water
presence and a mask with the areas characterized by low backscatter values. A total of 20 clusters
was used as suggested by the authors of the original method, which was also verified as the
optimal configuration after testing with local data.

Create an image of the entropy textural characteristic.
Apply the Otsu algorithm on the histograms of the entropy image and of the initial water

mask image created in step (a) to automatically detect the threshold value indicating the inun-
dated areas.
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The SNAP software was used to apply theK-means clustering analysis and for the creation of
the entropy image. The Otsu thresholding method was applied using Matlab software, providing
the final output water maps in Geotiff format.

2.4.3 Method Based on K-Means Unsupervised Classification

Since the method proposed by Li and Wang38 in the previous section creates an initial map of
surface-water using an unsupervised K-means classification, this initial map was assessed in
comparison with the results of the other methods. This method was found not to be fully auto-
matic though, as the number of output classes varies from one image to the other.

2.4.4 Method Based on the Textural Feature of Dissimilarity and Fuzzy-Rules
Classification Techniques

Amitrano et al.26 developed a method (Fig. 3) for the direct mapping of flooded areas using
Sentinel-1 data. The method is based on using the classic Haralick’s textural features40 and
in particular the textural feature of dissimilarity. The method was developed as follows.

1. The histogram values of the image were clipped (histogram clipping at 95%) to
compensate for the presence of objects in the image with high reflection values,41,42

enhancing this way the visual display sharpness of areas with low-reflection values.
2. The Haralick’s textural feature of dissimilarity (D) was then calculated using a

5 × 5 pixels window to optimize the time needed for processing the image and the re-
sistance to outlier values.

3. D from step (2) was used to estimate the complementary characteristic of similarity (S),
using the following equation:

EQ-TARGET;temp:intralink-;e010;116;136S ¼ 1 −D: (10)

4. The values in the images created through steps (1) and (3) were normalized with respect
to their maximum values so that the new values range between 0 and 1.

Pre-processed Sentinel-1 image

Unsupervised K-means
classification

Image classified in 20 
clusters

Initial water mask

Low-backscatter
image

Exclusion of pixels with high
backscatter values

Final surface water
bodies image

Entropy textural
analysis

Creation of entropy
image

Creation of entropy
values histogram

Automatic detection of
threshold value (Otsu)

Low-entropy
binary image

Application of Otsu
threshold value

Fig. 2 Flowchart of water detection method based on the textural feature of entropy.
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5. The normalized images of step (4) were used as input data to apply the classification
method with fuzzy rules.

The two variables similarity and intensity were categorized into two fuzzy-classes “low” and
“high” using Z-type and S-type fuzzy functions. Areas with water are those with high values of
similarity and low backscatter values. Adopting a set of fuzzy classification rules avoids search-
ing for a specific threshold value. In fact, the categories “water area” and dry land were auto-
matically attributed through defuzzification of the probability maps created by the fuzzy system.
This step was implemented using the maximum membership method.43 The SNAP software was
used to calculate the textural features of dissimilarity and similarity while the fuzzy system was
developed using the Matlab software.

2.5 Evaluation Methods

Confusion matrices were created for the assessment of the results in the homogeneous polygons
obtained with the four tested surface-water detection methods. A confusion matrix is a two-
dimensional table where the columns correspond to the observations in the field (actual status) and
the rows to the predicted values (estimations). The cells in the matrix refer to the following terms:

1. True positive (TP) predictions: water presence is correctly predicted at pixels in inun-
dated polygons.

2. True negative (TN) predictions: water absence correctly predicted at pixels in non-inun-
dated polygons.

3. False positive (FP) predictions: water presence erroneously predicted at pixels in non-
inundated polygons.

4. False negative (FN) predictions: water absence erroneously predicted at pixels in inun-
dated polygons.

From the confusion matrix accuracy metrics are retrieved for the homogeneous polygons, as
given in Table 2.

In addition, a water detection error (Err) was computed for the heterogeneous (mixed) poly-
gons based on the mean absolute percent error (MAPE), where the area of water observed during
field survey (Aw_obs) is compared to the one estimated for the same polygon (Aw_est) (in abso-
lute value) and divided by Aw_obs. The MAPE metric is a widely used scale-independent accu-
racy measure. The lower the value of MAPE, higher is the accuracy. The water detection error
(Err) is thus computed as average over a number of N observed and non-inundated (Aw_obs
different from 0) polygons using the following formula:

Pre-processed
Sentinel-1 image

Creation of
dissimilarity image

Image values
normalization [0,1]

95% histogram
clipping

Fuzzy-rules
classification

Surface water
bodies image

Creation of similarity
image

Clipped Sentinel-1
image

Fig. 3 Flowchart of the method based on the textural feature of dissimilarity and fuzzy-rules clas-
sification techniques.
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EQ-TARGET;temp:intralink-;e011;116;584Err ¼ 1

N

XN

i¼1

jAwobs_i − Awest_ij
Awobs_i

: (11)

The water detection error was correlated with parameters that were observed on site (veg-
etation height, vegetation cover, and water depth) and considered to affect the results.

3 Results and Discussion

3.1 Selection of the Automated Thresholding Method

Figure 4 shows the pre-processed Sentinel-1 image for the date June 12, 2019 where the back-
scatter values in decibel range between −34.2 and 26.6. Lower backscatter values (darker tones)
are in pixels with water (e.g., rivers, sea, and inundated fields), whereas the highest values
(white) appear in settlements and other constructions. In-between backscatter values (gray-level
tones) correspond to dry soil, either bare or covered by vegetation. Figure 5 shows the results of
the automatic thresholding of the histograms of Sentinel-1 backscatter values using Otsu and
Otsu Valley-emphasis algorithms. The threshold value given empirically by a human operator
(manual method) is given as a reference threshold value to select the best performing automatic
thresholding method. This type of methods is easy to implement and was applied to the six
Sentinel-1 images (for exact dates see Fig. 5). The histogram values were normalized.

In all cases shown in Fig. 5, the Otsu Valley-emphasis outperformed the Otsu thresholding
method, detecting more accurately the histogram’s valley, giving automatically a threshold

Fig. 4 Pre-processed Sentinel-1 image with backscatter values in decibel for date June 12, 2019.

Table 2 Definition of the accuracy metrics used for the assessment of
the surface-water detection methods.

OA TP + TN/(TP + FP + TN + FN)

Kappa coefficient (Pr(a)-Pr(e))/(1-Pr(e)))a

Recall (R) TP/(TP + FN)

Precision (P) TP/(TP + FP)

aPr(a): relative observed agreement, Pr(e): hypothetical probability of random
agreement.
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closer to the value provided by a human operator (manual threshold) while on August 29, 2019,
the two values coincided. Table 3 gives the water detection accuracy metrics obtained using the
manual and automated thresholding methods for one of the dates tested (Sentinel-1 image of
June 12, 2019), thus showing the effect of threshold selection on the accuracy of the water maps.
The collected in-situ data were used as ground-truth. The Otsu Valley-emphasis method (with a
threshold of 0.388) performed much better on June 6, 2019 than the Otsu method (threshold of
0.4) with an OA of 0.948 and P of 0.906 for the former and 0.849 (OA) and 0.657 (P) for the
latter. In addition, it presents an OA value and kappa coefficient close to those obtained with the
manual threshold of 0.384 (OA ¼ 0.956, kappa ¼ 0.888). Therefore, the Otsu valley-emphasis
method was selected as the automated thresholding method to be compared to the rest of the
surface-water detection methods.

It should be noted that water mapping using the manual threshold shows the highest OA and
P values in this case but lowest R value, revealing a higher number of FN and the limits of the
histogram thresholding approach for separating water from non-water pixels.

Table 3 Summary of accuracy metrics for the three thresholding methods for the date June 12,
2019.

Method P R OA Kappa

Otsu 0.657 0.929 0.849 0.662

Otsu Valley-emphasis 0.906 0.903 0.948 0.869

Manual 0.941 0.896 0.956 0.888

Fig. 5 Normalized backscatter threshold values in Sentinel-1 image histograms for each date for
the three methods applied: manual (dotted line), Otsu (dashed line), and Otsu Valley-emphasis
(dash-dotted line).
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3.2 Performance of the Water Surface Mapping Methods

The selected automated thresholding method plus the three other methods presented in Sec. 2.4,
were applied on Sentinel-1 images for two characteristic dates: at the beginning of summer when
vegetation is low in the rice fields and wetlands are still in inundation (June 12, 2019) and toward
the end of the summer when the vegetation is higher in the rice fields and wetlands are drier
(August 29, 2019). The accuracy metrics calculated for all methods and both dates are given in
Table 4. The results show that the Otsu Valley-emphasis method performs better than the other
methods with a mean overall accuracy (OA) of 0.835 and kappa coefficient of 0.588. A slightly
lower OA is obtained with the method based on K-means classification (OA ¼ 0.833, kappa
0.584). However, the fact that the method does not systematically classify the water-related pix-
els into the same cluster between different dates of application, makes it impossible to have it
fully automated and used operationally. The other two methods (entropy-based and fuzzy rules-
based) present much lower accuracy metrics (OA, P, kappa), whereas the R values for all meth-
ods are very close.

When considering the accuracy metrics obtained for single dates the OA ranges from 0.504 to
0.948. The Otsu Valley-emphasis was found to be the most accurate method for each date (0.948
on June 12, 2019 and 0.723 on August 29, 2019). The detailed analysis of the results per date
showed that for all methods the accuracy was lower toward the end of the summer (August 29,
2019) compared to the beginning of the same season (June 12, 2019). By analyzing specific
examples where the methods failed to correctly detect water, it appears that this was due to the
presence of high and dense inundated vegetation, which covers water and affects the recall in the
Sentinel-1 images.24

3.3 Application and Assessment of the Otsu Valley-Emphasis Method During
the May-June Period

Due to its ease of automation and its higher performance, the Otsu Valley-emphasis method was
selected and further tested. The method was used to produce water maps for the period of May-
June, which is the most critical period for larvicide application in rice fields and wetlands. Data
for five dates were used for this purpose: June 23, 2018, May 07, 2019, May 25, 2019, May 31,
2019, and June 12, 2019 (see Table 1 for details over the number and land cover type of sampling
polygons).

3.3.1 Overall evaluation of the Otsu Valley-emphasis method

To carry out the assessment, all available sampling data from homogeneous polygons for the
May–June period of years 2018 and 2019 were used. According to Table 5, the OA for all dates
was found to be 0.862, indicating that the algorithm detects water presence with a systematic
high accuracy.

Figure 6 shows the surface-water maps obtained for these dates. Except for the river Axios
and coastal lagoons that were inundated throughout the May–June period, the temporal varia-
tions between the examined dates show the flood irrigation events on rice fields.

Table 4 Mean accuracy metrics for all water surface mapping methods for the two dates June 12,
2019, and August 29, 2019.

Method OA P R Kappa

Otsu Valley-emphasis 0.835 0.847 0.591 0.588

Entropy based 0.647 0.458 0.592 0.245

Fuzzy rules based 0.711 0.540 0.642 0.367

K -means based 0.833 0.839 0.591 0.584
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To better interpret the water mapping results TN, TP, FN, and FP are shown on a map for the
date May 31, 2019. Figure 7 shows cases where the algorithm failed to identify the inundated
areas with FN predictions, which were located mainly on the fringe of the Kalochori lagoon. The
inundated wetlands had a depth between 30 and 100 cm but without vegetation. Some birds were
observed during field survey that explain some of the FN predictions in the center of the poly-
gons. There are also cases where the algorithm detects water presence in areas that are

Fig. 6 Maps of surface-water bodies using the Otsu Valley-emphasis method during the period of
May–June for the years 2018 and 2019.

Table 5 Confusion matrix for the Otsu Valley-emphasis method in the May–June period.

Predictions

Observations (in pixels)

P R OA Kappa
Absence
of water

Presence
of water Total

Absence of water 39893 4229 44122 0.822 0.900 0.862 0.725
Presence of water 8225 38108 46333

Total 48118 42337 90455
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non-inundated (FP predictions), which were scattered around the coastal grasslands of Kalochori
where vegetation was estimated to cover 80% of the polygons. The FP predictions found for the
dry wetland in the eastern part of Fig. 7 were due to the presence of roads as reported during field
survey.

3.3.2 Impact of land use type

Results were further analyzed by dividing the data according to their land use type into rice fields
and wetlands. The confusion matrix in Table 6 shows separately for rice fields and wetlands the
surface-water bodies mapping results during the period of May–June for the years 2018 and
2019. Due to the extent of wetlands there are much more ground-truth pixels in wetlands than
in rice fields. The OAwas 0.854 in wetlands and 0.915 in rice fields. The lower accuracy in rice
fields is due to the small size of the fields, the lower water depth when they are inundated and the
presence of vegetation.

Fig. 7 Examples of FN (light green) and FP (pink) predictions for the date May 31, 2019.

Table 6 Confusion matrix according to land use for the period of May–June (2018 and 2019).

Land cover

Observations (in pixels)

P R OA KappaPredictions
Absence
of water

Presence
of water Total

Rice fields Absence of water 7660 1023 8683 0.882 0.778 0.915 0.809
Presence of water 27 3584 3611

Total 7687 4607 12294

Wetlands Absence of water 32233 3206 35439 0.910 0.915 0.854 0.709
Presence of water 8198 34524 42722

Total 40431 37730 78161

Ovakoglou et al.: Automatic detection of surface-water bodies from Sentinel-1 images. . .

Journal of Applied Remote Sensing 014507-13 Jan–Mar 2021 • Vol. 15(1)



For both rice fields and wetlands, the pixels were in most cases classified as TN or TP pre-
dictions. This means that the presence or absence of water was correctly detected. There are few
cases where the method failed to predict water presence (FN) or predicted water in dry areas
(FP). However, the recall and precision values are considered satisfactory (R ¼ 0.778 and P ¼
0.882 in rice fields and R ¼ 0.915 and P ¼ 0.910 in wetlands).

Concerning the rice fields, in most cases where the method failed, the pixels were located at
the perimeter of the polygons (see Fig. 8). This could be explained by the larger slopes usually
found perimetrically of the fields due to the insufficient leveling of rice paddies at the beginning
of the growing season, resulting in a higher concentration of water toward the center of the fields.
In addition, the presence of floating algae (of green or brown color) and its concentration peri-
metrically of the parcels (see Fig. 9) increased the roughness of water thus increased the back-
scatter value to levels closer to that of vegetation. The erroneous predictions due to presence of
floating vegetation in fields have also been documented by Hardy et al.24 The main reasons
contributing to the presence of floating algae in rice fields related mainly to the cultivation prac-
tices followed by farmers (including continuous rice growing without crop rotation), and its
subsequent extensive use of nitrogen fertilizers.44

The presence of water was not fully detected in some polygons with rice, possibly due to the
presence of inundated vegetation. This was noticed in the mixed field survey polygons to where
for example the polygon in Fig. 10 was found during fieldwork on June 12, 2019, to be 90%
covered by water, whereas 70% of the polygon area was covered by vegetation of 15 cm height,

Fig. 8 FN predictions (light green color) perimetrically of rice polygons on May 25, 2019.

Fig. 9 Rice field photographs of FN predictions due to the presence of floating algae.
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and the algorithm estimated only 37.86% of the total polygon area to be inundated. The error in
predicting the presence of water (Err) in this case was 0.638.

The results of water presence mapping in wetlands were evaluated as satisfactory. Figure 11
shows examples of FP predictions in wetlands. These were mainly due to the presence of build-
ings and stables, and due to the presence of mixed land uses (e.g., the presence of rural roads at
the borders of polygons) and surface salt crust formations on the soil surface (see Fig. 12). Salt
crust formations are incorrectly captured by the SAR sensor as water bodies due to their high
electrical conductivity, which causes higher backscatter in a manner that resembles water
surfaces.45,46 Inspection in the field showed that salt-crusts presence is usually limited to salt
marshes along the coastline forming relatively narrow strips that do not significantly affect the
mapping of water surfaces. In addition, built-up areas that were causing erroneous predictions
were identified in the field to be limited to individual rural installations, whereas urban areas
reported as a known source of false alarms in relevant literature47,48 were masked off the
final maps.

The assessment of the map of surface-water bodies on June 12, 2019, in sampling polygons
of other types of crops (except rice fields) showed mostly TN predictions in dry cotton fields
(three cases in total) and dry corn fields (nine cases in total). The water detection errors (Err)
found during the analysis of all SAR images ranged between 0.0017 and 1 in all polygons

Fig. 10 Example of FN predictions in a mixed in-situ rice field polygon.

Fig. 11 Examples of FP predictions in wetlands on June 23, 2018.
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examined, whereas in a single case the error was 1.99. The average error value for rice paddies
was 0.709, whereas for wetlands it was 0.459.

3.3.3 Impact of inundated vegetation

The effect of inundated vegetation presence in the detection of surface-water bodies was ana-
lyzed separately for wetlands and rice fields, dividing the sampling polygons into two categories;
those with vegetation (veg_cov > 0) and those without (veg_cov ¼ 0). The vegetation cover in
both cases ranges from 0% to 100%. Tables 7 and 8 gives the resulting confusion matrices, which
shows that the OA was higher in the case of absence of vegetation cover (0.965 in rice fields
instead of 0.847 and 0.962 instead of 0.824 in wetlands). Since no samples were collected with-
out vegetation cover and in absence of water in wetlands as shown in Table 8, the accuracy
metrics in wetlands should be interpreted with care. In rice fields though, it is clear from
Table 7 that R is lower in the presence of vegetation cover (R ¼ 0.578 against 0.918 in
non-vegetated areas) indicating a higher number of FN predictions. In addition, the correlation

Fig. 12 Salt crusts on soil surface of sampling polygons of wetlands.

Table 7 Confusion matrices according to the vegetation cover in the rice fields in the period of
May–June (2018 and 2019).

Vegetation
cover (%)

Observations (in pixels)

P R OA KappaPredictions
Absence
of water

Presence
of water Total

veg_cov ¼ 0 Absence of water 4321 221 4542 0.990 0.918 0.965 0.925
Presence of water 25 2487 2512

Total 4346 2708 7054

veg_cov > 0 Absence of water 3339 802 4141 0.998 0.578 0.847 0.635
Presence of water 2 1097 1099

Total 3341 1899 5240
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analysis of the water detection errors (Err) against the vegetation cover showed that there is a
statistically significant positive correlation between the error in the estimation of the inundated
areas and the percentage of vegetation cover within a polygon (r ¼ 0.75, p-value < 0.001),
whereas a lower correlation (r ¼ 0.34, p-value ¼ 0.0001) was found between Err and the veg-
etation height. In the case of wetlands with no vegetation cover, the kappa coefficient was zero,
due to the lack of available samples. The impact of inundated vegetation on algorithms of water
detection is well-documented in relevant literature.49–51 In addition, such errors are also reported
due to the presence of mixed water-vegetation pixels.50

3.3.4 Impact of water depth

An analysis of the OA according to the water depth was also performed separately for rice fields
and wetlands, with water depth classes ranging from 0 (no surface-water) to 10 cm for rice fields,
and from 0 to 65 cm for wetlands. Tables 9 and 10 gives the confusion matrices for each case. For
both wetland systems and rice fields, the OA is lower for shallow water depths (except for the no
surface-water case where d ¼ 0) and increases with the depth to reach 0.894 in the case of rice
and 0.948 in the case of wetlands. The coefficient of correlation between the water detection
error (Err) and the water depth in the sampling polygons is r ¼ −0.46 (p-value < 0.001), indi-
cating a negative correlation, where the error decreases as the water depth increases. At shallow
water depths the accuracy of the water detection algorithm was low (0.655 in rice fields and
0.625 in wetlands) and increased with the water depth reaching up to 0.948 in wetland areas

Table 8 Confusion matrices according to the vegetation cover in the wetlands in the period of
May–June (2018 and 2019).

Vegetation
growth (%)

Observations (in pixels)

P R OA KappaPredictions
Absence
of water

Presence
of water Total

veg_cov ¼ 0 Absence of water 0 646 646 — 0.962 0.962 —
Presence of water 0 16528 16528

Total 0 17174 17174

veg_cov > 0 Absence of water 32233 2560 34793 0.687 0.875 0.824 0.630
Presence of water 8198 17996 26194

Total 40431 20556 60987

Table 9 Confusion matrices according to water depth in the rice fields in the period of May–June
(2018 and 2019).

Water depth

Observations (in pixels)

P R OAPredictions
Absence
of water

Presence
of water Total

d ¼ 0 Absence of water 7660 0 7660 — — 0.996
Presence of water 27 0 27

Total 7687 0 7687

0 < d <¼ 5 Absence of water 0 772 772 — 0.655 0.655
Presence of water 0 1467 1467

Total 0 2239 2239

5 < d <¼ 10 Absence of water 0 251 251 — 0.894 0.894
Presence of water 0 2117 2117

Total 0 2368 2368
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deeper than 50 cm. The recall value also increased at greater depths. The water depth in the rice
fields did not exceed 10 cm when the fields were flooded. The correlation between the water
detection error and the water depth in the sampling polygons showed a negative correlation,
where the error decreases as the water depth increases, which is in line with the findings of
Caballero and Stumpf52 and Martinis et al.22

3.4 WebGIS Development for the Dissemination of the Produced
Water Maps

AWebGIS platform was developed for the dissemination of the surface-water bodies mapping
results together with other relevant data important for the prediction of mosquito larvae presence
(e.g., presence of vegetation, vegetation characteristics, and historical sampling data of larvae
presence in specified areas, platform can be accessed through Ref. 53. The WebGIS as shown in
Fig. 13 was designed using the functionalities of the ArcGIS Online platform. The WebGIS

Table 10 Confusion matrix according to water depth in the wetlands in the period of May-June
(2018 and 2019).

Water depth

Observations (in pixels)

P R OAPredictions
Absence
of water

Presence
of water Total

d ¼ 0 Absence of water 32233 0 32233 — — 0.797
Presence of water 8198 0 8198

Total 40431 0 40431

0 < d <¼ 20 Absence of water 0 524 524 — 0.625 0.625
Presence of water 0 874 874

Total 0 1398 1398

20 < d <¼ 50 Absence of water 0 1190 1190 — 0.846 0.846
Presence of water 0 6561 6561

Total 0 7751 7751

50 < d Absence of water 0 1492 1492 — 0.948 0.948
Presence of water 0 27089 27089

Total 0 28581 28581

Fig. 13 Preview of theWebGIS platform created for the visualization of the surface-water mapping
results for specific dates. Water presence is indicated with light green color.
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includes the existing results from surface-water detection, and field surveyed data for vegetation
cover, vegetation height, water depth, larvae abundance, and species. Later, it will integrate the
results from the operational use of the surface-water detection algorithm using the Otsu Valley-
emphasis thresholding method. The maps will be available for past dates and in NRT for new
dates for the region of Central Macedonia, Greece.

4 Conclusions

Various methodologies for the automatic mapping of surface-water bodies in rice fields and wet-
land systems were adapted and tested. Comparison and evaluation of the methods were performed
using field data for the period 2018–2019. The highest OA in detecting inundated areas using two
characteristic dates (beginning and end of summer season) was achieved with the Otsu Valley-
emphasis method (0.835). This method detects automatically from a SAR backscatter histogram
the threshold value indicating the presence of water. An OA of 0.862 was obtained by the same
method during the larvicide application method during, which the algorithm was further tested.
More specifically, an OA of 0.915 in rice fields and 0.854 in wetland systems were recorded during
the period May–June of the years 2018 and 2019. The identified sources of water mapping errors
are mainly related to the presence of flooded vegetation and the water depth of water bodies, the
presence of buildings and agricultural facilities (e.g., stables and greenhouses), and the presence of
floating algae in rice fields and of surface salt crusts in wetland systems. As a result, an operational
and automated approach was proposed for the systematic (every six days) identification of surface-
water bodies through high spatial resolution SAR data (Sentinel-1) in NRT. AWebGIS platform
was designed for the continuous monitoring of surface-water bodies and the identification of hab-
itats favoring mosquito algae breeding where all producedmaps are made accessible and newmaps
will be uploaded in NRT. In addition, the resulting maps will be incorporated in a spatial decision
support system to facilitate effective control of mosquito larvae.
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