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ABSTRACT. Purpose: The average (f,,) or peak (fcqc) Noise power spectrum (NPS) frequency
is often used as a one-parameter descriptor of the CT noise texture. Our study devel-
ops a more complete two-parameter model of the CT NPS and investigates the
sensitivity of human observers to changes in it.

Approach: A model of CT NPS was created based on its f,¢, and a half-Gaussian
fit (o) to the downslope. Two-alternative forced-choice staircase studies were
used to determine perceptual thresholds for noise texture, defined as parameter
differences with a predetermined level of discrimination performance (80% correct).
Five imaging scientist observers performed the forced-choice studies for eight direc-
tions in the f,¢.c/c-space, for two reference NPSs (corresponding to body and lung
kernels). The experiment was repeated with 32 radiologists, each evaluating a single
direction in the 7.« /c-space. NPS differences were quantified by the noise texture
contrast (Ciexure), the integral of the absolute NPS difference.

Results: The two-parameter NPS model was found to be a good representation of
various clinical CT reconstructions. Perception thresholds for fy., alone are
0.2 Ip/cm for body and 0.4 Ip/cm for lung NPSs. For o, these values are 0.15 and
2 Ip/cm, respectively. Thresholds change if the other parameter also changes.
Different NPSs with the same f,e Or f5, can be discriminated. Nonradiologist
observers did not need more Cigyre than radiologists.

Conclusions: f,., or f,, is insufficient to describe noise texture completely.
The discrimination of noise texture changes depending on its frequency content.
Radiologists do not discriminate noise texture changes better than nonradiologists.
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1 Introduction

The visual appearance of medical images is influenced by both their noise magnitude and noise
texture. In fact, it is known that both can affect the detectability of small and low-contrast
lesions.! Although multiple factors affect noise magnitude, the noise texture in CT imaging
is mainly influenced by the reconstruction method and reconstruction kernel used. In addition,
with certain iterative CT reconstruction methods, the reconstructed images can appear to
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radiologists as nonnatural, i.e., plasticky or blotchy.”™ This appearance is usually associated with
a shift of the noise power spectrum (NPS) toward the lower frequencies compared with that of
images obtained with filtered-back projection (FBP).° This shift downward in the noise frequen-
cies is mainly due to these algorithms achieving a reduction in the image noise by increasing the
spatial correlation across voxels, especially in low-dose conditions. As expected, this increase in
correlation can lead to a lowering of the spatial resolution of the image.”®

Depending on the contrast, newly developed, deep-learning-based reconstruction (DLR)
algorithms seem to be able to decouple this usual relationship between spatial resolution and
noise texture from each other to a larger extent than that existing in current iterative reconstruc-
tion methods.” This may allow for new opportunities to manipulate noise texture during recon-
struction, improving the detectability of low-contrast lesions.

Therefore, with the increasing use of iterative reconstruction algorithms in CT and especially
with the advent of deep-learning-based postprocessing, it is of interest to better understand the
phenomenon of noise texture changes during reconstruction and postprocessing in CT. With this
knowledge, it could be feasible to tune some of these algorithms to optimize the resulting image
noise texture while maintaining the spatial resolution. This can be achieved by studying only the
shape of the NPS, independently of its magnitude. However, to make these insights clinically
relevant, it is necessary to first determine what changes in noise texture are actually perceptible
by a human observer. Given the complexity of the human visual system, it is not immediately
clear how sensitive humans are to noise texture differences. Therefore, it is of interest to char-
acterize the minimum changes in the NPS shape that are needed for a human observer to detect
a change in the image texture.

To be able to systematically study noise texture changes, a simple and continuous parametric
model that describes the NPS change, and therefore noise texture, is needed. It is common to
summarize the information of CT NPSs with one parameter, the frequency at which the NPS
peaks (fpeac), OF alternatively, the average NPS frequency (f,,). However, it is clear that one
parameter can provide only limited information on the frequency distribution of the noise texture.
In other words, multiple different NPSs, all resulting in different noise textures, could have the
same [ and/or f,,. To overcome this, a more complete parametric representation of the CT
NPS shape is needed.

Therefore, the purpose of this study is to introduce and validate a more complete parametric
model of the NPS in CT and use that model to determine the detectability of changes in noise
texture for human observers.

2 Materials and Methods

To investigate the perceptual thresholds for noise texture changes, we created and evaluated a
simple and continuous two-parameter model that describes the shape of the NPS of CT images.
This model was then used in forced-choice psychophysical experiments using adaptive staircase
methods to estimate the observer thresholds as a function of changes in the two parameters. To
understand if these perceptual thresholds might be different for radiologists compared with non-
radiologists, a limited version of the study was repeated with radiologists. Finally, to determine if
the threshold changes varied based on differences in the reference NPS, these experiments were
performed using two different reference noise textures, one for body and the other for lung recon-
struction kernels.

2.1 Modeling the Noise Texture

In CT, an NPS usually has a ramp dominating the lower frequencies and an apodization part
dominating the higher frequencies.'® Previously, to model the full NPS, a six-parameter model
of NPS was suggested:'!

_lre=al?

NPS(f)=a-fb-e ¥ . (1)

In this model, the parameter a controls the magnitude of the noise, and the other parameters
primarily determine the shape of the NPS. However, having six parameters that can change alone
or together results in a large number of possible changes and is impractical for use in an observer
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Fig. 1 Example of NPS parameterization. The original acquired NPS (in gray) is fit using the
three-parameter model [Eq. (2), in dark blue]. The peak frequency (fpeax) i Used to describe
the first section of the NPS (in light blue). A half-Gaussian is fit through the section beyond
foeak [EQ. (4), dashed yellow]. The ¢ of that Gaussian describes the apodization part of the
NPS (light gray).

study. Therefore, we propose the simplification of the model to a three-parameter one. By evalu-
ating the resulting NPS fits from one manufacturer, the values of b, c, and d were empirically
determined and fixed to 1 for b and ¢ and 2 for d:

(f=a)?

NPS(f)=a-f-e . )

The applicability of this model for clinically available reconstruction kernels and reconstruc-
tion methods in CT for various vendors is tested.

If an NPS is described using Eq. (2), the peak frequency of this NPS is derived analytically
as follows:

a+ o +4p?

fpeak = ) 3)

To characterize the NPS independently of the fitting model used, we propose two param-
eters: one parameter that describes the upslope and one that describes the downslope. For the
description of the upslope, we used f ., because NPSs are supposed to monotonically increase
t0 fpeak and this parameter is already often used to describe the NPS. For the downslope, we used
the standard deviation (o) of a half-Gaussian that is fitted through the downslope of the NPS, i.e.,
for all frequencies equal to or higher than [, resulting in

U~ pear)?

g(f) =a'-e [z fpeakv 4)

where a’ determines the magnitude of the Gaussian and ¢ is its width. So ¢ was used as a single
parameter to describe the NPS downslope. Because we are modeling only the shape of the NPS
and not its overall magnitude, all modeled NPSs were set to unit area under the curve. An exam-
ple NPS and its resulting parameterizations are shown in Fig. 1.

Information on the testing on the applicability of this model is given in Appendix A.

2.2 Generation of Patches with Various Noise Textures

Given a specific fpca and o, a continuous distribution of NPSs can be generated using Eq. (1) or
Eq. (2). For a detailed description of the procedure used, see Appendix A. From the NPS result-
ing from these equations, a two-dimensional NPS (NPS,p) was created assuming that the NPS,p
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is radially symmetric. To be able to generate a specific noise texture, the generated NPS,p is
applied to white noise as follows:

N(ﬂ,(i):f_l{\/NPSZD'f{n(ﬂ:O,GZ1)}}, )

where N is the resulting colored-noise image, F is the FFT operator, and # is a realization of
white Gaussian noise with a mean value of y and a standard deviation of ¢. For the observer
study, noise patches of 256 X 256 pixels were created.

2.3 Noise Texture Contrast

If two noise textures and their corresponding NPSs are considered, the noise texture contrast
(Cexure) 18 calculated based on the contrast that an ideal observer is able to see. For the derivation
of the ideal observer, see Appendix B. Effectively, the ideal observer looks at the absolute
differences between the two NPSs. Therefore, the noise texture contrast is calculated from
the NPS,p, as

Clexture = Z INPSyp 1 (f, @) = NPSyp s (f o). (©)

2.4 Observer Study

To investigate the detectability of differences between two colored noise textures, a two alter-
native forced choice observer study was performed. For each realization of the experiment, three
noise patches, created in real time, were shown to the observer. One was labeled the “reference”
noise patch, one patch had another noise realization with the same NPS as the reference patch,
and the third noise patch originated from an NPS with a different ..« and/or a different . All
noise patches were shown with a window level equal to the mean gray level and a window width
of 10 (i.e., 10 times the SD). The task for the observer was to identify the patch that had the same
noise texture as the reference noise patch (Fig. 2). After the observer made a choice, the correct
patch was highlighted for one second and then the next trial was shown.

To determine the parameter values to use for the noise patches of the next trial, a staircase
method was applied with a step size of 15% of the current value. The difference in the parameter
values between the different NPSs was decreased after three correct responses and increased after
one incorrect response. ' The trials were stopped after 12 reversals, and every series was executed
6 times. Per repetition, the geometrical mean over the trials from the last eight reversals was
determined, which is an estimate of the 80% correct point on the psychometric curve.'* The
average value of this 80% correct point from the last five repetitions was used as the detectability
threshold.

For this study, two reference NPSs were chosen, one from a body kernel and one resulting
from a lung kernel, determined from images of a 320 mm water phantom on a clinical wide-area

Fig. 2 Screenshot of a trial shown to the observer. The task of the observer was to select the
alternative noise patch (option 1 or option 2) that has the noise texture most comparable to the
one of the reference noise patch.

Journal of Medical Imaging 035501-4 May/Jun 2024 e Vol. 11(3)



Oostveen et al.: Perceptual thresholds for differences in CT noise texture

0.012

—— Body NPS

Lung NPS
0.010

0.008

0.006

NPS (HU2cm?)

0.004

0.002

0'0000 1 2 3 4 5 6 7 8

Frequency (Ip/cm)

Fig. 3 Reference noise power spectra (NPSs). The body NPS was obtained using an HIR (Hybrid-
IR) method with body settings, and for the lung NPS, a Hybrid-IR with lung settings was used. The
foeak @nd ¢ values are 1.89 and 1.28 Ip/cm for the body kernel and 4.64 and 1.83 Ip/cm for
the lung kernel.

CT system (Aquilion One PRISM edition, Canon Medical Systems Corporation, Otawara,
Japan) using the dose determined by the automatic tube current modulation and a hybrid iterative
reconstruction (HIR) method (AIDR 3D, Canon Medical Systems Corporation). The reference
NPSs are shown in Fig. 3. The f ¢, and o values are 1.89 and 1.28 Ip/cm for the body kernel and
4.64 and 1.83 Ip/cm for the lung kernel.

During the observer study, the two reference NPSs were approached from eight directions,
involving a change in f ., only, a change in o only, and simultaneous changes in both (all from
higher and lower values) (see Fig. 4). The starting test values were determined by what was a
clearly visible difference in noise texture for one of the investigators. Initially, five nonradiologist

//\ o
Change in
oonly
Change in / / i
AN

fpeak only

/L Foeak

N\

Fig. 4 All eight directions of changes in fyeq and/or ¢ that were investigated. Compared to the
reference NPS, four directions change fyeq OF o only, and four directions involve a change in
both fpea and o.

Journal of Medical Imaging 035501-5 May/Jun 2024 e Vol. 11(3)



Oostveen et al.: Perceptual thresholds for differences in CT noise texture

observers (PhD students in imaging science and medical physics trainees) completed studies to
evaluate all 8 directions for both reference NPSs in multiple sessions. A maximum of 2 directions
was performed in one session to prevent fatigue. All observers were able to complete each two-
direction session within 1 h.

To investigate if radiologists are able to detect more subtle differences in noise texture,
the experiment was repeated with 27 radiologists at the Medical Imaging Perception Lab at the
European Congress of Radiology (ECR) 2023 and afterward with five radiologists from the
Radboud University Medical Center. Due to the limitation in available time per radiologist, each
radiologist only performed one of the reference NPS and direction combinations. Each series was
performed only five times, of which the last four were used for the calculation of the geometrical
mean. This led to results from two radiologists for each direction.

All experiments were performed in dimmed lighting conditions, comparable to diagnostic
reading room conditions. The noise patches were shown on a DICOM GSDF calibrated diag-
nostic monitor (for the nonradiologist: Barco MDMC-12133 and for the radiologists: Barco
MDNC-3321, Barco, Kortrijk, Belgium).

2.5 Analysis of the Results

For each reference NPS, the threshold f ., and o values per nonradiologist observer and the
average threshold over all nonradiologist observers were calculated for each direction. A thresh-
old detectability boundary ellipse was fitted through the eight average threshold values using
a least squares method.

The threshold noise texture contrast for each threshold condition, as well as their 95% con-
fidence interval, was calculated per observer. For the two radiologists, only the limiting noise
texture contrast was calculated. The radiologists were assumed to perform the same as the other
observers if their threshold noise texture contrast was within the 95% confidence interval of
the nonradiologist observers.

3 Results

In Fig. 5, the fpeu and o limiting values for each nonradiologist observer and the overall average
are shown for both reference NPSs. Also the detectability threshold ellipse is shown. For the
body NPS (fea: 1.89 Ip/cm and o: 1.28 Ip/cm), the ellipse has the center close to the reference
value, with f.;c = 1.86 Ip/cm and ¢ = 1.30 Ip/cm. The major radius of the ellipse makes an
angle of 143 deg with the f ., axis. Based on this elliptical fit, the detectability threshold f e, is
0.2 Ip/cm. Of course, this value changes if ¢ is changed simultaneously. For the lung NPS (f ey
4.64 Ip/cm and o: 1.83 Ip/cm), the ellipse center is at fpe,c = 4.30 Ip/cm and ¢ = 2.46 Ip/cm,
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Fig. 5 Results from the observer study. The 80% threshold limits for each observer, as well as
the average values and the fitted detectability threshold ellipse, are shown. Results from the
(a) body reference NPS and (b) lung reference NPS. The color of the background indicates the
noise texture contrast.
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and the major radius makes an angle of 120 deg. The corresponding threshold fe. is 0.4 1p/cm.
Therefore, the detection threshold for a change in (.. is higher when using the lung NPS as the
reference compared with the body NPS as reference.

The background of the two graphs in Fig. 5 shows the noise texture contrast (Ciexure)
compared to the reference NPS. The lighter the color is, the higher the contrast is. For a
changing fpcak, 1€8S Ciexure i needed to be perceptible to a human observer compared with
changing the downslope. To make a change in texture perceptible, the most Ciye 1S needed
in the direction of lowering f ., combined with increasing o, or vice versa. The iso-f,, line
through the reference NPS shows that the average frequency is a better estimator for the
visibility of noise texture changes than f,..x because the iso-f,, line is more parallel to the major
axis of the threshold ellipse, whereas the 50}, line runs more closely to the minor axis of
the ellipse. However, NPSs with the same average frequency can still be distinguishable from
each other.

The noise texture contrast thresholds determined with radiologists show that radiologists
have a noise texture contrast threshold within the 95% confidence interval of the nonradiologist
observer results in 17 of the 32 experiments. In 12 cases, the radiologists had a noise texture
contrast threshold above the 95% confidence interval of that from the nonradiologist observers.
A detectability threshold could not be determined for two experiments because the observers
would have needed a larger difference to be able to detect the correct noise texture than would
be possible (¢ would become negative). Table 1 and Fig. 6 show the individual radiologist results
and the average results of the nonradiologist observers.

4 Discussion

Because noise texture influences detectability of lesions and new deep learning-based CT meth-
ods can more easily modify noise texture, it is of interest to study the effect of noise texture
changes on the detectability of lesions. In this research, we focused on the detectability of noise
texture changes itself, hypothesizing that if an observer cannot detect differences in noise texture,
then lesion detectability across these noise textures would be unaffected. We found the thresholds
for detectability with varying f,.. and ¢ for two commonly used reconstruction kernels and
showed that radiologists do not perform better than nonradiologist observers in detecting these
differences. This may suggest that the sensitivity to changes in NPS is related to the human visual
system. However, depending on the direction of the change, the intraobserver variability of this
detectability threshold can be large. This is especially true in the direction of the major axis of
the ellipse.

The change in fp..x and o needed for the human observer to detect the difference varies
for both conditions and for the directions within each condition. However, the average noise-
texture contrast needed is roughly equivalent, except for the lung reference NPS in the direction
of a higher f ., and lower o. In this case, the noise texture differences are concentrated at
high spatial frequencies. This result may reflect limitations in human observers at high spatial
frequencies. This would be consistent with models of texture discrimination that posit
octave bandwidth filters that are broad band at higher spatial frequencies and therefore mix
noise effects across a larger band of spatial frequencies.'*"'® However, we should note that
these models have been developed for images that look very different from CT noise
textures. Therefore, further validation is needed to determine if generalization to CT noise is
applicable.

A slightly higher detectability threshold was found for radiologists compared with the non-
radiologist observers. This might be caused by the fact that the evaluation with radiologists was
performed in only one change direction, so they were less used to the task compared with the
nonradiologists, who did all directions. In addition, radiologists only performed five repetitions,
and the nonradiologist observers performed six. However, we did not find that the last repetition
of the nonradiologist observers was better than the first five.

This research is a first step in the investigation of the effect of noise texture from nonlinear
reconstruction methods on the perception of lesions in clinical CT images. Further research is
needed to include the visibility of lesions with different noise textures and, eventually, with the
inclusion of anatomical background. The latter is needed not only due to its interference with
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Fig. 6 (a), (b) Results from the radiologists shown in conjunction with the average of the nonradi-
ologist observers. In 17 of the 32 radiologist experiments, the results are within the 95% confidence
intervals of the nonradiologist results.

the detectability of lesions but also because the noise texture from nonlinear reconstructions is
probably different from that in homogeneous backgrounds, potentially also breaking the
assumption that the noise is radially symmetrical. However, in this first initial study, we aimed
to determine what differences in noise texture, as characterized by differences in NPS, are
actually detectable by the human visual system, so the follow-up studies could be performed
with meaningful noise texture differences.

Our study has several limitations. First, the number of observers was limited. Future research
might involve increasing the number of observers to better estimate the average thresholds as
well as their variability for the various directions. Also evaluating only eight directions of change
is quite limited considering that six parameters are needed to describe an ellipse. Hence, evalu-
ating more directions could provide a better estimation of the limiting ellipse. In addition, we
used only two reference NPSs. Although these NPSs are used often for lung and body exams,
acquisitions for bone and brain result in NPSs having different f,..x and o. Also other recon-
struction techniques, such as model-based iterative reconstructions (MBIR) or DLR, as well as
reconstructions from other vendors, will result in different NPS shapes. Finally, the underlying
noise distribution used was Gaussian, although in recent studies, we are seeing that nonnormal
CT noise distributions can be discriminable from NPS-matched normal noise distributions.'”
To further study this effect, similar studies as this one are needed; however, these should not
change the NPS but change the underlying noise distribution. Next, just as a follow-up for this
study, the effect on lesion detection should be studied.

5 Conclusions

Human observers showed different sensitivity to changes in CT noise textures based on peak
frequency (fpca), and the downslope of the NPS (o) alone and in combination. Radiologists
did not detect these textural changes any better than nonradiologist observers. Describing
NPS using only the fp. or the f,, alone was insufficient to describe perceived differences
in CT noise texture. The presented model using f ., and o can serve as a starting point to better
describe noise texture and to further study the impact of CT noise texture on human task
performance.

6 Appendix A: Verification of the NPS Model in CT

To obtain a wide representation of CT NPS curves, water phantom images were acquired using
CTs from four vendors and different reconstruction techniques. These NPSs were modeled and
parameterized, and the goodness-of-fit for the models and appropriateness of the parameters was
determined.
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6.1 NPS Acquisition

NPS data were acquired on four CT systems from four different vendors (Canon Medical
Systems, GE HealthCare, Philips healthcare, Siemens Healthineers). A 320-mm diameter
water phantom was imaged using the settings used clinically for the abdomen protocol at the
corresponding site and with a lower dose setting. The acquisitions were reconstructed using
the clinically used kernel for abdomen, lung, brain, and bone, for the following reconstruction
methods (if available): FBP, HIR, MBIR, and DLR. The slice thicknesses used were 0.5 mm for
Canon, 0.625 mm for GE, and 1.0 mm for Philips and Siemens. For all but the FBP recon-
struction, three strength settings were used, leading to a maximum of 80 reconstructions per CT
system, if all reconstruction methods were available [2 dose levels, 4 kernels, 10 reconstruction
methods (1 FBP + 3 strengths X 3 methods)]. Each NPS;; was calculated in a central ROI of
128 x 128 pixels using the method described by Boedeker et al.'® From each acquisition,
a stack of at least 100 slices was used for the NPS calculation. For each slice, the NPS was
calculated and averaged over all slices. This average NPS;4 was normalized to have a unit area
under the curve.

6.2 NPS Data Analysis

The acquired NPS,4 was fitted using the six-parameter model [Eq. (1)] and the three-parameter
model [Egs. (2) and (3)] by a least-squares method. To determine the f{cq, the NPS4 was first
filtered using a low-pass filter at 4% of the full bandwidth. This prevented small local peaks
from affecting the determination of f ... Finally, the three-parameter NPS 4 was described with
a two-parameter model [with Eq. (4)], and the f,, was calculated.

To generate the two-parameter parameterized NPS, a procedure in Python was written
using the curve_fit and minimize_scalar functions from the scipy.optimize package. The three
parameterized NPSs were compared to the original NPS4 using the relative sum of absolute
differences (RSAD):

|NPSparam(f) - NPSld(f)|
RSAD = 100%. 7
2 s * @

6.3 Results

All acquired NPS shapes are shown in Sec. 6.4. Of the 194 acquired NPSs, 152 (78%) NPSs have
a shape that has a ramp dominating the low frequencies and an apodization part that dominates
the higher frequencies. 14 (7%) NPSs only have a ramp (no downslope), and 28 (14%) NPSs
have a different shape altogether (e.g., multiple peaks).

In Tables 2-5, all values of ficak, 0, fay, and the RSADs between the parameterized NPSs
and the acquired NPSs are given. For several NPSs, there is no ¢ value because the NPS has no
downslope within the Nyquist frequency. Two NPSs with the same fp, or the same f,, are
shown in Fig. 7 together with their corresponding noise textures. As can be seen, the noise tex-
tures are clearly discernible, whereas fcq Or fyy is the same. The combination of f(,..x and ¢ do
differ for these situations.

The six-parameter NPS model can fit the acquired NPSs with a RSAD smaller than 10% for
FBP, HIR, MBIR, and DLR in 100%, 92%, 71%, and 100% of the cases, respectively. For the
three-parameter model, this drops to 88%, 69%, 45%, and 54%, respectively. For a more elabo-
rate overview, see Table 6. The NPSs modeled by the parameters f|..c and o using the three-
parameter model yielded a modeled NPS that, over all manufacturers, resulted within 20%
RSAD for FBP, HIR, MBIR, and DLR in 69%, 78%, 54%, and 67% of all NPSs, respectively
(Table 6).
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Oostveen et al.: Perceptual thresholds for differences in CT noise texture
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Fig. 7 NPSs with clearly different noise textures but with the same (a) peak frequency
(1.26 Ip/cm) and (b) average peak frequency (1.64 Ip/cm). To avoid possible differences in
appearance due to differences in higher order statistics in the original reconstructions, the noise
textures were generated by applying the NPS to a realization of white noise.

Table 6 Percentages of NPS parameterizations with a relative sum of absolute differences with
the acquired NPS below 10%, between 10% and 20%, and above 20%, per manufacturer and
reconstruction type. The first number in each cell is the percentage for the six-parameter model
and the second number is for the Three-parameter model. Some reconstruction types were not
available for some manufacturers.

Manufacturer
Reconstruction
type Deviation Canon GE Philips Siemens All
FBP <10% 100/100 100/100 100/50.0 100/100 100/87.5
>10%, <20% 0/0 0/0 0/50.0 0/0 0/12.5
>20% 0/0 0/0 0/0 0/0 0/0
HIR <10% 100/100 75.0/41.7 100/50.0 Not available  91.7/68.9
>10%, <20% 0/0 16.7/58.3 0/50.0 5.2/28.9
>20% 0/0 8.3/0 0/0 3.1/21
MBIR <10% 100/79.2  Not available 33.3/0 91.7/91.7 71.4/45.2
>10%, <20% 0/20.8 50.0/5.6 4.2/0 21.4/14.3
>20% 0/0 16.7/94.4 4.2/8.3 7.1/40.5
DLR <10% 100/54.2  Not available  Not available  Not available 100/54.2
>10%, <20% 0/41.7 0/41.7
>20% 0/4.2 0/4.2
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6.4 NPS Shapes
NPS shapes for the images obtained for the various manufacturers, reconstruction techniques,
and kernels. The acquired NPS and the fitted three-parameter model are shown below.
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M 0.010 1 I‘\.\
0.006 /
0.006
w f 0.008 1 /
g |
0.004 11
0.004 A 0.006 |
0.004 1
0.002 0.002 4
0.002 1
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0.000 0.000 0.000 \
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
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Notes

RSAD: Relative sum of absolute differences

The following reconstruction techniques were not available: Siemens HIR and DLR. GE
MBIR and DLR. For Philips MBIR Bone, the hospital uses the same reconstruction kernel
as for MBIR Lung.

7 Appendix B: Ideal Observer
We consider a binary discrimination task to discriminate between two classes of Gaussian-

distributed images defined by different power spectra. Let g represent the image pixel values as
a column vector. The two hypotheses for the discrimination task are

Hy: g~MVN(p, X)), H,: g~MVN(RX,),

where the textural differences are entirely represented in the image covariance matrix (X; versus
2,) and there is no difference in the image mean ().

7.1 Ideal Observer
The ideal observer test statistic is based on the log-likelihood ratio. The likelihood of a hypoth-
esis (given an image stimulus) is determined from a multivariate normal distribution:

1 .
p(glH;) = We—%((g—ﬁzi He-w),

where M is the number of pixels in the image and || represents the determinant of the matrix
argument. Calling this a likelihood (instead of a probability density function) means that we
consider g to be given (i.e., the independent variable) and H; to be unknown (the dependent
variable). The log-likelihood ratio is then given as

()

_ _% (- (2" - Z) (g — n) +log(|Z,]) —log(|Z,]))
= (g—w)" (5" - %) (g -w).

The last line is equivalent to the log-likelihood ratio, with removing the terms that do not
affect the performance.

To evaluate the ideal observer in this case, we need to be able to compute the inverse of the
class covariance matrices. This is where textures defined by an NPS can make the computations
much easier.

7.2 Frequency Domain Computation
If the different image textures may be considered to be realizations of a stationary random proc-
ess, then their covariance matrices are diagonalized by the Fourier basis:

Ei = F_IS,F g Si = FZiF_l,

where S, is a diagonal matrix representing the noise power spectrum and F is the finite (usually
2D) Fourier transform matrix. So the product Fg would be the FFT of image g. Because of the
properties of the FFT, we have F~! = ﬁF*, where the superscript * means the transpose con-
jugate (sometimes called the Hermitian or adjoint operator). So we have

S;! = Fx;'F-!
1
= —Fx;'F".
M

We can use the spectral decomposition of the covariance matrices in the likelihood ratio to
recast the ideal observer formula in the Fourier transform domain. Let the caret represent a
Fourier transform (i.e., g = Fg). We write g —p as F~'(g — i) to get

Journal of Medical Imaging 035501-34 May/Jun 2024 e Vol. 11(3)
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Ag)=(g-w (' -%")(eg-n
= (F'(&- )" (57" - Z3)F (- i)

1 A oa
= (g— W) (FE['F —FE;'F) (3 - ).

Note that we rewrote (g — p)T as (g — p)*. This is appropriate because the quantity is real,
and therefore the Hermitian is equivalent to the transpose. Based on the formula for the inverse
spectrum above, we get

Ag) = - (@-0)"(ST! = S31)(& - 0).

Because the power-spectrum matrices are diagonal, their inverses are as well, so this quad-
ratic form can be written as a sum

1 Y 1 1

Ag) =— (———)I@k — alk])?.

2=\ s seg) o A

This sum can be problematic if any of the spectral elements are 0, which usually happen

from power spectra that are estimated from samples. It may be advisable to regularize the power-
spectrum inversion to get

1 & 1 1 . S
bal®) = 33> (52 s ) 90 - A

where & represents the variance of discretization “noise.”
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