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ABSTRACT. Significance: The emergence of label-free microscopy techniques has significantly
improved our ability to precisely characterize biochemical targets, enabling non-
invasive visualization of cellular organelles and tissue organization. However,
understanding each label-free method with respect to the specific benefits, draw-
backs, and varied sensitivities under measurement conditions across different types
of specimens remains a challenge.

Aim: We link all of these disparate label-free optical interactions together and com-
pare the detection sensitivity within the framework of statistical estimation theory.

Approach: To achieve this goal, we introduce a comprehensive unified framework
for evaluating the bounds for signal detection with label-free microscopy methods,
including second-harmonic generation, third-harmonic generation, coherent anti-
Stokes Raman scattering, coherent Stokes Raman scattering, stimulated Raman
loss, stimulated Raman gain, stimulated emission, impulsive stimulated Raman
scattering, transient absorption, and photothermal effect. A general model for signal
generation induced by optical scattering is developed.

Results: Based on this model, the information obtained is quantitatively analyzed
using Fisher information, and the fundamental constraints on estimation precision
are evaluated through the Cramér–Rao lower bound, offering guidance for optimal
experimental design and interpretation.

Conclusions: We provide valuable insights for researchers seeking to leverage
label-free techniques for non-invasive imaging applications for biomedical research
and clinical practice.
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1 Introduction
Optical imaging provides a method of observing biological systems that is particularly powerful
for studying dynamics in live specimens. Information obtained from optical microscopes is
derived from the light collected from the specimen. In one widespread approach, exogenous
labels (often molecular dyes or fluorophores) are applied to interrogate the behavior of cells
and tissues, such as nucleic acids, cytoplasm, extracellular proteins, or particular biomolecules.
Despite the incredible power that comes from the specificity of the application of these labels,
the labels carry their own problems. Many are toxic or severely disrupt biological function,

*Address all correspondence to Randy Bartels, rbartels@morgridge.org

Journal of Biomedical Optics S22716-1 Vol. 29(S2)

https://orcid.org/0000-0001-6820-5449
https://orcid.org/0009-0009-5551-3552
https://orcid.org/0000-0003-0530-0435
https://doi.org/10.1117/1.JBO.29.S2.S22716
https://doi.org/10.1117/1.JBO.29.S2.S22716
https://doi.org/10.1117/1.JBO.29.S2.S22716
https://doi.org/10.1117/1.JBO.29.S2.S22716
https://doi.org/10.1117/1.JBO.29.S2.S22716
https://doi.org/10.1117/1.JBO.29.S2.S22716
mailto:rbartels@morgridge.org
mailto:rbartels@morgridge.org


complicating the interpretation of data from imaging experiments. In addition, the introduction of
external labels is often impeded through physical processes, such as the need for labels to diffuse
through tissue or pass through the blood–brain barrier.

An alternative strategy for optical microscopy, label-free imaging, uses intrinsic optical
properties for imaging biological samples. Such strategies provide a rich palette of light-molecule
interactions that produce an optical signal from which an optical microscope image may be
formed. In this special issue of the Journal of Biomedical Optics (JBO), we are celebrating the
wide-ranging contributions that our dear colleague Gabi Popescu made to this field. Gabi was a
big champion and cheerleader in this field, and his enthusiasm for the widespread utility of label-
free imaging was infectious.

There is a wide range of label-free imaging modalities. Each modality probes particular
features of the specimen, and each exhibits a sensitivity that depends on the sample properties
and the experimental scenario. However, the field lacks a comprehensive comparison among
various techniques to determine when each method will provide useful information, as well
as an assessment of the detection sensitivity of these methods. In this work, we develop a general
model for label-free signal generation to facilitate the investigation of the relative performance of
these label-free imaging methods.

Our analysis considers a universal light–matter interaction mechanism for label-free imaging
techniques, and then, we apply the tools of statistical information theory to study the detection
limits with label-free imaging methods. This strategy establishes bounds on the detection sen-
sitivity of label-free microscopy. Note that we do not treat label-free methods based on the auto-
fluorescent properties of a small set of endogenous biomolecules as these methods cannot be
incorporated into our general optical signal model.

A wide range of label-free optical interactions have been exploited for optical microscopy.
These optical modalities universally rely on optical spectroscopy of illumination light and the
methods in which the light–matter interactions in the specimen modify light propagation, polari-
zation, or color. Label-free imaging often relies on linear optical scattering, in which spatial
variations in the optical susceptibility, δε, distort light propagation through a specimen. To re-
cover the three-dimensional variation in optical susceptibility, a range of optical methods can
record quantitative changes in the optical phase and amplitude and solve an inverse scattering
problem. Although such quantitative phase microscopy methods1–3 can be ubiquitously applied
to specimens, optical spectroscopy shows little dispersion, and as a result, it has difficulty differ-
entiating among particular molecular species.4 Nonlinear optical scattering processes of second-
and third-harmonic generations (SHG and THG) can occur for a large incident optical field
strength. These nonlinear scattering mechanisms convert incident light into a new color and
reveal tissues formed from organized distributions of structural proteins (SHG)5–12 or morphol-
ogies such as cell membranes and small lipid bodies (THG).13–19

The rise of label-free microscopy has facilitated our ability to chemically specify biochemi-
cal targets, allowing us to visualize cellular organelles without perturbing the biological dynam-
ics. Because the identification and observation of the behavior of biomolecules provide critical
insight into biological systems, methods that can provide label-free biochemical detection are
highly sought after and form the basis of several label-free imaging methods that differentiate
molecules based on their vibrational spectral fingerprints20–24 or based on the excited state decay
dynamics.25–28 The simplest vibrational spectral measurements exploit direct mid-infrared
absorption at vibrational frequencies for which motion induces a change in the molecular dipole,
thus producing direct optical absorption with incident light that matches the vibrational energy.29–32

Alternatively, the Raman-active vibrational spectroscopy can be probed; the vibrational motion
leads to a change in molecular polarizability and thus drives inelastic optical scattering, in which
scattered light either gains or loses a quanta of vibrational energy.33,34 Conventional Raman
spectroscopy and imaging are limited in detection sensitivity because they rely on spontaneous
Raman scattering, a rare process. Stimulated Raman scattering techniques, such as coherent anti-
Stokes Raman scattering (CARS),35–38 coherent Stokes Raman scattering (CSRS),39 stimulated
Raman scattering (SRS),40,41 or impulsive stimulated Raman scattering (ISRS),42–49 greatly
increase the Raman signal scattering.

An advantage of stimulated spectroscopic interactions for the imaging of molecular targets is
that the rate of signal generation may be elevated relative to the naturally excited state relaxation
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times that constrain the fluorescent imaging rates. The rate of signal generation can be increased
in pump–probe experimental arrangements such as transient absorption (TA), excited state
absorption (ESA), stimulated emission (SE), or ground state depletion (GSD)25,27,50,51 imaging
methods. In this family of interactions, a pump pulse drives electronic absorption that perturbs
the transmitted power of a time-delayed probe pulse.52

Following the excitation of a molecular chromophore, electrons promoted to an excited state
will relax back down to the ground state, and this excess energy is thermalized. Thermalization of
the deposited energy heats the region surrounding the chromophore—producing an increase in
temperature and pressure. These two perturbations are exploited for photoacoustic (PA)53 and
photothermal (PT)54,55 detection mechanisms. We study the latter here because the detection is
optical and thus relevant to our signal model. PT interactions can be driven by optical
absorption56 or vibrational state transitions57–59 that leave residual energy in the molecule.
The temperature change induced by the energy dissipation following optical excitation produces
a small change in the effective linear optical susceptibility, δε. This differential change δε can
then be extracted by comparing optical phase images or changes in optical scattering following
excitation to those taken at thermal equilibrium.

To link all of these disparate label-free optical interactions together, we consider a descrip-
tion that can incorporate the signal model for each of these modalities. The signal model that we
develop links all label-free imaging methods together to highlight the key underlying signal gen-
eration mechanism. To assess their relative detection limits, we employ the general signal model
and compute the information available in measurements using statistical estimation theory. This
model allows for a direct comparison of the detection sensitivity among all methods. Specifically,
we consider scattering-induced changes in an optical imaging field produced by a spherical
perturbation of optical susceptibility δε. A model of the imaging field that has passed through
an optical microscope is developed, so a model of the signal detection probability may be con-
structed. This signal model accounts for shot noise in optical detection, capturing the limiting
case of optical detection in the standard quantum limit. On the basis of this model, the meas-
urement information is quantified by Fisher information, and the fundamental limits in estima-
tion precision for δε are assessed by the Cramér–Rao lower bound (CRLB). The effective
susceptibility perturbation is then calculated for the label-free imaging methods presented in the
introduction, so detection bounds of molecular concentration, or other parameters of interest,
may be established with the general model. This general analysis can be applied to any
label-free spectroscopy or imaging method, and we hope it will be a valuable tool for assessing
label-free imaging experiments.

2 Imaging Model for Signal Detection
Our universal model for label-free signal generation is based on the optical system illustrated in
Fig. 1. We consider an object that consists of a spherical perturbation of optical susceptibility,
δε ¼ εs − εb, a change in the relative dielectric permittivity of the sphere, εs, relative to a back-
ground relative dielectric permittivity, εb. The sphere has a radius a ≪ λ that is smaller than the
incident field wavelength λ. The signal model is determined by the light that is imaged from the
object space to the image space through a 4-f optical microscope; we closely follow the theo-
retical analysis of the image of a dipole in an optical microscope.60 Once the model for the signal
is obtained, we apply the tools of statistical estimation theory to establish the bounds on the
precision with which we estimate δε.

2.1 Dipole Moment of a Sub-wavelength Particle
Our particle lies in an object space, with coordinates r ¼ ðx; y; zÞ centered at the origin r0 ¼
ð0; 0; 0Þ, and is illuminated by an incident optical field Eiðr; tÞ ¼ E0urðrÞutðtÞ expðinbkjz0Þϵ̂.
We assume that the incident beam propagates along z, so the beam polarization vector, ϵ̂,
lies in the transverse plane with a surface normal aligned with z. The incident beam has
a peak electric field strength of E0, with a spatial variation of field amplitude that varies
due to beam diffraction described by urðrÞ. This diffracted field is normalized such that
jurj ≤ 1. For cases of a pulse, we assume that ut is a complex temporal envelope normalized
to jutj ≤ 1 and that the pulse is a member of a pulse train with a repetition rate of νr. Note that,

Wang et al.: Statistical estimation theory detection limits for label-free imaging

Journal of Biomedical Optics S22716-3 Vol. 29(S2)



for an unpulsed continuous wave beam, ut ¼ 1. We assume that the illumination beam is cen-
tered at the origin such that urðr0Þ ¼ 1. The free space wavenumber, kj ¼ 2π∕λj, is increased by
the object space background refractive index, nb ¼ ffiffiffiffiffi

εb
p

, leading to k ¼ nb kj. The beam trans-
verse intensity profile is Iðr⊥; tÞ ¼ I0jurðr⊥; zÞj2jutðtÞj2 at an axial plane z, where the transverse
spatial coordinate vector is r⊥ ¼ ðx; yÞ. Definitions of the beam area, Ab ¼ I−10 ∫ Iðr⊥; 0Þd2r⊥,
and the pulse temporal duration, τp ¼ I−10 ∫ Ið0; tÞdt, make use of this transverse intensity profile.
Finally, we note that the average power of the incident beam is pi ¼ νr∫ Iiðr⊥; tÞdt d2r⊥ ¼
νrτpAbI0 ≡ AbIa, which can be written in a very simple form using the average intensity
Ia ¼ νrτpI0.

Due to constraints of optical diffraction, the beam area is on the order of λ2 or larger.
Consequently, scattering by the sub-wavelength centered on the illumination beam is produced
by an oscillating electric dipole moment driven by the field at the peak of the incident beam,
μ ¼ ~αEiðr0Þ, where we assume that the particle is centered on the beam. The parameter α̃ ≡ ε0α
is a complex quantity describing the propensity of a scatterer to produce a polarization in
response to an applied electric field. We separate this polarizability into a product of the dielectric
permittivity of free space, ε0, and the complex-valued polarizability volume α. Even for a real-
valued optical susceptibility perturbation, δε, the polarizability will be complex due to rescatter-
ing described by the radiative reaction term.61 However, because we consider kja ≪ 1 and
δε ≪ 1, we may reliably approximate the polarizability volume by α ≈ Vδε, where the volume
of the sphere is V ¼ ð4π∕3Þa3.

Within the approximations presented here, the oscillating dipole moment, μ, radiates a
dipole electric field. This radiation is the universal physical origin of our label-free signal used
for probing a specimen. The frequency at which the induced dipole oscillates is determined by
the particular label-free interaction, and the interaction can either be an elastic scattering process,
in which the wavelength stays the same as the incident light, or an inelastic scattering process,
in which there is a change in the optical wavelength. In addition, the effective susceptibility
perturbation will be determined by the number of molecules contributing within the perturbation
volume, V, and the coherence of the interaction that drives the susceptibility perturbation. The
specific cases for label-free imaging are discussed later in this article.

Fig. 1 Model and label-free imaging techniques. (a) From left to right: scattering of the particle,
4-f imaging configuration, and measurement by a camera. In the scattering event, the particle is
illuminated by an incident light, forming a dipole moment μ̄. Scattering property of the dipole in
the far-field region. (b) Contrast mechanisms of the imaging methods. Methods are classified into
dark-field and bright-field methods. In the pump–probe methods, the red arrow denotes the pump,
the purple arrow denotes the probe, and the blue arrow denotes the scattering, which is the spatial
frequency of the particle to be imaged. Notice that CARS, CSRS, SRL, and SRG share the same
step (1), so only step (2) is shown for CSRS, SRL, and SRG.
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2.2 Dipole Scattering and Cross-sections
To appreciate signal levels, we consider the expression for the extinction, scattering, and
absorption cross-sections of the label-free perturbation.62 The extinction cross-section reads as
σext ¼ ðkj∕nbÞV Imfδεg, whereas the scattering cross-section is given by σs ¼ ðk4jV2∕6πÞjδεj2.
The difference is the absorption cross-section, σabs ¼ σext − σs. Note that these cross-section
values will be composed of molecular components within our scattering sphere and the contri-
bution of the effective polarizability of the set of molecular components to the total δε. As a
consequence, the total cross-section values depend on the coherence among induced dipole
moments between each molecule within the sphere. Each scenario is treated separately later
in the article.

With the cross-section for the sub-wavelength sphere, we can estimate the extinguished and
scattered average powers as pσ ¼ νrσ∫ Iið0; tÞdt. Making use of the expression for the incident
average power, we write pσ ¼ ðσ∕AbÞpi, scaling as the ratio of the cross-section and the incident
beam area. For a fixed incident optical power budget, it is desirable to focus the incident beam
tightly to minimize Ab and thus maximize the intensity of the illumination beam. In a high
numerical aperture (NA) focusing limit, an incident beam focused on the origin can be approxi-
mated with a three-dimensional Gaussian distribution urðrÞ ¼ expð−ρ2∕w2

0Þ expð−z2∕w2
zÞ.

Here, ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radial transverse coordinate, and the radii of the focused beam are

w0 ¼ 0.52nbλ∕NA and wz ¼ 0.76λ∕½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðNA∕nbÞ2

p
�.63 This produces a beam area of

Ab ¼ 0.42ðnb∕NAÞλ2. Combining these expressions, we find that the power (scattered,
extinguished, or absorbed) reads as pσ ≈ 2.4ðNA∕nbÞ2ðσ∕λ2Þpi. The coefficient in front of
the incident power is a small number, indicating that much of the incident power is unperturbed.
This sets a level of background light that usually degrades sensitivity and must be accounted for
in the signal model. For a complete model, we compute the image of the excitation beam and
scattered beam through a 4-f imaging system.

2.3 Signal Obtained from the Image of the Dipole Through a Microscope
To compute the signal produced from a field imaged from the object region into an image region,
we follow the derivation of the image of a dipole field produced with a high NA imaging
system.60 The object field may be expanded into a set of transverse spatial frequencies,
k⊥ ¼ ðkx; kyÞ, at a reference plane, here z ¼ 0, providing the expression of the object field

EQ-TARGET;temp:intralink-;e001;117;353EobjðrÞ ¼
Z

eðk⊥Þeiðk⊥ ·r⊥ þ γozÞd2k⊥: (1)

The transverse spatial frequency spectral amplitude is denoted by eðk⊥Þ, and the angular
spectral propagator can be used to express the field at a plane other than z ¼ 0 with a transverse
spatial frequency phase determined by the axial spatial frequency for propagation,

γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2bk

2
j − kk⊥k2

q
of the wave vector, at k ¼ ðk⊥; γoÞ, for each transverse spatial frequency.

The object field is mapped to an image space where we place a detector using a 4-f optical
imaging system. As indicated in Fig. 1, the focal lengths of the imaging system are f1 and f2,
leading to a magnification of the object field by the factor M ¼ −f2∕f1. When mapping
the object field to the image space in air, the wave vector is transformed such that

k 0 ¼ ðk⊥ 0 ; γiÞ, where k 0
⊥ ¼ ðkx∕M; ky∕MÞ and γi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2j − kk 0

⊥k2
q

. The image of the object

field, labeled by the image–space coordinates r1 ¼ ðr1⊥; z1Þ, at the in-focus plane of z1 ¼ 0 may
be expressed in terms of the object space transverse spatial frequencies as

EQ-TARGET;temp:intralink-;e002;117;168Eimgðr1Þ ¼ M
Z ffiffiffiffiffi

γo
γi

r
HðMk 0

⊥Þe1ðMk 0
⊥Þeik

0
⊥ ·r1⊥d2k 0

⊥: (2)

Moreover, the polarization of the dipole field may be decomposed into ŝ and p̂ polarization
directions. The imaging system transforms the object field polarization through a unitary rota-
tion, thus preserving the magnitude of the transverse spatial frequency components, so je1j ¼ jej.
The coherent transfer function of the 4-f imaging system,Hðk⊥Þ, is a low-pass transverse spatial
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frequency filter with a cutoff spatial frequency, kc ¼ 2πNA∕λj, determined by the NA of the
imaging objective lens (f1).

We assume that the NA of the imaging objective lens does not restrict the collection of the
illumination beam, which implies that the beam is simply expanded by the magnification factor
with a corresponding drop in field amplitude such that the full power of the incident excitation
beam is transmitted through the imaging system. The label-free signal originates from the source,
Q ¼ ðk20∕ε0Þμ, that is produced by the induced dipole moment. The transverse spatial frequency
spectrum of the forward-propagating component of the dipole field reads as

EQ-TARGET;temp:intralink-;e003;114;639eQðk⊥Þ ¼
i

8π2γo
½Q − ðQ · k̂Þk̂�: (3)

Here, k̂ ¼ k∕kkk, and we exploited the fact that we consider an object to be located at the
origin of the coordinate system. The power of the field scattered in the forward direction is given
by a prior work;60 the formula is psob ¼ ð2π2∕μ0ωÞ∫ jeðk⊥Þj2γod2k⊥. Applying this to the dipole
scattered field, we find that psob ¼ σsI0∕2, which is half of the total scattered power. The
other half of the power propagates in the backward direction. Due to the finite NA of the
imaging objective lens, the power of the image of the dipole emission is reduced to
psim ¼ ηcpsob, where the efficiency of the forward-scattered power by the object is given by

ηc ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − NA2

p
þðNA2∕4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − NA2

p
.

To admit a wide range of experimental arrangements, we consider the following total field in
the image space:

EQ-TARGET;temp:intralink-;e004;114;476Etot;im ¼ aEex;im þEQ;im þEr ≡ r̃Eex;im þEQ;im: (4)

This total field consists of the dipole field image, EQ;im; the image of the excitation field,
Eex;im; and a reference field, Er ¼ rEex;im. We assumed that the reference field is a replica of the
image of the illumination field, scaled by a complex factor r ¼ R expðiϕÞ, where R is the relative
amplitude and ϕ is the relative phase of the reference beam. In addition, we multiply a factor a by
the image of the excitation field, so we can set a ¼ 1 to represent bright-field imaging and a ¼ 0

for the case of dark-field imaging, in which the unscattered field is not collected. We define a
generalized complex reference amplitude as r̃ ¼ aþ r.

In our Fisher information analysis, we consider both cases in which a single detector
collects some fraction of the total signal power or we send the image onto a camera to capture
the signal. In both cases, the information content is the same, and the measurement on each
pixel is uncorrelated. As a result, the relevant parameter from the signal model starts with
the total power of the signal, which is computed from the total transverse spatial frequency
amplitude. This total power is the sum of three terms, pt ¼ jr̃j2pi þpsig þpint. The first
two power terms have already been computed, and the interference power term,
pint ¼ ð4π2r̃�∕μ0ωÞ∫ jHðk⊥Þj2 RefeQðk⊥Þ · e�exðk⊥Þgγod2k⊥, arises from mixing between the
dipole source transverse spatial frequency distribution given in Eq. (3) and the excitation beam
transverse spatial frequency distribution, eexðk⊥Þ ¼ ð4π2Þ−1∫ uðr⊥Þ expð−ik⊥ · r⊥Þd2r⊥.
Assuming that we have a symmetric, unaberrated beam propagating along the optical axis
that was produced by a uniformly filled illumination optic numerical aperture (NAi ≤ NA),
we find that pint ¼ −I0kjV Imfr̃�δεgfNA, where fNA ¼ 1 − ðNAi∕2nbÞ2. Note that plane
wave illumination is the limiting case in which NAi → 0. The signal collected in a time
interval Δt, for a photon energy Eph ¼ hc∕λj and a detector quantum efficiency ηd that has
a surface area larger than the beam size, gives us a mean-detected photon count given by
N ¼ ηdΔtpt∕Eph

EQ-TARGET;temp:intralink-;e005;114;154N ¼ N i

�
jr̃j2 þ 1

2
ηc

σðjÞeff

Ab
−
kjV

Ab
Imfr̃�δεðjÞeffglðjÞfNA

�
≡N iFN; (5)

where we define N i ¼ ηdpi∕Eph as the mean number of detectable photons in the illumination

beam and the single-photon signal function FN . In addition, we define δεðjÞeff ¼ NBðjÞαðjÞ for use
with coherent nonlinear scattering as the effective susceptibility becomes dependent on the inci-
dent fundamental beam power and, of course, with CARS and CSRS, will depend on Stokes and
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pump beam powers. The parameters BðjÞ and lðjÞ are defined when coherent nonlinear scattering
is discussed and account for pulse averaging effects and for the linear case, where j ¼ 1,
Bð1Þ ¼ 1, and lð1Þ ¼ 1. In addition, σeff ¼ k4jV

2jδεeff j2∕6π defines the effective scattering
cross-section. The number density, N, of the molecules in the sphere leads to a total number
of molecules of NV, each with a single-molecule polarizability (for j ¼ 1, where αð1Þ is the
molecule polarizability), and for j > 1, we represent hyperpolarizabilities used to describe
nonlinear scattering processes.

Due to the large parameter space of this analysis, we further simplify our notation for a utility
that previews what will be useful in the Fisher information analysis that follows. In this simplified
analysis, we separate the normalized flux, FN ¼ jr̃j2 þFdf

N þFint
N , into the reference, j~rj2;

dark-field, Fdf
N ; and the interference term of Fint

N . To facilitate simple analysis with the Fisher
information, the dark-field and interference terms are written as a constant that is proportional
to the effective susceptibility perturbation, giving us the normalized flux for the dark-field case as

Fdf
N ¼ ΓjδεðjÞeff j2 and for the interference term, Fint

N ¼ −H Imfr̃�δεðjÞeffg. A comparison with Eq. (5)
shows that Γ ¼ ðηc∕2Þk4jV2∕6πAb and H ¼ kjVlðjÞfNA∕Ab.

2.4 Probabilistic Model for Susceptibility Perturbation Estimation and CRLB
Having established the measurement model in terms of photon count for the particle susceptibil-
ity in label-free imaging, we now delve into the quantitative assessment of each imaging system’s
sensitivity of the measurement data or, equivalently, the amount of information that the meas-
urement data carry about the particle susceptibility. The statistical tools used are the Fisher
information, J, and the CRLB, both of which are instrumental in quantifying the fundamental
limits in estimation precision.

When only photon detection noise is present, noise in optical detection can be modeled as a
Poisson process, in which the likelihood function for detecting Y ¼ y photons is expressed as
fðY ¼ y; δεeffÞ ¼ N ye−N ∕y! and N is the mean photon count. Here, we analyze the estimation
precision of δε in the model given in Eq. (5) for a Poisson noise model. It is beneficial to define
normalized Fisher information ~J by the number of photons from incident light N i because the
Fisher information scales linearly with respect to the signal strength. The stronger the detected
signal, which requires an increased illumination power, the larger the Fisher information. The
normalized Fisher information ~J signifies the amount of information carried by a single incident
photon about the object susceptibility perturbation. The Fisher information for this estimate,
J ¼ N i

~J, can be separated into a product of the incident mean photon count N i and the nor-
malized single-photon Fisher information, ~J, that provides information on the sensitivity for an
experimental arrangement on the detection of the parameter of interest. The Fisher information
and the CRLB are inherently connected as the CRLB is inversely proportional to the Fisher
information. Serving as a theoretical lower limit on the variance of any unbiased estimator when
evaluated at the true parameter value, the CRLB for any unbiased estimation of the susceptibility
is, therefore, given by σ2CRLB ¼ J−1 ¼ N −1

i J̃−1. The limit to the precision with which a single

parameter is simply σCRLB ¼ 1∕
ffiffiffi
J

p
. Multiparameter estimation is more complex because the

Fisher information becomes a matrix that must be inverted to obtain the CRLB values for
estimation precision on its diagonal.

The normalized Fisher information, ~J ¼ s2N∕FN , is the ratio of the square of the single pho-
ton Fisher score, sN , to the single-photon signal flux FN . The Fisher score, which is the derivative
of the log-likelihood function for the measurement with respect to the parameter of interest,
establishes the sensitivity of the measurement with respect to the parameter of interest and helps
quantify the amount of information that a set of data provides about the parameter of interest in a
statistical model. In general, δε is a complex-valued parameter, so we consider the limiting cases
in which our parameter of interest, δε, is either purely real, so δε → δεre or is purely imaginary, so
δε → iδεim. Then, we consider two cases: the normalized Fisher information for a real-valued

susceptibility perturbation is given by J̃re ¼ ðsðreÞN Þ2∕FðreÞ
N , and the normalized Fisher information

for an imaginary susceptibility perturbation is given by J̃im ¼ ðsðimÞ
N Þ2∕FðimÞ

N . For the real-valued
case, we use
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EQ-TARGET;temp:intralink-;e006;114;736FðreÞ
N ¼ jr̃j2 þΓðδεðreÞeff Þ2 −H Imfr̃�gδεðreÞeff (6)

and

EQ-TARGET;temp:intralink-;e007;114;704sðreÞN ¼ 2ΓδεðreÞeff −H Imfr̃�g: (7)

Similarly, for the imaginary-valued case, we use

EQ-TARGET;temp:intralink-;e008;114;664FðimÞ
N ¼ jr̃j2 þΓðδεðimÞ

eff Þ2 −H Refr̃�gδεðimÞ
eff (8)

and

EQ-TARGET;temp:intralink-;e009;114;625sðimÞ
N ¼ 2ΓδεðimÞ

eff −HRefr̃�g: (9)

The normalized Fisher information will be explored for a variety of label-free signal
detection modalities and experimental arrangements. Recall that the experimental arrangement
here is general, meaning that we can choose a dark-field scenario by setting a; R ¼ 0 all the
way to bright-field interference, where a ¼ 1; R ≠ 0. To account for these cases, we make use
of the explicit expressions jr̃j2 ¼ ½aþR cosðϕÞ�2 þ ½R sinðϕÞ�2, Refr̃�g ¼ aþR cosðϕÞ, and
Imfr̃�g ¼ −R sinðϕÞ.

The Fisher information and the CRLB can be connected to the notion of signal and noise and
thus the signal-to-noise ratio (SNR) that are commonly used to describe optics experiments. The
change in the expected mean signal for the true parameter of interest value δϵeff;0 to be measured
is approximated by ΔN s ≈N isNΔδϵeff given that Δδϵeff is sufficiently small. Equivalently,
when δϵ0 is sufficiently small, the expected mean signal is given by N s ≈N isNδϵeff;0. The root

mean square noise for the Poisson noise model here gives a noise ofN n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N iFN

p
. From these

quantities, we may construct the SNR as SNR ≡N s∕N n. This leads to the understanding of how
the Fisher information and the CRLB relate to the balance between the signal and the noise. If a
small change in the parameter of interest results in a larger change in the signal or the noise is
lower, the Fisher information increases, and the CRLB decreases. Comparing this definition,
we see that we may write SNR ¼ δε0J1∕2 ¼ δε0∕σCRLB. This suggests that the SNR can be
comprehensively represented by the behavior of the maximum likelihood estimator (MLE)
as it follows a Gaussian distribution with its mean equal to the true parameter value, and its
variance approaches the CRLB when the number of measurements approaches infinity.
Essentially, the variability in the MLE relative to the mean from different realizations of the
same process is contingent on the level of noise power. A lower noise power results in diminished
relative variability, highlighting the importance of noise control. Moreover, we may interpret the
limit of detection as the object susceptibility perturbation at which SNR = 1 in our measurement,
and therefore, ðδεeff;0Þmin ¼ σCRLB.

In summary, higher Fisher information implies a lower CRLB, indicating that precise esti-
mation of the parameter is attainable. Therefore, our following sensitivity analysis focuses on the
calculation of the Fisher information for all label-free microscopy methods. Moreover, the Fisher
information is broader than a calculation of the SNR, and significant differences can emerge
between a simple SNR analysis and one based on Fisher information.64,65 Although SNR analysis
is applied to a measure of total signal and total noise,7 it is not straightforward to apply such
analysis to a multipixel detector such as a camera.66 The Fisher information analysis presented
here is directly applicable to detection schemes in which a fraction of signal power is collected on
a single photodetector or a camera is used and many pixels are used to collect the data over
an image field of view. At first glance, these may not seem compatible; however, each pixel
measurement is an independent event, and thus, the log-likelihood functions for each pixel
add together, meaning that Fisher information will add for each pixel and becomes equivalent
to the integrals used in our analysis. Thus, our results are equally valid for camera-based
detection.67

3 Effective Susceptibility of Label-Free Optical Interactions
The normalized Fisher information, ~J, provides the contribution to the standard deviation of
susceptibility perturbation estimation precision, ~J−1∕2, which we have seen also corresponds
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to the minimum detectable perturbation for a general scattering model. Each label-free interac-
tion produces a susceptibility perturbation that is related to the intensity of the light that drives the
light–matter interaction and sets bounds on the limit on how small of a concentration of the
molecules under study may be detected. The coherence of the scattered light relative to the inci-
dent light also plays a role in the effective δεeff and the detection limits. In all cases, we consider a
set of molecules contained within the scattering sphere volume, V, that produce a total detected
light power. A summary of the results from this section is provided in Table 1. The effective

susceptibility is grouped into several terms: δεðjÞeff ¼ BðjÞNαðjÞ. The number density, N, is set
by the concentration of individual molecules in which each has an instantaneous effective
polarizability, αðjÞ. For a linear interaction, this is the usual polarizability for linear scattering
in the volume units as described earlier. For nonlinear interactions, these generalize to

Table 1 Summary of the effective susceptibility perturbation, δεeff, for various label-free imaging
modalities discussed in this paper, which are used to compute the scattered power and the term
that dictates absorption and interference. This effective susceptibility is defined through the time-
averaged label-free optical interaction strength that can be compared with each label-free imaging
method. Through this averaging, the effective susceptibility is defined as δεeff ¼ BðjÞNαðjÞ. We
assume that we have M ¼ NV molecules within the interaction volume and that σð1Þa denotes the
single-molecule absorption coefficient.

αðjÞ BðjÞ δεeff

SR αðSRÞ ¼ k−2
s

ffiffiffiffiffiffiffiffiffi
6πσð1ÞR
NV

q
BðSRÞ ¼ 1 Non-Res: ∼10−9 − 10−8 and Res: ∼10−6 − 10−5

1PA αð1PAÞ ¼ i σ
ð1Þ
a
k j

Bð1Þ ¼ 1 1-mM chromophore: VIS/UV: ∼5 × ð10−5 − 10−3Þ,
mid-IR: ∼5 × ð10−7 − 10−5Þ, and near-IR: ∼5 × 10−10

SHG αðSHGÞ ¼ β BðSHGÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2gð2Þ
ε0c

pi
Ab

q
Collagen (tissue): 7.4 × 10−5 mW−1∕2∕μm,

6.7 × 10−4

THG αðTHGÞ ¼ γ BðTHGÞ ¼ 2
ε0c

ffiffiffiffiffiffi
gð3Þ

n3
b

r
pi
Ab

Triglycerides (cellular): 1.6 × 10−5 mW∕μm2,
1.3 × 10−3

CARS/
CSRS

αðCARS∕CSRSÞ ¼ γr BðCARS∕CSRSÞ ¼ 2
ε0c

ffiffiffiffiffiffi
gð3Þ

n3
b

r ffiffiffiffiffiffiffiffi
pppS

p
Ab

1-mM acetonitrile: −i5.7 × 10−7mW∕μm2,
−i4.6 × 10−5

SRL/
SRG

αðSRLÞ ¼ γr ,
αðSRGÞ ¼ γr

�
BðSRL∕SRGÞ ¼ 2

ε0c

ffiffiffiffiffiffi
gð3Þ

n3
b

r
pS∕p
Ab

1-mM acetonitrile: −i5.7 × 10−7 mW∕μm2,
−i4.6 × 10−5

ISRS αðISRSÞ ¼ Imfγr g BðISRSÞ ¼ 2
ε0c

ffiffiffiffiffiffi
gð3Þ

n3
b

r
Γv
νr

ppu

Ab
1-mM acetonitrile: −i2.1 × 10−8 mW∕μm2,

−i1.7 × 10−6

TA/SE αðTA∕SEÞ ¼ Δα BðTA∕SEÞ ¼ ηpu
1þηpuþηse

1-mM eGFP: TA: ð4.4þ i3.0Þ × 10−4

and SE: −ð6.5þ i3.0Þ × 10−4

PT αðPTÞ ¼ αð1PAÞ BðPTÞ ¼ 2
3e

−2 Aa
Ab

pn
λκ

�
∂ε
∂T

�
T 0

1-mM eGFP: water: 3.2 × 10−3

and glycerol: 2.2 × 10−2

The term αðjÞ is the single-molecule effective polarizability defined assuming a coherent interaction, which
makes the spontaneous Raman concentration dependent, which is just an artifact of the fact that coherence
is implied in the definition. Calculations for the effective susceptibility are taken for a concentration at 1 mM. In
the calculations, we consider a beam with a center wavelength of λ ¼ 510nm that is focused with a NA = 0.95
objective lens. This beam has is a pulse train with a duration of τp ¼ 50 fs and a repetition rate of νr ¼ 62 MHz,
and an average power of 10 mW. Abbreviations for these modalities are defined as follows: 1PA, one-photon
absorption; SHG, second-harmonic generation; THG, third-harmonic generation; SR, spontaneous Raman;
CARS, coherent anti-Stokes Raman scattering; CSRS, coherent Stokes Raman scattering; SRL, stimulated
Raman loss; SRG, stimulated Raman gain; ISRS, impulsive stimulated Raman scattering; TA, transient
absorption; SE, stimulated emission; PT, photothermal. Typical numbers are calculated based on a pulsed
laser with a ∼20 ps duration for harmonic generations and ISRS and for a ∼5 ps duration for other types
of pump–probe Raman methods as well as TA/SE and PT (acts as a CW source).
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hyperpolarizabilities and then become intensity-dependent. The BðjÞ is an enhancement term that
is obtained by computing a time-averaged signal from pulsed excitation and accounts for the
nonlinear dependence of the effective susceptibility-based temporal averaging of the instanta-
neous nonlinear signal generation over the time course of a temporal pulse. The resulting effec-
tive linear susceptibility quantity can be used to compute the scattering and extinction cross-
sections using the standard expressions for linear interactions, thus facilitating a comprehensive,
global model.

We may separate the label-free optical interactions into two broad categories: coherent and
incoherent. In the incoherent case, each molecule contributes to the change in the detected light
power independently of the other molecules within the interaction volume. The total signal is
proportional to the concentration in the incoherent case. In the coherent case, each molecule is
driven in phase within the interaction volume, and thus, the total susceptibility perturbation is
proportional to the molecular concentration, which we specify in terms of the number density, N.
Within the volume, there are M ¼ NV total molecules that contribute to the label-free signal
generation.

A key aspect of the incoherent case is that the phase of scattering or emission from each
molecule fluctuates randomly on a time scale that is rapid compared with the detector integration
time. This is the case for autofluorescence and spontaneous Raman scattering. In spontaneous
Raman scattering, each molecule scatters light inelastically to new optical frequencies through
the modulation of the molecular polarizability due to the thermal excitation of molecular vibra-
tional modes. The phase of the vibrational oscillations, including the phase of the scattered light,
is a random variation that changes from molecule to molecule. Within V, each molecule will

scatter a power of pð1Þ
R ¼ σð1ÞR I0. The origin of Raman scattering is a change in the polarizability,

δαð1Þ ¼ α 0Qv, of the molecule with a displacement of the vibrational coordinate, Qv, as weak

excitation of a vibrational mode is modeled as a harmonic with an amplitude of Qv0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕2Ωv

p
for vibrational frequency Ωv driven by thermal excitation. The strength of the polarizability
modulation is α̃ 0. The Raman scattering cross-section of a single molecule is given as

σð1ÞR ¼ ðk41∕6πÞjδαð1Þj2, where εs is the scattered light wave number. This classically derived
model must be slightly modified to account for mode occupancy in a quantum scattering picture,
and this modification explains the discrepancy between the amplitude of Stokes and anti-Stokes
spontaneous Raman scattering.

Because spontaneous Raman scattering is incoherent, the total power scattered is simply

pR ¼ Mpð1Þ
R . The effective Raman scattering cross-section for the volume is σVR ¼ Mσð1ÞR . In the

case of Raman scattering without resonant enhancement, the effective Raman susceptibility per-

turbation is purely real, δεðSRÞ ¼ k−2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πMσð1ÞR

q
∕V ¼ δεðSRÞeff . Raman scattering interactions are

weak, which is reflected in low Raman scattering cross-sections ranging from σð1ÞR ∼ 10−31 to
10−29 cm2.68 Tuning the Raman laser near an electronic absorption resonance can increase the

cross-sections to σð1ÞR ∼ 10−25 to 10−21 cm2. Thus, although Raman vibrational spectra are
extremely valuable, detection at low species concentrations is exceedingly difficult, and the
stimulated Raman and field enhancement techniques have been used to help alleviate this
difficulty.

Another class of inelastic scattering processes is those of coherent nonlinear scattering in
which light at a fundamental frequency ω1 ¼ 2πc∕λ1 is incident on a molecule. If the amplitude
of the incident field is sufficiently large, the induced dipole moment no longer exhibits a linearly
proportional response to the applied electric field. This dipole moment is usually expanded as a

Taylor series of the form69 μ ¼ α̃Eþ β̃E2 þ γ̃E3 þ : : : . The quantities β ¼ ~β∕ε0 and γ ¼ γ̃∕ε0 are
called the first and second hyperpolarizabilities, respectively. Here, we are assuming that the
polarizability and hyperpolarizabilities are isotropic, so the complications of tensor algebra need
not be invoked. We use a compact notation by introducing αðjÞ as a generalized hyperpolariz-
ability. Thus, we may write the induced nonlinear dipole as μ ¼ ε0

P
jα

ðjÞEj. The second-order

term with j ¼ 2 can represent SHG, where αðSHGÞ ¼ β is the hyperpolarizability. In the case of
j ¼ 3, αðTHGÞ ¼ γ is the second hyperpolarizability, which includes the case of THG and
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self-phase modulation driven by the electronic contribution, γe, and includes stimulated Raman
scattering that arises from the use of the vibrationally resonant component, αð3Þ ¼ γv.

These hyperpolarizabilities produce a nonlinear source term, QðjÞ ¼ k2jα
ðjÞEj

i ϵ̂. Here, the
wavenumber at the scattered frequency is kj ¼ ωj∕c ¼ jω1, and the harmonic frequency is
ωj ¼ jω1. For a set of molecules in the volume, V, at a number density N, the coherent scattering

is described by a nonlinear polarization density, PðNLÞ ¼ ε0DðjÞχðjÞEj
i . The factorD

ðjÞ is a degen-
eracy parameter with a value determined by the nonlinear interaction. In the volume of our sub-
wavelength sphere with a number density N of molecules, the generalized hyperpolarizabilities
for SHG and THG are αð2Þ → β ¼ χð2Þ∕2N and αð3Þ → γ ¼ χð3Þ∕4N, respectively. The nonlinear

scattering cross-section, σðjÞs ¼ ð2j−1k4j∕6πnjbðε0cÞj−1ÞjNVαðjÞj2, is defined through the instan-
taneous scattered power. As nonlinear optical interaction strengths are weak, pulsed lasers are
used to ensure a large enough peak field strength to produce sufficient rates of nonlinear
scattering.

The total time-averaged power scattered by a nonlinear dipole source with frequency ωj,
whether from a single molecule or a distribution inside of a sub-wavelength sphere, is

pj ¼ σðjÞeff Ia. We defined an effective linear cross-section for the nonlinear scattering process

as σðjÞeff ¼ σðjÞs gðjÞIj−1a . Notice that this effective cross-section depends nonlinearly on the average
intensity of the incident fundamental beam, Ia, and on the zero-lag j’th-order intensity corre-
lation function, gðjÞ. This correlation function, defined as gðjÞ ¼ hIjðtÞi∕hIðtÞij, depends on the
duty cycle, νrτp, of the fundamental excitation beam laser source. Although the exact value of

gðjÞ depends on the pulse shape, the value is bounded by gðjÞ ≤ ðνrτpÞ−ðj−1Þ, where the upper
bound is met with a square pulse. The effective cross-section defines an effective linear

susceptibility perturbation through the relationship δεeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6πσðjÞeff

q
∕k2jV. With this, we

define the effective linear susceptibility perturbation for coherent harmonic scattering as

δεeff ¼ NαðjÞBðjÞ. The factor BðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2∕ε0cÞðj−1ÞgðjÞIðj−1Þa

q
accounts for averaging the non-

linear scattered power over the pulse train. The effective cross-section and susceptibility can
be directly used in the signal model given in Eq. (5). This equation also includes the term

lðjÞ ¼ hðjÞ∕
ffiffiffiffiffiffiffi
gðjÞ

p
. The term hðjÞ ¼ I−ðjþ 1Þ∕2

a hIðtÞðjþ 1Þ∕2i arises as an interference factor from

signal averaging over the pulse train. This term is also bounded as hðjÞ ≤
ffiffiffiffiffiffiffi
gðjÞ

p
, where the

bounds are again saturated by a square pulse. In the case of a square pulse, lðjÞ ¼ 1.
Single molecules interacting can absorb light through linear or nonlinear absorption

processes, and optical absorption can occur for electronic and vibrational energy level
transitions. Exactly on resonance, the polarizability for a molecule becomes purely imaginary,

i.e., αð1Þ → iαð1Þi . The superscript indicates that we are dealing with the polarizability of
a single molecule. This polarizability produces both absorption and scattering, with cross-

sections for extinction, σð1Þe ¼ k0Imfαð1Þg; scattering, σð1Þs ¼ ðk40∕6πÞjαð1Þj2; and absorption,

σð1Þa ¼ σð1Þe − σð1Þs . As, generally, σð1Þa ≪ λ2, the absorption cross-section on resonance, when

αð1Þ is purely imaginary, the absorption cross-section is well approximated by σð1Þa ≈ k0α
ð1Þ
i .

The perturbation to the linear susceptibility from a molecule number density of N is then

δεðabsÞeff ¼ iNαð1Þi ≈ iNσð1Þa ∕k0. The absorption cross-sections vary over a wide range, with a

maximum value on the order of σa ∼ λ2∕2, which corresponds to δεabs ¼ iNαð1Þi ≈ iNλ3∕4π.
Chromophores have absorption cross-sections ranging from68 σð1Þa ∼ 10−17 to 10−15 cm2 for
visible and ultraviolet absorption. These numbers drop several orders of magnitude for mid-

infrared vibrational spectra that exhibit cross-sections in the range of σð1Þa ∼ 10−19 to 10−17 cm2.

Overtone stretches are generally weaker, on the order of range σð1Þa ∼ 10−22.70,71

Another common absorption mechanism is multiphoton absorption, in which the promotion
of an electron from a ground to an excited state requires the simultaneous arrival of two or
more photons with energy below the energy gap. For degenerate two-photon absorption, the
interaction of the fields induces an instantaneous perturbation to the effective linear optical
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susceptibility of72 δε2PA ¼ ð3∕4Þχð3ÞjEij2. This perturbation is complex-valued, indicating that
both the self-phase modulation and the two-photon absorption are driven in this interaction.
Moreover, the existing linear susceptibility dominates this interaction, i.e., χð1Þ ≫ δε2PA, and
thus, the change in field strength and the extinguished power are vanishingly small for two-pho-
ton absorption. As a result, two-photon and multiphoton absorption in general are typically used
with efficient fluorophores, in which emitted fluorescent light is collected as the signal. Thus, we
do not discuss the direct detection of molecules through multiphoton absorption in the context of
direct detection.

The limitations of spontaneous Raman scattering can be partially mitigated using stimulated
Raman methods. These techniques are nonlinear optical methods in which a two-photon resonant
excitation is driven at the vibrational frequency, Ωv, in a molecule. The stimulated two-photon
process is driven by two incident fields, a pump field, Ep, at frequency ωp and a Stokes field, ES,
at frequency ωS < ωp. At resonance, the frequency difference is set to ωp − ωS ¼ Ωv. There are
many subtleties in dealing with the description of stimulated Raman scattering, and we focus on

the vibrationally resonant part of the nonlinear optical response arising from χð3ÞVR. However,
the presence of nonlinear phase modulation from the electronic contribution to the nonlinear
optical susceptibility presents challenges and opportunities—depending on the experimental
arrangement.

The CARS and CSRS nonlinear scattering processes also coherently produce light at a
new optical frequency of ωaS∕cS, where aS and cS denote the anti-Stokes and Stokes frequencies,
respectively. We define an effective susceptibility that may be computed in an analogous manner

to the case of SHG and THG scattering, resulting in δεðCARS∕CSRSÞeff ¼ NBðCARS∕CSRSÞγðCRSÞ. Here,

BðCARS∕CSRSÞ ¼ ð2∕ε0cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðCARS∕CSRSÞIapIaS

q
, which depends on the product of the average

power of the pump and Stokes beams. Here, we also assumed that the temporal profile of the
pump and Stokes pulses are identical, so gðCARS∕CSRSÞ ¼ gð3Þ. The same is true for
hðCARS∕CSRSÞ ¼ hð3Þ. The explicit expression for the effective scattering cross-section now

reads as σðCARS∕CSRSÞeff ¼ ð2k4aS∕SV2∕3πn3bðε0cÞ2ÞjδεðCARS∕CSRSÞeff j2. The wavenumbers are given by

kaS∕cS ¼ ωaS∕cS∕c, and the SRS hyperpolarizability reads as γðCRSÞ ¼ ð6∕4NÞχð3ÞðΩvÞ. Because
the CARS and CSRS processes are driven by two fields, the expression for the averaged scattered

power depends on the process as paS∕cS ¼ σðCARS∕CSRSÞeff Ip∕S.
A set of label-free interactions falls into the category of pump–probe interactions, which are

distinguished by the excitation of a non-equilibrium condition in the system by a first (pump)
pulse. The non-equilibrium condition evolves with time and produces a time-varying change in
the optical properties of the system that is probed by a second pulse (probe) that arrives at a later
time. The excitation by the pump pulse produces a perturbation in the effective linear suscep-
tibility, δεeffðtÞ for t > 0, where we denote t ¼ 0 as the arrival time of the pump pulse. The time
dependence of the susceptibility perturbation produces spectral scattering that slightly modifies
the detected signals. We neglect the spectral scattering effects, but a recent review of coherent
Raman scattering analyzes this scenario in detail.42

The non-equilibrium condition may be established by the rearrangement of the population
among electronic, vibrational, or rotational energy levels. Following the perturbation of the sys-
tem, the kinetics of the relaxation of the excited state dictates perturbations to the optical proper-
ties of the system that can be detected by a time-delayed probe pulse. Although these subsequent
dynamics can be quite complicated, the effect on the probe pulse can be modeled by a complex-
valued δεeffðtÞ, and the details of the description depend on the detailed spectroscopy interro-
gated by the probe pulse, which can be tuned in wavelength to vary the interaction dynamics.

In the case of optical absorption induced by a pump pulse, the pump pulse moves the pop-
ulation density from the ground to an excited electronic state by a change in number density
δN ¼ Nem. Here, N is the population density of the molecules, and em ¼ ηpu∕ð1þ ηpu þ ηseÞ
is the average excitation probability of a molecule subject to the pump field. We included
the competing processes of stimulated absorption that is used to excite the molecule, with an
excitation parameter ηpu ¼ Ipu∕Isat. The related stimulated emission parameter is ηse ¼ Ipr∕Ise.
The efficiency of excitation depends on the pump intensity relative to the saturation intensity,
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Isat ¼ ℏωpu∕τeσa. Similarly, the efficiency of simulated de-excitation, i.e., emission, depends on
the probe intensity relative to the stimulated emission intensity, Ise ¼ ℏωpr∕τeσse.

This population transfer admits several optical spectroscopy perturbations for a time-delayed
probe pulse. Details of the particular spectroscopic interactions depend on the center wavelength
of the probe pulse. Absorption of the probe pulse can be reduced through ground state depletion
or increased through excited state absorption, processes referred to as TA. Alternatively, at some
probe wavelengths, a population inversion can be established, leading to SE that amplifies the
probe pulse.25,27,50,52 The change in susceptibility following pump pulse excitation is given by

δεðTA∕SAÞeff ¼ Δαð1ÞδN, for the change in the single-molecule polarizability between the ground

and excited states at the probe wavelength,Δαð1Þ. In general,Δαð1Þ ¼ Δαð1Þr þ iΔαð1Þi is complex-

valued. When dominated by the imaginary component, Δαð1Þi , this process is called TA for

positive values and SE for negative values. When the real component, Δαð1Þr , dominates, the
population change is detected through a phase modulation. In all cases, the susceptibility
perturbation drives a change in the scattering from the molecule.52 The signal change to the
probe pulse causes either gain or loss in the probe field. For the signal model in Eq. (5),

TA and SE make use of the scattering cross-sections from the volume given by σðTA∕SEÞeff ¼
ðk4prV2∕6πÞjδεðTA∕SAÞeff j2 ¼ σðTA∕SEÞeff . The wavenumber of the probe pulse is kpr ¼ ωpr∕c, and
BðTA∕SEÞ ¼ 1, gðTA∕SEÞ ¼ 1, and hðTA∕SEÞ ¼ 1.

As noted above, the change in population δN is a perturbation away from thermal equilib-
rium. This change in population density for a probe pulse with a fluence well below saturation
can be computed for a square pulse with peak intensity I0 and pulse duration τp, with δN ¼ ρN

and parameter em ¼ τpλI0σ
ð1Þ
a ∕hc, where h is Planck’s constant. In the case of two-photon

absorption, em ¼ τpλI20σ
ð1Þ
2PA∕hc, where σð1Þ2PA is the 2PA cross-section for a single molecule

in units ofm2∕W. This excited state excitation will relax back to the ground state to reach thermal
equilibrium. Although this energy decay is often described by a single exponential decay with an
excited state lifetime, τe, on the order of a few picoseconds for nonfluorescent chromophores, the
decay dynamics vary across molecular systems and can be extremely complicated. In addition,
this relaxation will lead to the thermalization of energy deposited in the molecule with the
surrounding environment that can also be used for label-free imaging through PT detection,
as described below.

Pump–probe interactions are also used for vibrational spectroscopic measurements.
Although vibrational effects, and thus vibrational spectroscopy, can be extracted from dynamics
on the excited state of molecules, in label-free microscopy, vibrational spectroscopy is usually
probed on the ground state through SRS. The processes of SRS are driven by pulses overlapped
in time and produce multiple processes that occur at the same time as CARS, CSRS, and SRS
scattering. SRS, produces both loss at the pump frequency driven by the intensity of the Stokes
field, leading to stimulated Raman loss (SRL), and gain at the Stokes frequency, leading to
stimulated Raman gain (SRG).

Both SRL and SRG produce an effective instantaneous linear susceptibility change that

may be written as δϵðSRLÞeff ¼ NBðSRLÞγðCRSÞ and δϵðSRGÞeff ¼ NBðSRGÞγðCRSÞ�. Here, BðSRL∕SRGÞ ¼
ð2∕ε0cÞ

ffiffiffiffiffiffiffi
gð3Þ

p
IaS∕ap, which depends on the product of the average power of either the pump or

Stokes beam. The average SRG and SRL power scattered is pSRG∕SRL ¼ σðSRL∕SRGÞeff Ip∕S. Because
the vibrationally resonant contribution to the third-order susceptibility is purely imaginary at

peak excitation, χð3Þ ∼ iðNε0∕12mΩvΓvÞðα1Þ2 ∼ i3 × 10−20 m2∕V2, δϵðSRL∕SRGÞeff is purely imagi-
nary and thus behaves analogously to TA for SRL and SE for SRG.41 Here,m is the reduced mass
of the vibrational mode, and Γv is the line width of the vibrational mode resonance. SRL and
SRG modify the pump and the Stokes beams through absorption and scattering, where αðSRLÞ ¼
γðSRSÞ and αðSRGÞ ¼ γðSRSÞ�. Finally, we note that BðSRL∕SRGÞ ¼ ð2∕ε0cÞ

ffiffiffiffiffiffiffi
gð3Þ

p
IaS∕ap.

SRS is usually implemented with laser pulses longer than the decay time of the excited
vibrational coherence. When a pulse duration is shortened so that the τpΩv ≪ 1, the vibrations
are driven impulsively by drawing pump and Stokes frequencies from within the bandwidth of
a single pump pulse. This limit is referred to as ISRS.42 A vibrational coherence is prepared
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in the molecule following interaction with a short pump pulse. This vibrational coherence
in the impulsive excitation limit produces an oscillating polarizability that leads to an optical

susceptibility perturbation of δεðISRSÞeff ¼ NBðISRSÞ ImfγðrÞg. In the impulsive case, we have
BðISRSÞ ¼ ð3∕ε0cÞðΓv∕νrÞIa;pu, where Ia;pu ¼ ppu∕Apu denotes the average intensity of the pump
pulse and Γv is the decay rate of the vibrational coherence. As with TA/SE, a time-delayed probe
pulse interacts with the susceptibility perturbation to produce linear scattering from a spherical
particle with polarizability αðISRSÞ ¼ VδεðISRSÞ and with the usual scattering cross-section, so we
use ppr for Eq. (5).

The final pump–probe interaction that we consider is the PT effect in which a local change in

temperature leads to a change in the local optical susceptibility, δεðPTÞeff ¼ ΔTð∂ε∕∂TÞ, that modi-
fies linear scattering for a probe pulse identical to the cases of any optical excitation process. The
induced perturbation depends on thermal transport because the susceptibility change depends on
the change in temperature, ΔT, that is driven by heating from energy deposited into the system.
The heating and thermal distribution are dictated by the heat capacity and thermal transport
properties of the medium, respectively. As we are considering a system in which the target of
unlabeled molecules is confined in the volume of a sphere with radius a ≪ λ, we model the
optical response with point heating. On timescales shorter than the thermal transport time,
we estimate an upper bound on the local temperature rise from the energy deposited per
excitation Eex ¼ ℏΩex, where Ωex is the energy gap between ground and excited states.
These states can be electronic73–76 or vibrational.57,58 The total change in energy for Mex states
is given as ΔQ ¼ EexMexηnr. The temperature rise from the heating by the thermal relaxation
to the surroundings of the energy deposited in the excitations within a volume, V, is
ΔT ¼ ΔQ∕CvV, where Cv is the heat capacity per unit volume of the solvent surrounding the
absorber. Nonradiative relaxation of this energy leads to local heating, producing the change in
optical susceptibility that is exploited by PT detection. For the case of linear optical absorption,
on average, the efficiency of nonradiative relaxation ηnr ¼ knr∕ðknr þ krÞ ¼ 1 −Φf, which is the
complement to the quantum fluorescent yield of a molecule, determines the fraction of the
energy absorbed by the molecule that contributes to heating. Thus, non-fluorescing chromo-
phores are the best candidates for PT detection. The nonradiative and radiative relaxation rates
are knr and kr, respectively. The excited state lifetime of a molecule, given by τe ¼ ðknr þ krÞ−1
and which is on the order of several picoseconds for non-fluorescing molecules or several nano-
seconds for fluorescent molecules, sets the times scales for the population kinetics following
excitation.

The thermal timescales in a biological imaging scenario are dominated by conductive heat
transport. Conductive thermal transport is modeled by the diffusion equation, which gives a dif-
fusion radius Lth ¼

ffiffiffiffiffiffiffiffi
4Dt

p
in an infinite thermal medium, where t is the time after the point

heating has occurred. The thermal transport of the heat away from the absorbers depends on
the thermal conductivity, κ ¼ DCv, and the diffusion coefficient, D. As we are considering
the detection of sub-wavelength particles, we can establish a thermal time scale for diffusion
over a wavelength, set by tth ¼ λ2∕4D. Using a typical value for the diffusion coefficient,
D ∼ 10−6 m2∕s, and λ ¼ 10−6 m, we obtain tth ¼ 25 μs. This timescale is much larger than the
pulse spacing in a typical mode-locked oscillator, tth ≫ ν−1r , so we may treat the heating and
detection with the average beam powers. To eliminate the effects of stray background absorption
and scattering, the heating beam is modulated with frequency νmod and the thermal transport
length associated with this modulation frequency gives a radius of rth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D∕πνmod

p
, which

we consider for defining an effective volume of the heated region that induces scattering on the
probe pulse.

On a time intervalΔt shorter than tth, where Δt ≪ tth, there is little time for heat to diffuse as
rth will be much less than λ. However, given such short times, we can estimate the heating that is
produced by Mp ¼ Δtνr pulses in the time interval for a pulsed source with a repetition fre-
quency of νr. The heating per pulse, ΔQ, will accumulate to a total temperature rise of
ΔT ¼ ΔQMp∕CvV. For optical absorption well below saturation, the mean number of molecules
excited by a square heating pulse of length τh and peak intensity I0h is given by

Mex ¼ τhσ
ð1Þ
a I0hNV∕Eex. Putting this together, we obtain a susceptibility perturbation of
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δεPTeff ¼ Nδεð1Þi BPT. Here, the imaginary component of the single-molecule susceptibility is

δεð1Þi ¼ σð1Þa k−10 , and the photothermal factor is BPT ¼ ð2∕3Þe−2ðAa∕AhÞðΔthph∕λκÞð∂ε∕∂TÞT0
.

The heating depends on the ratio of the sphere cross section area, Aa ¼ πa2, to the heating beam
cross-section area, Ah, and the ratio of the average power of the heating beam, ph, to the product
λ κ. Heating is converted into a change in optical susceptibility through ð∂ε∕∂TÞT0

at an equi-
librium temperature T0. The thermal properties of the solvent that scale the PT susceptibility
perturbation are κ−1ð∂ε∕∂TÞT0

. Using the numbers from the literature,77 we find that this figure
of merit is ∼6.6× larger for glycerol than water, which is why PT imaging experiments use
glycerol as a solvent when possible.59

4 Single-Pixel Detection of Different Label-Free Imaging Methods
It is evident upon inspection of Eq. (5) that many experimental modalities are admitted by
this expression. Having established the general model for the estimation of either a real- or
imaginary-valued optical susceptibility perturbation, we now study the relative performance
of methods and comment on the detection sensitivity of various optical methods. We begin with
the case of direct signal detection without the aid of interferometric enhancement that is enabled
by mixing with a coherent reference field. With this baseline established, we examine the benefit
of reducing noise power via the elimination of the incident field in detection, alternatively known
as dark-field imaging.

Although experimentally challenging due to the potential weakness of the signal, dark-field
imaging oftentimes utilizes a detection direction different from the incident. The normalized
Fisher information, for both cases of purely real- and imaginary-valued susceptibilities, is
expressed as

EQ-TARGET;temp:intralink-;e010;117;440J̃df ¼ 4Γ ¼ ηc
k40V

2

3πAb
: (10)

It is independent of the object susceptibility and increases as the object volume increases or
as the incident beam area decreases. The key factor in dark-field detection is the collection
efficiency. A small collection efficiency will produce a weak photon flux, and if this flux drops
below the rate of dark current detection or background flux incident on the detector, long
integration times are required. Similarly, when we consider the interaction volume, V, a small
volume also makes dark-field detection weak.

Bright-field imaging, by contrast, is a more commonly employed technique in optical
experiments. However, the presence of the incident field, whether or not it interferes with the
object field, leads to an elevation in the noise level. Increased noise decreases the Fisher infor-
mation, and this is more evident in the real-valued case thanks to the absence of interference
between the incident and scattered fields. The corresponding normalized Fisher information
expression is given by

EQ-TARGET;temp:intralink-;e011;117;249J̃bf ≈
�
4Γ2ðδεðreÞeff Þ2 real-valued δϵeff
H2 imaginary-valued δϵeff

: (11)

We observe a drastic difference in behavior between the cases in which the susceptibility
takes on a real or imaginary value. In the bright-field case, the background light passes the
sample and hits the detector, along with the scattered field. When the susceptibility is real-
valued, there is no energy exchange with the molecules to be detected; rather, light is scattered
from the scatterer and is shifted in phase by π∕2. Because of this phase shift, the scattered field
does not interfere with the (much stronger) unscattered field. As a result, the detected signal is
extremely weak compared with the noise, which is dominated by the unscattered beam. By con-
trast, if the susceptibility is imaginary-valued, there will be a change in the field strength of the
light passing through the object that is small, but this altered field will still interfere with the large
unscattered field, which amplifies the signal and provides more information relative to noise.
Clearly, the scattering phase shift makes the detection of real-valued susceptibilities much more

Wang et al.: Statistical estimation theory detection limits for label-free imaging

Journal of Biomedical Optics S22716-15 Vol. 29(S2)



difficult than the imaginary case. This situation sharply contrasts with the scenario for dark-field
detection in which either susceptibility perturbation value leads to the same normalized Fisher
information.

In the case of interference with a dark-field signal, we obtain the anticipated result in the
limit of a large reference beam for which the normalized fisher information reaches the case of
bright-field where interference between the scattered and incident light can occur:

EQ-TARGET;temp:intralink-;e012;114;664J̃df;int ≈
�
H2 sin2 ϕ real-valued δϵeff
H2 cos2 ϕ imaginary-valued δϵeff

: (12)

This result relies on relative coherence between the scattered and reference fields. With that
coherence comes an additional degree of freedom in the experiment, the relative phase ϕ. When
ϕ is suitably chosen, we reach the limiting case of bright-field detection, regardless of whether
the susceptibility is real or imaginary.

Finally, we have the general scenario for the Fisher information. It is helpful to consider two
situations: (a) the limit of a very strong reference field and (b) when we reach an interferometric
null, i.e., with a, R ¼ 1 and the correctly chosen phase, ϕ ¼ π. In the case of a strong reference
field, the exact same result as for the dark-field case given in Eq. (12) is obtained. In the inter-
ferometric null case, we zero out the incident field with the reference field at the detector, elimi-
nating the noise contribution from the background light as well. Under this condition, the Fisher
information is identical to the dark-field condition, 4Γ. Another common scenario is to set the
reference to a quadrature phase, where ϕ ¼ �π∕2, in which case, the normalized Fisher infor-
mation is half the value for bright-field H2∕2.

The question now arises as to how to arrange an experimental configuration to optimize the
detection sensitivity of a target molecule and thus to reach the smallest value of δϵeff that is
contained within a volume V. This formulation was chosen because optical label-free detection
at single-molecule sensitivity is usually infeasible, so we must consider an interaction region that
contains some concentration of the target. The preceding analysis provides us with two distinct
limiting cases that bound the available per-photon normalized Fisher information: the dark- and
bright-field cases; the ratio of these is given by

EQ-TARGET;temp:intralink-;e013;114;380ρN ¼ J̃df
J̃bf

¼ 4Γ
H2

¼ ηck20Ab

3πðlfNAÞ2
: (13)

It is interesting to note that the relative signal size does not depend on the sample volume.
For a simple estimate of this ratio, we may set the beam area to Ab ¼ λ2, and noting that l and
fNA are on the order of unity, we reach the approximation ρN ≈ ð4π∕3Þηc ∼ 4ηc. When ρN > 1,
dark-field detection contains a higher normalized Fisher information than the bright-field case,
which could occur with sufficiently large collection efficiency. Using the full expression for Ab,
ηc, and fNA, we find that, above an NA of 0.62, the collection efficiency is high enough that the
normalized Fisher information is larger than the bright-field case. It should be noted that this does
not imply a larger dark-field signal but rather that there is substantially less noise from the target
object in the case of dark-field detection.

The broader behavior of the normalized Fisher information can be studied by plotting the
ratio of the full dark-field and bright-field expressions. The case with no reference beam, and thus
no interference, is shown in Fig. 2. With an increase in the strength of the object signal—whether
due to a higher object susceptibility and/or a larger volume—the normalized Fisher information
approaches that in dark-field imaging, as illustrated in Fig. 2. For values of optical susceptibility
and volume typical of experimental systems, the normalized Fisher information in bright-field
imaging never exceeds approximately ≪1% of that in dark-field imaging for purely real sus-
ceptibility perturbation and ∼50% for purely imaginary susceptibility perturbation.

Unlike conventional direct imaging approaches, the exploration of interferometric detection
methods in optical experiments opens new avenues for precision and sensitivity. Subtle variations
in the optical path length can be precisely detected, enabling the measurement of quantities such
as phase differences with exceptional accuracy. When optical signals are weak, the signal
strength can be boosted by interfering with the signal using a strong reference field. The signal
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boost often allows for the signal to be raised over the level of electronic noise of detectors.
However, additional shot noise is introduced into the detection due to the presence of the refer-
ence beam. Indeed, in the limit of a strong reference beam, the noise is dominated by the con-
tribution from the reference beam, which allows for shot-noise limited detection of the signal
beam. To quantify the potential enhancement in the estimation of the object susceptibility from
interferometric detection, we examine the Fisher information in both dark- and bright-field im-
aging with a coherent reference beam. The ratio of the Fisher information between each detection
scheme with reference and the dark field without reference is plotted in Figs. 3(a) and 4(a)
accordingly.

The relative phase, ϕ, of the reference beam plays a significant role of determining whether
we have constructive or destructive interference with the object field. The interference results in
boosted or diminished information with respect to the optical susceptibility perturbation without
drastically changing the overall measurement and, consequently, the noise level. Therefore, the
Fisher information analyses allow for determining the optimal reference beam intensity and
phase relative to the incident.

Given the demonstrated enhancement in sensitivity achieved by suppressing the noise level,
it is only natural to question whether dark-field imaging with a reference offers any advantages
over its bright-field counterpart. Interestingly, as long as the reference is not fully eliminated, the
noise level experiences similar increases in both detection schemes, whereas the information
pertaining to the susceptibility perturbation remains constant. This leads to comparable reduc-
tions in the Fisher information. However, as the reference strength increases, the interference
term gains dominance, leading to the asymptotic behavior of the normalized Fisher information

converging to J̃ðreÞref → H2 sin2 ϕ for the real-valued susceptibility case and for the imaginary-

valued susceptibility case, J̃ðreÞref → H2 cos2 ϕ. This asymptotic behavior is illustrated by plotting
the Fisher information against the relative amplitude and phase of the reference in Figs. 3(b) and
4(b). Notably, the convergence rate is influenced by the object susceptibility or volume, with a
slower convergence observed for larger values of these parameters. Nonetheless, the ratio
between the Fisher information in either detection scheme with reference and dark-imaging con-
verges rapidly to ∼50% at optimal relative reference phases.

Fig. 2 Ratio between the normalized Fisher information in bright-field imaging, ~Jbf, and in dark-
field imaging or imaginary-valued (δεim) case, ~Jdf, is plotted as a function of the object susceptibil-
ity, for either a real-valued (δεre) case and volume, V ¼ 4πa3∕3, with a sample spherical volume
with radius a, for the case in which no reference field is present; thus, no interference is contained
in the recorded photon counts. Recall that this is the Fisher information normalized to total detected
photon counts and thus is focused on information obtained in the detection strategy. Here, the NA
of the objective is large enough that dark-field detection leads to a larger normalized Fisher infor-
mation. Due to the lack of inference in the case in which the susceptibility is purely real, the Fisher
information remains extremely weak, except for very strong scattering when the volume and sus-
ceptibility perturbation become large. By contrast, the case of a purely imaginary susceptibility
provides a moderate normalized Fisher information relative to the dark-field case for a wide range
of scenarios.
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5 Discussion
The analysis presented here covers a significant range of parameter space. To make the results
more concrete, we shall discuss an illustrative example. We take as an example a molecule-
exemplified fluorescent chromophore, with specific numbers for enhanced green fluorescent
protein. Although such an example is not definitive, it does establish an estimate for detection
that will likely be on the same order of magnitude for the detection of interactions based on
electronic resonances. A similar exercise could be implemented for other interactions, but the
strategy will be the same. In our example, we choose a wavelength of λ ¼ 510 nm and an
objective lens with NA ¼ 0.95, and we have a beam radius of w ¼ 280 nm and an area of
Ab ¼ 0.122 μm2. Furthermore, we assume an illumination power of pi ¼ 10 mW, which
represents a photon rate of ϕi ¼ 2.6 × 1010 photons∕μs and a photon flux at the focus of
Fi ¼ 2.1 × 1011 photons∕μs μm2.

For enhanced green fluorescent protein (eGFP), we use a ground-state polarizability of

αð1ÞÞeGFP;g ¼ ð1.69þ i1.13Þ × nm3 and, in the excited state, a value of αð1ÞÞeGFP;e ¼
ð−2.48 − i1.13Þ × nm3. Clearly, these values will vary over the excitation and emission band-
width, and these particular values are chosen because they are near the spectral peaks. For a
number density of N eGFP molecules, we have a susceptibility of δε ¼ Nα. For our purposes,
we assume an eGFP concentration of 1 mM, which leads to δϵeff;g ¼ ð1þ i0.68Þ × 10−3

and δϵeff;e ¼ ð−1.5 − i0.68Þ × 10−3.
With a fluorescent molecule, we have multiple modes of detection. Let us first consider

fluorescence, for which single-molecule detection is feasible. Here, we assume that the

Fig. 3 Ratio between the normalized Fisher information in dark-field imaging with reference, ~Jdf;int,
and dark-field imaging, ~Jdf. (a) Plotted as a function of the relative amplitude, R, and phase, ϕ, of
the reference field. (b) Plot this ratio for a fixed phase value as the function of the amplitude of the
reference to demonstrate its asymptotic behavior compared with the corresponding approximated
limit expression.
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10-mW incident beam is used for excitation, and accounting for the 60% fluorescent quantum
yield, 6.8 × 10−8 of the incident excitation photons are converted into emitted fluorescent pho-
tons. Assuming a collection and detection efficiency of 10%, these fluorescent photons could be
detected at a rate of 175 photons∕μs. This easily exceeds the threshold for single-molecule level
detection. Fluorescent detection benefits from the ability to isolate the signal (fluorescent) pho-
tons from the incident photons with spectral filters. Such a luxury is not always available, and the
presence of additional background light from the excitation, for example, can add significant
noise.

Scattered light detection provides a direct measurement strategy that does not rely on the
emission of fluorescent light. As absorption depends on the volume and scattering depends on the
square of the volume, the scattered power will remain weaker than the absorbed power until the

diameter of the interaction volume exceeds d ≈ 0.53δϵ−1∕3eff λ. For the value of the eGFP effective
susceptibility, an interaction volume diameter of ∼3 μm is required for the level of the scattered
power to reach that of the absorbed power. However, the analysis presented in this paper shows
that the volume of the interaction does not impact the limiting case of detection, despite the fact
that volume plays a key role in the generation of scattered or absorbed light signals. We have seen
that the main driver in the normalized Fisher information (i.e., per photon) is the numerical aper-
ture of the imaging and detection optics. To highlight this, consider a sphere with a radius of λ∕5
that contains our eGFP sample at 1-mM concentration. In this case, the normalized dark-field
Fisher information is ~Jdf ¼ 0.299, which means that the CRLB for detection sensitivity is given

Fig. 4 Ratio between the normalized Fisher information in bright-field imaging with reference,
~Jbf;int, and in dark-field imaging, ~Jdf. (a) This ratio is plotted as a function of the relative amplitude,
R, and phase, ϕ, of the reference field. (b) This ratio is plotted as a function of the relative amplitude
of the reference, R, at a fixed value of the phase to demonstrate its asymptotic behavior compared
with the corresponding approximated limit expression.
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by δϵmin ¼ 1∕
ffiffiffiffiffiffiffiffiffiffiffiffi
N iJ̃df

p
. For our scenario, N i ¼ 1.8 × 1010 photons, i.e., a 10-mW beam, when

we assume a detector with 70% efficiency and a Δt ¼ 1 μs integration time. This produces
δϵmin ¼ 1.36 × 10−5 for dark-field detection, and this result is independent of the detection
concentration.

For bright-field detection, we have ~Jbf ¼ 0.200 for an imaginary-valued susceptibility,
which results in a detection sensitivity of δϵmin ¼ 1.67 × 10−5. This bright-field detection is
driven by the imaginary component of the effective susceptibility because the normalized
Fisher information from the real-valued component is vanishingly small. For the real-
valued case, the normalized Fisher information becomes concentration-dependent, with
~Jbf ¼ 2.33 × 10−8 and δϵmin ¼ 4.89 × 10−2 for a 1-mM concentration compared with ~Jbf ¼
2.33 × 10−14 and δϵmin ¼ 48.9 for a 1-μM concentration. Nearly any other configuration of inter-
ferometric detection perform poorly for bright-field detection of a real-valued susceptibility, with
the exception of the interferometric null, in which the optimal dark-field detection sensitivity can
be recovered. The other interesting cases pointed out earlier, for a strong reference, lead to the
bright-field Fisher information, and to the interferometric null, which produces the dark-field
case. For a change in volume, the Fisher information values scale with the square of the volume,
but the relative strength of the dark to bright field remains the same.

A downside of direct detection, such as optical absorption or scattering, in which we look for
a change in the signal power of the optical beam is that the signal can be confounded by other
losses that can occur, such as spurious scattering or absorption. Some specificity is necessary to
enable sensitive detection without ambiguity from other background contributors. As mentioned
above, one method of specific detection is fluorescence, in which the signal can be isolated based
on optical filters. Yet, fluorescence detection rates are bound by the spontaneous emission rate.
Two label-free methods are also capable of spectroscopic isolation of the molecular signal of
interest: TA/SE and photothermal (PT) detection. In both cases, a nonthermal equilibrium is
prepared by a pump pulse that modulates the signal extracted by a probe pulse. Because the
modulation by the pump pulse is tuned to target a particular spectroscopic transition, specificity
can be reliably achieved. In the case of TA/SE, the polarizability of the molecular interaction is
generally imaginary, so high Fisher information detection is possible with a bright-field scenario;
however, with interferometric detection, the limiting case of dark-field detection is also possible.
In the case of PT, the thermally induced susceptibility perturbation is real-valued. As a result,
simple bright-field detection will perform poorly, and dark-field scattering or optimized inter-
ferometric detection is preferred. The calculations and typical values of normalized Fisher infor-
mation follow the same approach as with direct absorption and scattering. In the case of PT, there
is a further boost to the normalized Fisher information of BðPTÞ over the initial energy deposition
step from absorption. Similarly, for TA/SE, there is a boost given by BðTA∕SEÞ ≈ ηpu∕ηse that
scales as the ratio of the stimulated absorption to the stimulated emission, indicating a more
rapid turnover of excitation and emission cycles. In both cases, the boosting factor will increase
the effective linear susceptibility perturbation. However, as we have seen, only in the case of a
real-valued susceptibility with bright-field detection does the value of the effective susceptibility
perturbation play a role, and thus, an enhancement from this amplification factor is only antici-
pated in the case of the unoptimized scenario of bright-field detection of a PT signal, in which the
detection limit will be improved by the enhancement factor. It is worth emphasizing that the key
advantage in PT and TS/SE is the ability to better isolate the target signal with pump modulation.
The lifetime of signal decay is also a factor that can be used to isolate particular signals.

The other modalities are all nonlinear signals that exhibit enhancements from pulsed exci-
tation and beam intensities. In the case of SHG and THG, these signal generation mechanisms are
intrinsically dark-field scattering modes and thus can reach the optimal detectivity, provided that
shot-noise limited detection is possible. Although CARS and CSRS are only driven by resonant
vibrational scattering there is always a strong interference from nonresonant scattering from elec-
tronic resonances, which further complicates their detailed analysis. SRL/SRG are pump–probe
methods that are dominated by an imaginary-valued susceptibility on vibrational resonance and
thus can be readily optimized through bright-field or interferometric detection. Finally, ISRS is
also a pump–probe method that usually produces a purely real susceptibility perturbation. Here,
direct bright-field detection, although possible, is disfavored, and interferometric detection78 is
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preferred. Note, however, that there are complexities involved with ISRS due to spectral scatter-
ing that induces additional subtleties in the analysis.42

6 Conclusions
We have presented a comprehensive examination of signal detection methods in label-free im-
aging, culminating in the development of a universal signal model for measuring the optical
susceptibility of sub-wavelength particles applicable across various imaging modalities. By
leveraging Fisher information analyses, we have explored the sensitivity of each modality,
assuming that cases in optical susceptibility are limited to purely real or imaginary within the
shot-noise limit.

In the model, we assume a dipole source that is polarized in the plane parallel to the optical
axis and exemplified by the target molecule at some concentration, N, that is contained within a
sphere of radius a. Within the sphere, we consider that the set of target molecules present are
subject to illumination and that the radiation produced by the optical interaction can be modeled
as an effective linear susceptibility, δϵeff , that is computed from the time-averaged signal that is
collected on a detector. This effective susceptibility is defined such that the average scattered and
extinguished power may be computed from the standard linear cross-section expressions.

Moreover, a generalized detection scenario that admits the possibility of including a coher-
ent reference beam is included. The introduction of a coherent reference beam offers a number of
strategies for manipulating the information that can be extracted from an optical detection experi-
ment. The classic strategy is to use interference to boost the strength of the detected field, which
has an added benefit of linearizing the signal intensity with respect to the signal field. However,
the addition of the reference field also increases the level of shot noise in the measurement, which
will reduce the Fisher information and lead to a loss of information. However, by controlling the
amplitude and phase of the reference field, we can manipulate the Fisher information into favor-
able scenarios. With a large reference beam, i.e., R → ∞, we can mimic bright-field imaging,
but now, with the capability of adjusting the relative phase between the scattered field and the
reference, we can reach the limit of bright-field detection Fisher information, H2. We can also
set the interferometer to null the incident field, allowing for mimicking of dark-field detection
even if the light is collected in a forward scattered direction as occurs in a standard bright-field
measurement. In this scenario, we reach the limit of dark-field detection Fisher information of
4Γ. We find that all other configurations are bounded by these measurement possibilities.

As we attain two distinct normalized Fisher information maxima, the question arises as to
which experimental scenario will provide more information, and thus more sensitivity, for the
detection of a target molecule. To evaluate this question, we defined the ratio of the dark- to
bright-field Fisher information quantities as ρN , which is given in Eq. (13). The values depend
only on the numerical aperture, ranging from zero for no NA to just more than 3 for an NA of
unity. When ρN > 1, dark-field detection is favorable, and this threshold occurs for NA = 0.62.
Thus, for microscopy, we are invariably under a scenario dominated by dark-field detection.
However, because our model is restricted to a radius of an interaction volume that is small com-
pared with the wavelength, extrapolation to an NA < 0.5 is difficult to assess, but our results are
relevant for application to high-resolution label-free optical microscopy. The conclusion is that,
for reasonable experimental scenarios, the maximum Fisher information is attained in dark-field
imaging without reference and equivalently in bright-field imaging only with reference when the
reference cancels out the incident field. In cases in which a reference beam is necessary for signal
detection facilitation, opting for a relatively large beam intensity is advisable for achieving
improved estimation precision. It is important to remember that this analysis relies on the
assumption of shot-noise limited detection that, when relative intensity noise from sources and
electronic noise dominate over the shot noise, other conclusions could be reached.

In this calculation, we considered the limiting case of ideal optical detection, in which we
need to consider only shot noise in the detection. Such a model neglects the effects of noise in the
detector, such as Johnson noise and dark current, as well as relative intensity noise (RIN) that is
present in optical sources. We make these assumptions because we are primarily interested in the
limiting case of weak signal detection and, thus, low dark-field signal flux. At such low signal
levels, RIN becomes negligible, and the dominant noise that we must contend with is dark
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current noise. Dark current is modeled as a Poisson process and thus is an additive noise con-
tribution in the denominator of the Fisher information. The key issue is that the dark counts
should be lower than the dark-field signal flux to prevent long signal integration times.
Under such conditions, the conclusions that we draw here are widely applicable.

Disclosures
The authors have no relevant financial interests in the paper and no other potential conflicts of
interest to disclose.

Code and Data Availability
The mathematic code for the analysis is included as formulae presented herein.

Acknowledgments
This project has been made possible in part by the Chan Zuckerberg Initiative DAF (Grant
No. 2024-337158), an advised fund of the Silicon Valley Community Foundation. We are grateful
for funding support from the National Science Foundation (Grant No. CHE-2204052).

References
1. M. Mir et al., “Quantitative phase imaging,” Progr. Opt. 57, 133–137 (2012).
2. D. Jin et al., “Tomographic phase microscopy: principles and applications in bioimaging,” J. Opt. Soc. Amer.

B 34(5), B64–B77 (2017).
3. Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics

12(10), 578–589 (2018).
4. Y. Park et al., “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red

blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
5. P. J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy: principles and applications to

disease diagnosis,” Laser Photonics Rev. 5(1), 13–26 (2011).
6. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic micros-

copy of biological specimens,” Opt. Express 18(10), 9840–9851 (2010).
7. D. R. Smith, D. G. Winters, and R. A. Bartels, “Submillisecond second harmonic holographic imaging of

biological specimens in three dimensions,” Proc. Natl. Acad. Sci. 110(46), 18391–18396 (2013).
8. D. R. Smith et al., “Hilbert reconstruction of phase-shifted second-harmonic holographic images,” Opt. Lett.

37(11), 2052–2054 (2012).
9. D. G. Winters et al., “Measurement of orientation and susceptibility ratios using a polarization-resolved

second-harmonic generation holographic microscope,” Biomed. Opt. Express 3(9), 2004–2011 (2012).
10. C. Hu et al., “Harmonic optical tomography of nonlinear structures,” Nat. Photonics 14(9), 564–569

(2020).
11. D. S. James and P. J. Campagnola, “Recent advancements in optical harmonic generation microscopy:

applications and perspectives,” BME Front. 2021, 3973857 (2021).
12. G. Murray et al., “Aberration free synthetic aperture second harmonic generation holography,” Opt. Express

31, 32434–32457 (2023).
13. Y. Barad et al., “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.

70, 922–924 (1997).
14. M. Müller et al., “3Dmicroscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3),

266–274 (1998).
15. D. Débarre et al., “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,”

Nat. Methods 3(1), 47–53 (2006).
16. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy

through polarization switching,” Opt. Lett. 34(8), 1240–1242 (2009).
17. O. Masihzadeh et al., “Third harmonic generation microscopy of a mouse retina,” Mol. Vis. 21, 538 (2015).
18. B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue

organization,” J. Cell Sci. 129(2), 245–255 (2016).
19. Y. Farah et al., “Synthetic spatial aperture holographic third harmonic generation microscopy,” Optica 11(5),

693–705 (2024).
20. J. Chan et al., “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser

Photonics Rev. 2(5), 325–349 (2008).
21. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: an emerging platform for

biology and medicine,” Science 350(6264), aaa8870 (2015).

Wang et al.: Statistical estimation theory detection limits for label-free imaging

Journal of Biomedical Optics S22716-22 Vol. 29(S2)

https://doi.org/10.1016/B978-0-44-459422-8.00003-5
https://doi.org/10.1364/JOSAB.34.000B64
https://doi.org/10.1364/JOSAB.34.000B64
https://doi.org/10.1038/s41566-018-0253-x
https://doi.org/10.1364/OL.34.003668
https://doi.org/10.1002/lpor.200910024
https://doi.org/10.1364/OE.18.009840
https://doi.org/10.1073/pnas.1306856110
https://doi.org/10.1364/OL.37.002052
https://doi.org/10.1364/BOE.3.002004
https://doi.org/10.1038/s41566-020-0638-5
https://doi.org/10.34133/2021/3973857
https://doi.org/10.1364/OE.496083
https://doi.org/10.1063/1.118442
https://doi.org/10.1046/j.1365-2818.1998.00399.x
https://doi.org/10.1038/nmeth813
https://doi.org/10.1364/OL.34.001240
https://doi.org/10.1242/jcs.152272
https://doi.org/10.1364/OPTICA.521088
https://doi.org/10.1002/lpor.200810012
https://doi.org/10.1002/lpor.200810012
https://doi.org/10.1126/science.aaa8870


22. C. Scotté et al., “Compressive Raman imaging with spatial frequency modulated illumination,” Opt. Lett.
44(8), 1936–1939 (2019).

23. C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,”
Annu. Rev. Biomed. Eng. 17, 415–445 (2015).

24. T. P. Wrobel and R. Bhargava, “Infrared spectroscopic imaging advances as an analytical technology for
biomedical sciences,” Anal. Chem. 90(3), 1444–1463 (2018).

25. T. Ye, D. Fu, and W. S. Warren, “Nonlinear absorption microscopy,” Photochem. Photobiol. 85(3), 631–645
(2009).

26. C. Stringari et al., “In vivo single-cell detection of metabolic oscillations in stem cells,” Cell Rep. 10(1), 1–7
(2015).

27. M. C. Fischer et al., “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101
(2016).

28. R. Datta et al., “Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation,
analysis, and applications,” J. Biomed. Opt. 25(7), 071203 (2020).

29. B. H. Stuart, “Infrared spectroscopy of biological applications,” in Encyclopedia of Analytical Chemistry:
Applications, Theory and Instrumentation, R. A. Meyers, Ed., Wiley (2006).

30. C. Matthäus et al., “Infrared and Raman microscopy in cell biology,”Methods Cell Biol. 89, 275–308 (2008).
31. S. Sabbatini et al., “Infrared spectroscopy as a new tool for studying single living cells: is there a niche?,”

Biomed. Spectrosc. Imaging 6(3–4), 85–99 (2017).
32. L. Shi et al., “Mid-infrared metabolic imaging with vibrational probes,”Nat. Methods 17(8), 844–851 (2020).
33. R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy—a prospective tool in the life sciences,”

chemphyschem 4(1), 14–30 (2003).
34. K. Dodo, K. Fujita, and M. Sodeoka, “Raman spectroscopy for chemical biology research,” J. Amer. Chem.

Soc. 144(43), 19651–19667 (2022).
35. A. Alfonso-Garca et al., “Biological imaging with coherent Raman scattering microscopy: a tutorial,”

J. Biomed. Opt. 19(7), 071407 (2014).
36. S. Heuke et al., “Spatial frequency modulated imaging in coherent anti-Stokes Raman microscopy,” Optica

7(5), 417–424 (2020).
37. C. Zhang and J.-X. Cheng, “Perspective: coherent Raman scattering microscopy, the future is bright,” APL

Photonics 3(9), 090901 (2018).
38. E. M. Fantuzzi et al., “Wide-field coherent anti-Stokes Raman scattering microscopy using random

illuminations,” Nat. Photonics 17(12), 1097–1104 (2023).
39. S. Heuke and H. Rigneault, “Coherent Stokes Raman scattering microscopy (CSRS),” Nat. Commun. 14(1),

3337 (2023).
40. H. J. Lee and J.-X. Cheng, “Imaging chemistry inside living cells by stimulated Raman scattering

microscopy,” Methods 128, 119–128 (2017).
41. H. Rigneault and P. Berto, “Tutorial: coherent Raman light matter interaction processes,” APL Photonics

3(9), 091101 (2018).
42. R. A. Bartels, D. Oron, and H. Rigneault, “Low frequency coherent Raman spectroscopy,” J. Phys.:

Photonics 3(4), 042004 (2021).
43. J. W. Wilson, P. Schlup, and R. A. Bartels, “Synthetic temporal aperture coherent molecular phase

spectroscopy,” Chem. Phys. Lett. 463(4–6), 300–304 (2008).
44. J. W. Wilson, P. Schlup, and R. Bartels, “Phase measurement of coherent Raman vibrational spectroscopy

with chirped spectral holography,” Opt. Lett. 33(18), 2116–2118 (2008).
45. P. Schlup, J. W. Wilson, and R. A. Bartels, “Sensitive and selective detection of low-frequency vibrational

modes through a phase-shifting Fourier transform spectroscopy,” IEEE J. Quantum Electron. 45(7), 777–782
(2009).

46. S. Domingue, D. Winters, and R. Bartels, “Time-resolved coherent Raman spectroscopy by high-speed
pump-probe delay scanning,” Opt. Lett. 39(14), 4124–4127 (2014).

47. D. R. Smith et al., “Nearly degenerate two-color impulsive coherent Raman hyperspectral imaging,” Opt.
Lett. 47(22), 5841–5844 (2022).

48. S. Shivkumar et al., “Selective detection in impulsive low-frequency Raman imaging using shaped probe
pulses,” Phys. Rev. Appl. 19(5), 054075 (2023).

49. D. R. Smith et al., “Low frequency coherent Raman imaging robust to optical scattering,” arXiv:2402.07006
(2024).

50. W. Min et al., “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys.
Chem. 62, 507–530 (2011).

51. S. R. Domingue et al., “Transient absorption imaging of hemes with 2-color, independently tunable visible-
wavelength ultrafast source,” Biomed. Opt. Express 8(6), 2807–2821 (2017).

52. J. D. Wong-Campos, J. Porto, and A. E. Cohen, “Which way does stimulated emission go?” J. Phys. Chem. A
125(50), 10667–10676 (2021).

Wang et al.: Statistical estimation theory detection limits for label-free imaging

Journal of Biomedical Optics S22716-23 Vol. 29(S2)

https://doi.org/10.1364/OL.44.001936
https://doi.org/10.1146/annurev-bioeng-071114-040554
https://doi.org/10.1021/acs.analchem.7b05330
https://doi.org/10.1111/j.1751-1097.2008.00514.x
https://doi.org/10.1016/j.celrep.2014.12.007
https://doi.org/10.1063/1.4943211
https://doi.org/10.1117/1.JBO.25.7.071203
https://doi.org/10.1016/S0091-679X(08)00610-9
https://doi.org/10.3233/BSI-170171
https://doi.org/10.1038/s41592-020-0883-z
https://doi.org/10.1002/cphc.200390004
https://doi.org/10.1021/jacs.2c05359
https://doi.org/10.1021/jacs.2c05359
https://doi.org/10.1016/S0091-679X(08)00610-9
https://doi.org/10.1364/OPTICA.386526
https://doi.org/10.1063/1.5040101
https://doi.org/10.1063/1.5040101
https://doi.org/10.1038/s41566-023-01294-x
https://doi.org/10.1038/s41467-023-38941-4
https://doi.org/10.1016/j.ymeth.2017.07.020
https://doi.org/10.1063/1.5030335
https://doi.org/10.1088/2515-7647/ac1cd7
https://doi.org/10.1088/2515-7647/ac1cd7
https://doi.org/10.1016/j.cplett.2008.08.067
https://doi.org/10.1364/OL.33.002116
https://doi.org/10.1109/JQE.2009.2013121
https://doi.org/10.1364/OL.39.004124
https://doi.org/10.1364/OL.467970
https://doi.org/10.1364/OL.467970
https://doi.org/10.1103/PhysRevApplied.19.054075
https://doi.org/10.1146/annurev.physchem.012809.103512
https://doi.org/10.1146/annurev.physchem.012809.103512
https://doi.org/10.1364/BOE.8.002807
https://doi.org/10.1021/acs.jpca.1c07713


53. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19),
R59 (2009).

54. V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top.
Quantum Electron. 11(4), 733–751 (2005).

55. S. Adhikari et al., “Photothermal microscopy: imaging the optical absorption of single nanoparticles and
single molecules,” ACS Nano 14(12), 16414–16445 (2020).

56. L. Cognet et al., “Photothermal methods for single nonluminescent nano-objects,” (2008).
57. D. Zhang et al., “Bond-selective transient phase imaging via sensing of the infrared photothermal effect,”

Light: Sci. Appl. 8(1), 116 (2019).
58. Y. Bai, J. Yin, and J.-X. Cheng, “Bond-selective imaging by optically sensing the mid-infrared photothermal

effect,” Sci. Adv. 7(20), eabg1559 (2021).
59. Y. Zhu et al., “Stimulated Raman photothermal microscopy towards ultrasensitive chemical imaging,”

bioRxiv, 2023–03 (2023).
60. S. Khadir et al., “Quantitative model of the image of a radiating dipole through a microscope,” J. Opt. Soc.

Amer. A 36(4), 478–484 (2019).
61. R. Carminati and J. C. Schotland, Principles of Scattering and Transport of Light, Cambridge University

Press (2021).
62. V. Myroshnychenko et al., “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9),

1792–1805 (2008).
63. J. Mertz, Introduction to Optical Microscopy, Cambridge University Press (2019).
64. H. H. Barrett, C. Dainty, and D. Lara, “Maximum-likelihood methods in wavefront sensing: stochastic

models and likelihood functions,” J. Opt. Soc. Amer. A 24(2), 391–414 (2007).
65. G. C. Knee and W. J. Munro, “Fisher information versus signal-to-noise ratio for a split detector,” Phys. Rev.

A 92(1), 012130 (2015).
66. J. Dong et al., “Fundamental bounds on the precision of iSCAT, COBRI and dark-field microscopy for

3D localization and mass photometry,” J. Phys. D: Appl. Phys. 54(39), 394002 (2021).
67. S. Khadir et al., “Full optical characterization of single nanoparticles using quantitative phase imaging,”

Optica 7(3), 243–248 (2020).
68. X. Gao, X. Li, and W. Min, “Absolute stimulated Raman cross sections of molecules,” J. Phys. Chem. Lett.

14, 5701–5708 (2023).
69. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological

imaging,” Adv. Opt. Photonics 3(3), 205 (2011).
70. P. Cias, C. Wang, and T. S. Dibble, “Absorption cross-sections of the C–H overtone of volatile organic

compounds: 2 methyl-1, 3-butadiene (isoprene), 1, 3-butadiene, and 2, 3-dimethyl-1, 3-butadiene,” Appl.
Spectrosc. 61(2), 230–236 (2007).

71. P. Wang, J. R. Rajian, and J.-X. Cheng, “Spectroscopic imaging of deep tissue through photoacoustic
detection of molecular vibration,” J. Phys. Chem. Lett. 4(13), 2177–2185 (2013).

72. M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt.
Photonics 2(4), 451–518 (2010).

73. M. Tokeshi et al., “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens
microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).

74. D. Boyer et al., “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science
297(5584), 1160–1163 (2002).

75. S. Berciaud et al., “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus
experiment,” Phys. Rev. B 73(4), 045424 (2006).

76. A. Gaiduk et al., “Room-temperature detection of a single molecule’s absorption by photothermal contrast,”
Science 330(6002), 353–356 (2010).

77. A. Gaiduk et al., “Detection limits in photothermal microscopy,” Chem. Sci. 1(3), 343–350 (2010).
78. D. R. Smith et al., “Low-frequency coherent Raman imaging robust to optical scattering,” Chem. Biomed.

Imaging (2024).

Randy A. Bartels is an investigator at the Morgridge Institute for Research and a professor of
Biomedical Engineering at the University of Wisconsin–Madison. His research involves the
development of novel optical microscopy methods for biomedical studies. He is a fellow of
the Optical Society of America and of the American Physical Society (APS). He serves on the
editorial board of Applied Physics Letters (APL Photonics) and is an editor for Science Advances.

Biographies of the other authors are not available.

Wang et al.: Statistical estimation theory detection limits for label-free imaging

Journal of Biomedical Optics S22716-24 Vol. 29(S2)

https://doi.org/10.1088/0031-9155/54/19/R01
https://doi.org/10.1109/JSTQE.2005.857382
https://doi.org/10.1109/JSTQE.2005.857382
https://doi.org/10.1021/acsnano.0c07638
https://doi.org/10.1038/s41377-019-0224-0
https://doi.org/10.1126/sciadv.abg1559
https://doi.org/10.1364/JOSAA.36.000478
https://doi.org/10.1364/JOSAA.36.000478
https://doi.org/10.1039/b711486a
https://doi.org/10.1364/JOSAA.24.000391
https://doi.org/10.1103/PhysRevA.92.012130
https://doi.org/10.1103/PhysRevA.92.012130
https://doi.org/10.1088/1361-6463/ac0f22
https://doi.org/10.1364/OPTICA.381729
https://doi.org/10.1021/acs.jpclett.3c01064
https://doi.org/10.1364/AOP.3.000205
https://doi.org/10.1366/000370207779947440
https://doi.org/10.1366/000370207779947440
https://doi.org/10.1021/jz400559a
https://doi.org/10.1364/AOP.2.000451
https://doi.org/10.1364/AOP.2.000451
https://doi.org/10.1021/ac001479g
https://doi.org/10.1126/science.1073765
https://doi.org/10.1103/PhysRevB.73.045424
https://doi.org/10.1126/science.1195475
https://doi.org/10.1039/c0sc00210k
https://doi.org/10.1021/cbmi.4c00020
https://doi.org/10.1021/cbmi.4c00020

