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ABSTRACT. Purpose: Endometrial cancer (EC) is one of the most common types of cancer
affecting women. While the hematoxylin-and-eosin (H&E) staining remains the stan-
dard for histological analysis, the immunohistochemistry (IHC) method provides
molecular-level visualizations. Our study proposes a digital staining method to gen-
erate the hematoxylin-3,3′-diaminobenzidine (H-DAB) IHC stain of Ki-67 for the
whole slide image of the EC tumor from its H&E stain counterpart.

Approach: We employed a color unmixing technique to yield stain density maps
from the optical density (OD) of the stains and utilized the U-Net for end-to-end infer-
ence. The effectiveness of the proposed method was evaluated using the Pearson
correlation between the digital and physical stain’s labeling index (LI), a key metric
indicating tumor proliferation. Two different cross-validation schemes were designed
in our study: intraslide validation and cross-case validation (CCV). In the widely used
intraslide scheme, the training and validation sets might include different regions
from the same slide. The rigorous CCV validation scheme strictly prohibited any
validation slide from contributing to training.

Results: The proposed method yielded a high-resolution digital stain with preserved
histological features, indicating a reliable correlation with the physical stain in terms
of the Ki-67 LI. In the intraslide scheme, using intraslide patches resulted in a biased
accuracy (e.g., R ¼ 0.98) significantly higher than that of CCV. The CCV scheme
retained a fair correlation (e.g., R ¼ 0.66) between the LIs calculated from the digital
stain and its physical IHC counterpart. Inferring the OD of the IHC stain from that of
the H&E stain enhanced the correlation metric, outperforming that of the baseline
model using the RGB space.

Conclusions: Our study revealed that molecule-level insights could be obtained
from H&E images using deep learning. Furthermore, the improvement brought via
OD inference indicated a possible method for creating more generalizable models
for digital staining via per-stain analysis.
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1 Introduction
Hematoxylin and eosin (H&E) staining is a general staining method commonly performed in
pathological diagnosis. Hematoxylin dye stains the cell nuclei, whereas eosin dye stains the cyto-
plasm. The morphological features, such as cell and tissue structures, morphology, color, and
texture, are evaluated to determine the pathological diagnosis. H&E staining is followed by the
classification of the histological type and differentiation grade. Various proteins within the cells
related to targeted therapy are visualized via immunohistochemical (IHC) reactions. IHC staining
has been used to visualize estrogen receptor, progesterone receptor, human epidermal growth
factor receptor 2 (HER2), and Ki-67 in patients with breast cancer. In IHC, various proteins
are visualized using 3,3′-diaminobenzidine (DAB), and the nuclei are visualized via counter-
staining with hematoxylin.1 The IHC staining method plays a vital role in the pathology diag-
nosis of cancers; however, it is more expensive and complicated than H&E staining.

Whole slide imaging (WSI) technology has revolutionized the domain of pathology diagnosis.
Tissue slides are digitized into high-resolution images using microscopic scanners (Fig. 1), and the
laborious process of manual quantitation is replaced with efficient automated algorithms. Figure 2
presents the H&E stain and IHC stain WSIs of a uterine corpus specimen. Additionally, storing
digital images allows the application of image analysis technology, or artificial intelligence, includ-
ing deep learning technology. Powered by the evolution of computing hardware such as the graph-
ics processing unit (GPU), deep learning technology has achieved impressive outcomes in the field
of computer vision. Previous studies have established the ability of deep learning techniques to
perform pathology image analysis tasks, such as the classification of histological types and differ-
entiation of cancer, the detection of mitotic cells in the tissues, and the segmentation of the tumors.

Ki-67 protein is expressed during the G1, S, G2, and M phases of the cell cycle, except for
the quiescent phase (G0).1,2 Consequently, Ki-67 has been used as a biomarker to assess the
proliferative ability of malignant cells and determine the malignancy of cancer.3

The labeling index (LI), also known as the proliferation index,4 is one of the crucial diag-
nostic parameters calculated from the IHC expression of Ki-67. The LI represents the ratio
between the number of IHC-positive nuclei and the total number of nuclei within the tumor.

Fig. 1 Workflow of pathological diagnosis.
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After obtaining the whole slide images, pathologists would select regions of interest (ROIs) from
hotspots containing sufficient expression areas for quantification.

An ROI should contain around 1000 to 1200 cell nuclei for the calculation of LI.5 However,
manual measurement and evaluation of LI is labor-intensive. Therefore, a technique for con-
verting the H&E-stained specimens into their IHC-stained counterparts, which can be used for
automatic quantitation, was developed in this study using deep learning and image processing
methods. The Ki-67 protein is expressed during the active phases of the cell cycle. Thus the
expression of this histochemical can be inferred from the morphological and texture features
visualized via the H&E staining method.1,2,6–8 Deep learning methods could facilitate this proc-
ess. U-Net, a deep learning model for image segmentation, was used in this study to generate
digital hematoxylin-3,3′-diaminobenzidine (H-DAB) IHC stains with accurate nuclear positivity.
The proposed method was applied to the WSIs of patients with endometrial adenocarcinoma.
Previous studies have evaluated the utility of digital IHC staining using deep learning.9 However,
this is the first study to depict the correlation between the LI of digital IHC staining and physical
IHC staining and analyze the cross-case generalization of Ki-67 digital staining models in uterine
corpus endometrial carcinoma (UCEC).

2 Related Work

2.1 Encoder–Decoder Models
Deep learning methods have been widely used to perform generative computer vision tasks. The
encoder–decoder architecture is one such popular paradigm. The encoder accepts an input image
and projects it to a high-dimensional feature space with a relatively lower spatial resolution and
abundant semantic information. The decoder recovers an output containing task-specific infor-
mation, such as the segmentation of objects or images with alternated styles,10 from the encoded
tensors. The fully convolutional neural network11 (FCN) was designed for semantic segmentation
in general scenes. FCN was the first network to produce a pixel-to-pixel translation of images
using convolutional layers only. Compared with its predecessors, FCN contains no dense layer
but introduces the upsampling operation to decode the output image with a resolution identical to
the input from the feature maps encoded by convolutional layers from the input image. U-Net is a
widely used model for segmenting medical images12 and generative computer vision tasks.
Compared with FCN, U-Net inserts skip connections between the encoder and decoder layers.
This operation contributes to aggregating information from different scales and generates fine-
grained results.

2.2 Classification of Ki-67-Positive Nuclei Using Hand-Crafted Features
Cells in different phases of the cell cycle possess unique morphological and texture features.13

Kimura et al.6 used the support vector machine (SVM) to classify the Ki-67-positive and Ki-67-
negative single nuclei cropped from endometrial adenocarcinoma specimens. The nuclei were
extracted and divided into positive and negative groups equally. The signal intensities, texture
features represented by the gray-level co-occurrence matrix,14 morphological features, and chro-
matin distributions of each nucleus were differentiated using a linear SVM.15 This method
resulted in an accuracy of 85%. Those studies suggested that the proliferation status of cells

Fig. 2 Representative images depicting the (a) H&E and (b) Ki-67 immunohistochemistry stains.
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may be correlated with the morphological and texture characteristics. Therefore, it may be pos-
sible to translate an H&E-stained specimen to its IHC counterpart by analyzing the features of the
nuclei and identifying the proliferating nuclei that should be marked with the DAB component.

2.3 Digital Staining
Digital staining has enabled the visualization of tissue regions via the analysis of their features
using algorithms instead of physical pigments. Traditionally, digital staining can be realized by
analyzing the spectral characteristics of the tissue.16 Advances in the field of deep learning have
facilitated further research on transforming the stain types with neural networks. By leveraging
the visual features of different tissue regions, colors of corresponding pigments are assigned to
each tissue area. For example, Chang et al.17 proposed to transform H&E to the immunofluores-
cence stain using the Pix2Pix model,18 Xu et al.19 and Quiros et al.20 used adversarial networks to
generate real-like stained specimen samples. De Haan et al.21 used GAN-based methods to trans-
fer the H&E stain to Masson’s Trichrome, Jones, and PAS stains. However, these stains are
histological stains corresponding to human-visible structures, such as membranes or fibers, and
have no functionality to reveal molecule-level activities. Mercan et al.22 utilized the Cycle-
GAN23 to map an image of H&E stained breast specimen to its phosphohistone H3 (pHH3)
stain counterpart and revealed the presence of mitotic cells in the tissue. Li et al.24 used a
U-Net with Gaussian-weighted masks of cell centroids to distinguish the mitotic cells and
revealed a correlation between the visual patterns in H&E images and the cell cycle information
revealed by pHH3. Notice that their problem setting is similar to the work presented herein,
whereas the pHH3 is only expressed during the mitosis and G2 phases, and Ki-67 is expressed
during all active phases of the cell cycle.25 Moreover, the mitotic cells in the H&E stained spec-
imens can be distinguished visually, whereas Ki-67 positive cells cannot be directly observed.
Therefore, utilizing features related to Ki-67 expression is a more challenging task as the visual
characteristics are relatively subtle during nonmitotic phases.

Three highly related studies are introduced herein. Liu et al.26 used ResNet-1527 to classify
manually annotated nucleus patches in neuroendocrine tumors. The network was reformed into
an FCN to generate a heatmap of positive nuclei. A strong correlation was observed between the
positive pixel area ratios in the prediction and the ground truth. Liu et al.28 used a Cycle-GAN-
like model on serial cuts of neuroendocrine cancer and breast cancer to generate digital Ki-67
stains and obtained a strong correlation of Ki-67 positive area. Martino et al.29 used the Pix2Pix
model to predict Ki-67 positivity in H&E-stained oral squamous cell carcinoma tissues and
reported a strong correlation of the LI.

Precedent research has shown the possibility of stain conversion with generative models.
However, the generalization of models has not been elucidated, especially in terms of the reliable
derivation of nucleus-level diagnostic metrics in intercase scenarios. Moreover, the results of the
nucleus-level evaluation, such as LI, have not been reported, and the cross-case performance of
their model remains unclear. Additionally, the FCN sacrifices image resolution as it downsam-
ples the image, whereas a U-Net-based generator can preserve the resolution of the input.

In this study, we used cross-case schemes to quantitatively evaluate the generalization gap of
U-Net-based Ki-67 LI prediction across cases. This study presents the results of deriving stain
density maps from the optical density (OD) image instead of the RGB image. Compared with the
RGB space, using the OD images to train the U-Net improved the correlation of the LI under the
intraslide and cross-case scenarios. This is the first report to depict the correlation between the
LIs of digital IHC stain and physical stain in a cross-case condition for UCEC.

3 Methodology

3.1 Overview
We used the U-Net12 to directly predict the digital staining images in the OD or RGB space. Both
models were trained in an end-to-end manner. The stain density maps were calculated from OD
using the color unmixing technique (see Sec. 3.2). As for the physical processing of specimens, a
section of a physical specimen was manually stained with H&E. After the physical specimen
section was scanned and digitized as an H&E-staining WSI, we destained the very section and
manually applied the IHC method on it. Finally, we scanned the IHC-stained physical specimen
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and used its WSI as the physical ground truth. After scanning and spatial registration, we
extracted the OD of the stain’s IHC image using the color unmixing method. The image pairs
of H&E-IHC were used to train the U-Net, as shown in Fig. 3. Four input–output color space
combinations were used in the present study: OD–OD, RGB–RGB, RGB–OD, and OD–RGB,
where OD images separate stains into individual channels.

For inference, we used the trained model to predict the OD image of the stains and convert
the output OD to RGB or infer the RGB image of Ki-67 IHC staining directly. The matrix for
color-unmixing was reused during OD–RGB output conversion.

3.2 Color Unmixing
The color unmixing method was used to separate the stains from an RGB image based on
their absorption characteristics.30 Each pigment in the physically stained specimens has its
own absorption coefficients for the R, G, and B lights. Thus it is assumed that the OD values
(absorbance) of RGB components can be represented by a linear combination of the stain
amounts.31

In the case of H&E staining, the OD image mentioned in the previous section consists of the
stain density maps of H&E and the map of the background component. The term “stain density”
represents the amount of stain estimated in each pixel. Since the absorption characteristic of the
background is unknown and we have an image with only three channels, we approximately con-
sider a residual component as the background.

Fig. 3 Overview of the methodology followed in this study. Training the U-Net with the physical
IHC stain and the H&E stain in four color space combinations. The quality of the digital stains is
evaluated with the correlation of LI.
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Then the linear mixing relationship is given by

EQ-TARGET;temp:intralink-;e001;114;724OD ¼ cH; (1)

where c ¼ ðCH;CE; CRÞ is a vector of the stain densities of hematoxylin and eosin and the inten-
sity of the residual component, and OD ¼ ðODR;ODG;ODBÞ is a vector of OD values of R, G,
and B components. H is a matrix of the absorption coefficients of hematoxylin and eosin and the
coefficients for the residual component. H is sometimes called the stain matrix, and if H1 is the
stain matrix for H&E stain, we have

EQ-TARGET;temp:intralink-;e002;114;641H ¼ H1 ¼
0
@ ϵHR ϵHG ϵHB

ϵER ϵEG ϵEB
ϵρR ϵρG ϵρB

1
A ¼

R G B0
@ 0.651 0.701 0.290

0.070 0.991 0.110

−0.332 −0.081 0.940

1
A

hematoxylin

eosin

residual

; (2)

where the absorption coefficient vectors of stain s, ϵs ¼ ðϵsR; ϵsG; ϵsBÞ with s ¼ H, E, and the
residual coefficient vector, is obtained by the cross product ϵρ ¼ ðϵρR; ϵρG; ϵρBÞ ¼ ϵH × ϵE. The
exact definition of ϵs and its derivation are described at the end of this section. The actual values
of matrix H given in Eq. (2) are obtained from the study conducted by Ruifrok et al.,30 although
they may not be suitable for the slides used in the present study owing to the variations in the
absorption characteristics caused by chemical conditions of the stain, staining time, and speci-
men transmittance.32 Quantitation and alleviation of such biases will be investigated in future
studies.

Similarly, the OD image of H-DAB staining consists of the stain density maps of hema-
toxylin, DAB, and the map of the residual component. The eosin component in Eq. (2) is sub-
stituted with DAB. Thus the residual coefficient vector ϵ 0

ρ ¼ ðϵ 0ρR; ϵ 0ρG; ϵ 0ρBÞ ¼ ϵH × ϵDAB. The
stain matrix for H-DAB staining H2 becomes

EQ-TARGET;temp:intralink-;e003;114;435H ¼ H2 ¼
0
@ ϵ 0HR ϵ 0HG ϵ 0HB

ϵ 0ρR ϵ 0ρG ϵ 0ρB
ϵ 0DR ϵ 0DG ϵ 0DB

1
A ¼

R G B0
@ 0.651 0.701 0.290

0.633 −0.713 0.302

0.269 0.568 0.778

1
A

hematoxylin

residual

DAB

: (3)

Following the Beer–Lambert law,33 the pixel values I ¼ ðIR; IG; IBÞ, which represent the
light intensities recorded by the sensor, were normalized by the maximum intensity
I0 ¼ ðI0R; I0 G; I0BÞ, which can be obtained from glass regions, and converted to the OD with
an element-wise division followed by logarithm as shown in Eq. (4), where s ¼ R;G; B.

EQ-TARGET;temp:intralink-;e004;114;327ODs ¼ −log10

�
Is
I0 s

�
: (4)

The density of each stain was calculated using the OD of the R, G, and B channels. For
example, Eq. (5) shows the calculation of hematoxylin and eosin intensities from a H&E stained
RGB image:

EQ-TARGET;temp:intralink-;e005;114;253ðCH;CE; CRÞ ¼ ðODR;ODG;ODBÞH−1
1 ; (5)

where H−1
1 is the inverse of the stain OD matrix H1; CH , CE, and CR are the stain densities of

hematoxylin, eosin, and residual components, respectively; IR, IG, and IB are the normalized
intensities of the R, G, and B channels for each pixel, respectively. Figure 4 presents an example
of a color-unmixed IHC stain, where the residual channel denotes the component orthogonal to
the hematoxylin and DAB stains. The positive nuclei are clearly stained in the DAB channel, and
the negative cells can be distinguished from the hematoxylin channel.

The exact definition of ϵs was derived according to the Beer–Lambert law. Let Asλ denote the
absorbance of a sample that contains the material (stain) s for wavelength λ, ϵ̃sλ denotes the molar
absorption coefficient of the material stain s, cs denotes the molar concentration of the stain, and l
denotes the optical path length in the sample stain. Thus,

EQ-TARGET;temp:intralink-;e006;114;107Asλ ¼ ϵ̃sλcsl: (6)

If we neglect the scattering in the material, the intensity of the transmitted light with wave-
length λ in a region purely stained with s, Isλ is given by
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EQ-TARGET;temp:intralink-;e007;117;348Isλ ¼ I0λ10−Asλ ; (7)

where I0λ is the light intensity incident into the material. Another approximation is to consider the
wavelength λ only with R, G, and B color channels. The OD of a single-stained sample ODs

corresponds to the absorbance, ODs ¼ ðAsR; AsG; AsBÞ.
In WSI, csl represents the amount of molecule in the effective cross section that corresponds

to a single pixel. However, it is difficult to quantify the absolute amount of molecule and we do
not need the absolute value of the material concentration. Now let us consider an arbitrary con-
stant alpha for normalization. Then, we have ϵsλ ¼ αϵ̃sλ where ϵsλ denotes the relative absorption
coefficient after normalization, and we define the relative amount of molecule Cs ¼ csl∕α,
whereas Asλ ¼ ϵsλCs.

If we select pixels purely stained with the stain s and obtain ODs, we can determine the
absorption coefficient vector ϵs ¼ ðϵsR; ϵsG; ϵsBÞ by normalizing ODs ¼ ðϵsR; ϵsG; ϵsBÞCs.

3.3 Spatial Alignment
Since we washed out the H&E stain and applied the H-DAB stain subsequently to visualize the
Ki-67 positivity of the corresponding nuclear regions, the IHC and H&E images of one specimen
have location misalignment caused by rescanning. Therefore, image registration of H&E and
IHC WSIs was performed.

The registration was performed based on affine matrix estimation, the transformation from
one biased image to the reference image. The implementation of Marzahl et al.,34 which used
ORB features and FLANN matching,35 was applied in this study. Figure 5 shows an example of
spatial alignment.

Fig. 4 Color unmixing for physical IHC stains: (a) RGB input, (b) hematoxylin, (c) residual, and
(d) DAB.
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3.4 U-Net
Figure 6 shows the U-Net implementation. The numbers on the top of each convolutional module
indicate the number of filters for the output convolutional layer in that module. The input shape
of the network was 256 × 256 during training and arbitrary for inference. All filter sizes were
3 × 3, except for the output layer, which used 1 × 1 convolution to generate a three-channel out-
put image. All downsampling and upsampling rates are 2 × 2. DenseNet-121 was used36 as the
backbone of our network, which was pretrained on the ImageNet dataset.37 The models and
pretrained weights were adapted from the implementation of segmentation models38 code base.

Fig. 6 Architecture of the U-Net. We used the DenseNet-121 as its backbone.

Fig. 5 Global registration with ORB features and FLANN matching: (a) H&E, (b) IHC, and
(c) superposition.
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3.5 Training
The mean absolute error (MAE) was used as the loss function to train the U-Net, as defined by

EQ-TARGET;temp:intralink-;e008;117;463lossðy; ŷÞ ¼ 1

N

XN
n¼1

jyn − ŷnj; (8)

where ŷ and y correspond to the prediction and the ground truth, respectively. N is the number of
pixels in a minibatch. As shown in Fig. 3, in all schemes, images in the color space of the U-Net’s
input and output were prepared in advance, i.e., we calculated and backpropagated the loss with
the output stain density map and a precomputed ground truth if the U-Net predicts OD rather than
computing the loss with the RGB IHC stain after postprocessing. Identical H1 and H2 were used
in all training and predictions.

To validate the generalization ability of our method, we designed two different schemes for
training and validation.

The intraslide training and validation scheme included all WSIs in the training set; the ran-
domly sampled regions in each case were used for validation. As shown in Fig. 7, the green grids
represent the data shards used for training, whereas the yellow grids represent data for validation.
Intraslide inference can be used to generate digital staining of tiles when annotation and IHC
staining of other tiles in the same tissue are available. This scheme was used frequently in pre-
vious reports. However, the similarities in tissue structure and staining condition in the intraslide
scheme may introduce biases, thereby preventing its generalization to other cases. This gap is
experimentally presented in Sec. 5.3.

The cross-case validation scheme was used to test the model’s generalization ability across
the cases. That is, we took sixteen cases in each grade from the dataset for training and left three
cases in each grade for validation. In this sixfold validation, no information from any regions in
the testing cases was involved in training, and the effectiveness of the models’ cross-case pre-
diction could be qualitatively shown.

4 Experiment

4.1 Hardware and Software
As Table 1 shows, we used TensorFlow 2.039 as the basic framework for neural network con-
struction and data processing. QuPath40 was adopted as a third-party tool for annotation and
evaluation. All experiments were performed on the Nvidia DGX workstation with quad
V100 GPUs, each with 32 GB of memory. A batch size of 64 was used for each GPU. The
Adam41 optimizer’s base learning rate of 2.5 × 10−4 was scaled by the number of GPUs

Fig. 7 Training and validation schemes.
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operating in parallel.42 Four GPUs were utilized for the training. The hyperparameters of the
Adam optimizer were β1 ¼ 0.9, β2 ¼ 0.999, and ϵ ¼ 1 × 10−7. No weight decay was used.
We used a U-Net with a DenseNet-121 backbone, i.e., DenseNet-121-based encoder layers, and
the model was trained for 50 epochs, taking approximately 11 h. All inference results were
obtained with models at epoch 50. The test results of the cross-case models were generated using
the model of the corresponding fold. The identical U-Net architecture and backbone for the gen-
erator were used while training the GAN-based Pix2Pix and Cycle-GAN models. The models
were trained using the same step number.

The objective of Pix2Pix is shown in the following equation:

EQ-TARGET;temp:intralink-;e009;114;413G�
Pix2Pix ¼ arg min

G
max
D

fLGANðG;DÞ þ λLL1ðGÞg; (9)

where GðxÞ is the generated IHC patch, y is the ground-truth IHC patch, x is the input H&E
patch, Gð·Þ is the generator, Dð·Þ is the discriminator, LGANðG;DÞ ¼ Ex;y½kDðyÞ −DðGðxÞÞk2�
is the adversarial loss term, LL1ðGÞ ¼ Ex;y½ky − GðxÞk1� is the L1 loss term, and E½·� is the
mathematical expectation calculated by averaging a minibatch. k · k2 and k · k1 are L2 norm
and L1 norm, respectively. The weight factor λ ¼ 100.18 Training the Pix2Pix for 50 epochs
took ∼14 h.

The objective of Cycle-GAN is shown in the following equation:
EQ-TARGET;temp:intralink-;e010;114;299

G�
CycleGAN ¼ arg min

G;F
max
Dx;Dy

fLGANðG;Dy; x; yÞ þ LGANðF;Dx; y; xÞ

þ λ1LcycðG;FÞ þ λ2LidðG;FÞg; (10)

where x is the H&E patch, y is the ground-truth IHC patch, Gð·Þ is the generator converting
an H&E patch to IHC, Fð·Þ is the generator converting an IHC patch to H&E, Dy is the
discriminator for generated IHC patches, and Dx is the discriminator for generated H&E
patches. LGANðG;Dy; x; yÞ ¼ Ex;y½kDyðyÞ −DyðGðxÞÞk2� is the adversarial loss, LcycðG;FÞ ¼
Ex½kFðGðxÞÞ − xk1� þ Ey½kGðFðyÞÞ − yk1� is the cycle consistency loss such that FðGðxÞÞ, the
output of the IHC-H&E generator, approximates the ground-truth H&E image x and vice versa
for GðFðyÞÞ, the output of the H&E-IHC generator. LidðG;FÞ ¼ Ey½kGðyÞ − yk1� þ
Ex½kFðxÞ − xk1� is the identity loss such that the H&E-IHC generator Gð·Þ does not change
an IHC input y and vice versa for the IHC-H&E generator Fð·Þ. The weight factors
λ1 ¼ 5, λ2 ¼ 1.23

RGB–RGB color space was used to train the Cycle-GAN models owing to the heavy com-
putation. The learning rate of Adam was set to 2 × 10−4 for Pix2Pix and 1 × 10−4 for Cycle-
GAN. β1 was set to 0.5. The remaining hyperparameters of the GAN-based methods are identical
to the proposed method. Training the Cycle-GAN for 50 epochs took ∼45 h. On average,

Table 1 Summary of the experiment settings.

Model U-Net Pix2Pix Cycle-GAN

Optimizer Adam, LR ¼ 1 × 10−3

β1 ¼ 0.9, β2 ¼ 0.999
Adam,

LR ¼ 2 × 10−4

β1 ¼ 0.5, β2 ¼ 0.999

Adam, LR ¼ 1 × 10−4

β1 ¼ 0.5, β2 ¼ 0.999

Loss Eq. (8) Eq. (9), λ ¼ 100 Eq. (10), λ1 ¼ 5, λ2 ¼ 1

Generator U-Net with DenseNet-121
encoder backbone

Machine DGX Station, Quad Nvidia V100

Framework TensorFlow 2.3.1

Batch size 256

Epochs 50
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inference of the U-Net generator in all models required 2.9 s with CPU and 1.5 s with GPU for a
2048 × 2048 tile in the test set.

4.2 Dataset

4.2.1 Pathology specimens

To acquire original pathological data of paired H&E and IHC stains, we used specimens of
UCEC diagnosed at the Shinshu University Hospital. Fifty-seven cases classified as G1, G2,
and G3 according to the International Federation of Gynecology and Obstetrics (FIGO)
classifications43 were used in this study. Each grade comprised 19 cases-specimens. The
H&E stained specimens were decolorized after scanning, and the IHC reaction for Ki-67 was
performed on the same specimens. This process reveals positive reactions of the nuclei in the IHC
and shows the fundamental morphological and texture features in the H&E specimens. The IHC
reaction was performed using the Novolink Polymer method (Leica Biosystems, Nussloch,
Germany). The primary antibody against the Ki-67 protein (clone: MIB-1, Dako, Santa
Clara, California, USA) was allowed to react at room temperature for 1 h. The IHC reaction
products were visualized by a DAB substrate chromogen with deep brown. Ki-67 negative nuclei
were stained blue with Mayer’s hematoxylin, thereby yielding high visual contrast.

Both H&E-stained and IHC-stained specimens were scanned using a whole slide scanner
(NanoZoomer 2.0-HT, Hamamatsu Photonics Corp., Shizuoka, Japan) with a 40× objective lens
(pixel pitch = 0.2263 μm). The WSIs were aligned subsequently. Thus, 57 pairs of H&E-stained
and IHC-stained WSIs of the physical specimens were obtained.

4.2.2 Sampling and preprocessing

Manual registration of all 57 cases was laborious and infeasible. We used affine matrix estimation
from ORB features and FLANN matching instead. The window size for keypoint extraction was
set to 64 × 64, and the maximum number of features was set to 131,072. Registration was per-
formed on WSIs downsampled to 32,768 pixels of width. The registration error was evaluated by
comparing the MAE of the x and y coordinates among ninety landmark points manually set in
nine cases. The average registration error was Δx ¼ 1.4 μm (6.4 pixels) and Δy ¼ 0.9 μm (3.8
pixels). The error with that of manual registration yielding Δx ¼ 1.8 μm and Δy ¼ 0.7 μm for
the same images. Thus automatic registration was considered acceptable (Fig. 8).

To extract the ROIs and build the dataset, tiles with the size of 2048 × 2048 were sampled
according to the blue ratio of the downsampled WSIs. The regions with a higher blue ratio
were considered to have concentrated tumor cells stained with hematoxylin. These regions are
considered suitable for training.44 After preprocessing, 7370 samples with the size of
2048 × 2048 pixels were extracted from the 57 pairs of WSIs. We randomly selected six samples
from each WSI in advance and used them for testing. As a result, we have 7028 sets of 2048 ×
2048 H&E-IHC tile pairs in OD and RGB color spaces for training and validation and 342 sets
for testing. The tile pairs in the training and validation splits were selected randomly during
runtime with a fixed random seed. Those tiles were cropped to 256 × 256 pixels in the training
phase.

Fig. 8 Sampling of the ROIs with the blue ratio. (a) H&E image; (b) quantitation of blue ratio in the
2048 × 2048 grids; and (c) surface plot showing the peak of blue ratio, corresponding to the tumor.
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4.3 Evaluation Metrics

4.3.1 Labeling index

We evaluate the Pearson correlation of Ki-67 LI calculated from the digital staining results and
the corresponding physical stains. Ki-67 LI is the proportion of Ki-67-positive cells in a tumor
region. The calculation of LI is shown in Eq. (11), where NðþÞ

Ki−67 is the number of positive nuclei
in the tumor regions and Nð−Þ

Ki−67 is the number of negative nuclei:

EQ-TARGET;temp:intralink-;e011;114;652LI ¼ NðþÞ
Ki−67

NðþÞ
Ki−67 þ Nð−Þ

Ki−67

: (11)

As shown in Fig. 3, six patches excluded from training and validation sets were sampled
from each WSI. Identical parameters for postprocessing were set in the QuPath quantitation soft-
ware for nucleus counting in all experiments. The derived labeling indices may vary according to
the parameter settings and the selection of evaluation regions.

4.3.2 Image similarity

The image similarity metrics that are commonly used in image processing tasks were evaluated to
compare the proposed method with the baseline comprehensively. We report the peak signal-to-
noise ratio (PSNR) and the structural similarity index measure (SSIM)45 of the digital stain. Let ŷ
and y denote the prediction and the ground truth images, respectively. The PSNR is defined in the
following equation:

EQ-TARGET;temp:intralink-;e012;114;463PSNRðŷ; yÞ ¼ 20 · log10

�
maxðŷÞ
kŷ − yk22

�
; (12)

where maxð·Þ is the maximum value function. The SSIM is defined in the following equation:

EQ-TARGET;temp:intralink-;e013;114;414SSIMðŷ; yÞ ¼ ð2μŷμy þ c1Þð2σŷy þ c2Þ
ðμŷ2 þ μ2y þ c1Þðσ2ŷ þ σ2y þ c2Þ

; (13)

where μŷ and μy are the pixel sample mean, σŷ and σy are the standard deviation, and σŷy is the
cross correlation of ŷ and y. c1 and c2 are small factors for numerical stabilization. Because
registration errors exist in the preprocessing of our dataset, there are location misalignments
between the H&E image and the IHC image. When evaluating the similarity metrics between
the digital IHC stain, which is generated from physical H&E and the physical IHC stain, the
translation sensitivity of PSNR and SSIM would result in lower, biased scores. Therefore,
we also report the complex wavelet SSIM (CW-SSIM),46 which computes the similarity of
images in the frequency domain and alleviates the effect of registration errors. We computed
the average of CW-SSIM between the channels of the digital IHC staining image and the physical
IHC staining image.

5 Result

5.1 Visual Result
We report the results using OD–OD, RGB–RGB, OD–RGB, and RGB–OD color spaces under
intraslide and cross-case schemes. Figures 9 and 10 show the tiles of the H&E specimens, cor-
responding physical IHC stains, and the digital stains generated from the U-Net. Figures 11 and
12 show the results of GAN-based models. The size of the test images was 2048 × 2048. The
intraslide models generated results with loyal colors and precise Ki-67 positivity predictions. In
contrast, the cross-case models exhibited artifacts, such as local blurring and color variations.
The distribution of the Ki-67-positive nuclei was correlated with the physical staining in general.
However, the advantages and disadvantages of color space combinations could not be determined
qualitatively. Pix2Pix generates images with acceptable colors and positivity. The Cycle-GAN
model failed to demonstrate a meaningful Ki-67-positive cell distribution even under the intra-
slide scheme. Moreover, the color of the generated images differed significantly from the
ground truth.
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Fig. 10 Visual results of U-Net under the intraslide scheme. (a)–(c): G1, G2, and G3.

Fig. 11 Visual results of GAN-based models under the cross-case scheme. (a)–(c): G1, G2, and
G3.

Fig. 9 Visual results of U-Net under the cross-case scheme. (a)–(c): G1, G2, and G3.
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5.2 Similarity Metrics
Table 2 presents the pixel level PSNR, SSIM, and CW-SSIM of U-Net-based, end-to-end models
with different input/output color space combinations for intraslide and cross-case experiments.
“O” and “R” correspond to the OD space and RGB space, respectively. For example, “OR”
means the model uses OD input and RGB output to train the generator. The difference between
the color space combinations was not prominent in general. Slightly higher scores of RGB–RGB
metric were indicated by the potentially better color and structural fidelity of the result images;
however, nucleus-level comparison necessitates further evaluations. In terms of the image sim-
ilarity metrics, the Pix2Pix model achieved scores that were comparable with those of the U-Net-
based models. We only report the results of Cycle-GAN with RGB–RGB generators; the experi-
ments for color space combinations other than RGB–RGB were not conducted due to obvious
visual and quantitative inferiority.

5.3 Quantitation of Labeling Index
Figures 13 and 14 present the Pearson correlation and Bland–Altman plots of the LI derived
using the U-Net, respectively. The U-Net yielded a correlation stronger than R ¼ 0.90 with stat-
istical significance when the grade of each case was not addressed, i.e., according to the intraslide

Table 2 Similarity metrics of different models with various color space combinations.

Model Color

Intraslide Cross-case

PSNR ↑ SSIM ↑ CW-SSIM ↑ PSNR ↑ SSIM ↑ CW-SSIM ↑

U-Net OO 19.68 0.53 0.78 16.35 0.40 0.65

OR 19.93 0.54 0.79 16.34 0.39 0.65

RO 19.37 0.51 0.77 16.33 0.39 0.65

RR 19.67 0.53 0.78 16.50 0.40 0.66

Pix2Pix OO 18.05 0.46 0.70 16.61 0.41 0.64

OR 19.44 0.50 0.76 16.61 0.41 0.64

RO 18.70 0.50 0.72 16.58 0.41 0.64

RR 19.26 0.50 0.75 16.31 0.40 0.64

Cycle-GAN RR 15.07 0.33 0.60 14.76 0.31 0.60

Fig. 12 Visual results of GAN-based models under the intraslide scheme. (a)–(c): G1, G2, and G3.
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scheme. However, the digital staining models trained with the cross-case scheme were not
equally correlated with the physical IHC staining. The differences in the mean values were also
quantitated and visualized with Bland–Altman plots. The statistical analysis results are summa-
rized in Tables 3 and 4, wherein agreement means there is no significant difference between the
mean value of the LIs of the digital and physical stains according to a two-sided t-test. The p-
values of the Pearson correlation and two-sided t-test were measured. The output of the model
was considered consistent with the physical stain when the t-test revealed an insignificant differ-
ence ðp > 0.05Þ. We also quantitatively showed the error with the MAE of the LI. The results of
the intraslide models were consistent with the physical stain, indicating a strong correlation.
Although weaker, a correlation was also observed in the CCV models, indicating the utility
of digital Ki-67 staining in the future after considerable improvement in the technology. The
Bland–Altman plots revealed negative biases, indicating the necessity to alleviate false negatives,
especially in high-grade cases. As shown in Figs. 15 and 16, the Pearson correlation of Pix2Pix
and Cycle-GAN failed to outperform the U-Net under any training scheme.

Fig. 13 Pearson correlation and Bland–Altman plots of the LI derived using U-Net, calculated from
the digital and physical stains, cross-case validation.

Fig. 14 Pearson correlation and Bland–Altman plots of the LI derived using U-Net, calculated from
the digital and physical stains, intraslide validation.
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Table 3 Statistical evaluation results, intraslide. p < 10−9 are shown as 0.

Model Color

Pearson correlation Mean LI bias

LI MAE ↓Coeff. ↑ p-value Bias ↓ Agreement (p)

U-Net OO 0.98 0 −1.35 ✓(0.69) 4.1

OR 0.97 0 −3.81 ✓(0.23) 4.3

RO 0.94 0 −3.33 ✓(0.28) 5.3

RR 0.96 0 −4.23 ✓(0.20) 5.3

Pix2Pix OO 0.88 0 2.77 ✓(0.43) 8.2

OR 0.91 0 −7.52 ✗(0.02) 8.5

RO 0.91 0 −11.22 ✗(3 × 10−4) 11.4

RR 0.92 0 −9.99 ✗(2 × 10−3) 10.1

Cycle-GAN RR 0.05 0.7 4.49 ✓(0.37) 30.0

Note: bold values represent the best result obtained for each metric.

Fig. 15 Pearson correlation and Bland–Altman plots of the LIs of the GANmodels, calculated from
the digital and physical stains, cross-case validation.

Table 4 Statistical evaluation results, cross-case validation.

Model Color

Pearson correlation Mean LI bias

LI MAE ↓Coeff. ↑ p-value Bias ↓ Agreement (p)

U-Net OO 0.66 2 × 10−8 −8.40 ✗(4 × 10−3) 11.8

OR 0.64 7 × 10−8 −9.48 ✗(6 × 10−3) 11.8

RO 0.64 8 × 10−8 −7.71 ✗(8 × 10−3) 11.4

RR 0.64 7 × 10−8 −9.38 ✗(2 × 10−3) 12.3

Pix2Pix OO 0.54 2 × 10−5 −9.82 ✗(2 × 10−3) 13.9

OR 0.49 1 × 10−4 −7.84 ✗(1 × 10−2) 14.0

RO 0.54 2 × 10−5 −11.54 ✗(1 × 10−4) 14.8

RR 0.54 1 × 10−5 −8.18 ✗(1 × 10−2) 14.7

Cycle-GAN RR 0.05 0.72 0.48 ✓(0.91) 26.4

Note: bold values represent the best result obtained for each metric.
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6 Discussion
The two main features of the proposed method are as follows. First, it intuitively revealed the
positivity of cells intuitively on the resultant images, and the resolution of the generated digital
stain was higher than that of the FCN-based method.26 The generated digital stains, wherein the
textures of chromatin and stromal tissues are preserved, were more intelligible for pathologists.
Second, the proposed method utilized the color unmixing method to separate the stains, thereby
enabling the direct supervision of the Ki-67 positive regions in the DAB channel without neces-
sitating the manual annotation of each nucleus. The preprocessing procedure based on color
unmixing could facilitate the explicit extraction of Ki-67-positive nuclei, even from low-quality
stains; the methods based on generative models do not focus on the semantics and harm the
explainability of the model.

OD–OD inference yielded the highest correlation with the ground truth in the intraslide and
cross-case schemes. It was presumed that the color difference of the output image affects the
results of nuclei quantification, as the effective features for distinguishing positive nuclei are
mainly textural and chromatic. Thus calculating the OD for the input and output can provide
clearer supervision of positive pixels and address the variation of each stain separately. Also
unmixing the stain channels will facilitate stain intensity adjustment and color normalization
of WSIs. Using such per-stain labels might contribute to the cross-case generalization of the
digital staining models.

The primary limitation of the current method is the difficulty in generalizing the high pre-
diction precision to cross-case scenarios. This generalization gap may be attributed to the color
differences and redundant global information. With the stains in WSIs separated into OD chan-
nels, it would be feasible to normalize the staining intensities in training, which is a part of our
future work. The U-Net accepts input images containing a tissue region rather than a single
nucleus and involves global characteristics, such as glandular structures and specific patterns
of cell swarm, during training. Such features vary in each case and can hinder the cross-case
inference of our models.

There have been previous studies on digital staining; however, practical evaluations for clini-
cal applications have not been conducted. The evaluation has primarily relied on assessing the
visual similarity between digital images and their physically stained counterparts. As the purpose
of IHC is to evaluate protein expression, it is meaningless unless the performance of digital IHC
is assessed with a clinically relevant index. The result of evaluating with LI is quite valuable in
positioning the potential for clinical application. The OD of DAB is also utilized as a diagnostic
index and is an issue of future challenge.

Two evaluation schemes were compared in this study. Naturally, none of the schemes used
the same patches for training and validation data. However, in the intraslide scheme, the training
and validation sets included the images from the same slide. A high correlation was observed in
that case, whereas the correlation decreased remarkably when the training and validation data
were separated by case. It should be noted that only a single slide from each case was used in this

Fig. 16 Pearson correlation and Bland–Altman plots of the LIs of the GANmodels, calculated from
the digital and physical stains, intraslide validation.
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study. If multiple slides are created for a single case, even though they are different slides, they
should be considered as intraslide data and treated accordingly.

The trending GAN-based domain transfer models, particularly Cycle-GAN and Pix2Pix, did
not exhibit superiority in the nucleus quantitation task, though competitive pixel-level image
similarity metrics were observed with the use of Pix2Pix. The Cycle-GAN failed to yield a cor-
related result due to the lack of effective fidelity supervision, such as L1 loss. A cross-case gen-
eralization gap was also observed in the Pix2Pix model, and its nucleus-level LI correlation was
even lower than that of the RGB–RGB U-Net baseline. Thus methods with direct fidelity loss,
like L1, are preferred over generative frameworks.

It is essential to refer to the CCV evaluation and strive for further improvement to facilitate
the wider application of deep learning in clinical practices. Previous studies have not specified
whether to use the CCVor intraslide scheme. However, it is crucial to explicitly state the training
scheme used, as it can lead to a significant difference in the results.

On the other hand, there might be use cases resembling the intraslide scheme, although it is
currently challenging and requires ingenuity in the case of digital staining. In such unique use
cases, the results obtained from the intraslide evaluation can serve as a reference.

7 Conclusion
We propose a digital staining model that utilizes the OD of stains and converts an image of a
hematoxylin-eosin stain to its hematoxylin-DAB stain counterpart. We examined the correlation
between the digital stain and the physical stain with the Ki-67 LI, a diagnostic metric widely used
in clinical practices for cell proliferation assessment. The algorithm was evaluated with 57 WSIs
for cell proliferation assessment, and the results indicate that the U-Net can generate a real-like
digital stain that fairly correlates with the ground truth. We tested color space combinations of
OD and RGB color spaces. Conversion from OD of H&E to OD of IHC yielded the highest
correlation compared with other choices.

Correlation and bias analysis revealed a tendency toward a lower prediction of LI value and
false negatives. A comparison of the CCV and intraslide training schemes revealed that the cor-
relation coefficients of LI were 0.66 and 0.98 for the CCV and intraslide schemes, respectively.
The accuracy of CCV must be enhanced to enable its application in digital staining technology;
namely, the model’s generalizability across the cases must be improved. In some other publi-
cations, it is unclear whether the evaluation is conducted across cases or not. This study dem-
onstrated a high correlation for the intraslide scheme but a considerably lower correlation for the
CCV scheme. Thus the agreement of diagnostic metrics, such as the LI, should be evaluated via
case-based cross validation or clearly stated in the report. Although the current model could not
yield a diagnostically precise digital stain for every specimen, a significant correlation was
observed even during cross-case evaluation. Digital stains will assist pathologists in identifying
the expression of Ki-67 in the specimens and determining the malignancy of neoplasms.
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