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Abstract

Significance:Measurement and imaging of hemoglobin oxygenation are used extensively in the
detection and diagnosis of disease; however, the applied instruments vary widely in their depth of
imaging, spatiotemporal resolution, sensitivity, accuracy, complexity, physical size, and cost.
The wide variation in available instrumentation can make it challenging for end users to select
the appropriate tools for their application and to understand the relative limitations of different
methods.

Aim: We aim to provide a systematic overview of the field of hemoglobin imaging and sensing.

Approach: We reviewed the sensing and imaging methods used to analyze hemoglobin
oxygenation, including pulse oximetry, spectral reflectance imaging, diffuse optical imaging,
spectroscopic optical coherence tomography, photoacoustic imaging, and diffuse correlation
spectroscopy.

Results: We compared and contrasted the ability of different methods to determine hemoglobin
biomarkers such as oxygenation while considering factors that influence their practical
application.

Conclusions: We highlight key limitations in the current state-of-the-art and make suggestions
for routes to advance the clinical use and interpretation of hemoglobin oxygenation information.
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1 Introduction

Optical-imaging biomarkers are defined characteristics measured with an optical imaging
modality to indicate normal biological or pathological processes. Optical-imaging biomarkers
can help researchers better understand disease development and give clinicians the ability to
diagnose and treat diseases in patients.1,2

Based on the absorption of light by hemoglobin, optical imaging biomarkers such as hemo-
globin concentration, oxygen saturation, and blood flow can be measured with a range of instru-
ments for clinical disease evaluation. Hemoglobin is a protein in blood that transports oxygen to
organs. Oxygen plays a vital role in cellular aerobic respiration, where it reacts with glucose to
form adenosine triphosphate, water (H2O), and carbon dioxide (CO2), essential for maintaining
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healthy tissue and blood vessels. Hemoglobin oxygenation is often used as a vital sign; low
oxygenation at the level of the organism can indicate a systemic disease, such as chronic obstruc-
tive pulmonary disease and apnea.3,4 Poor oxygenation in a particular organ or tissue can be
symptomatic of an insult due to injury or illness, such as diabetes, skin trauma, rheumatic
disease, or cancer.1,5–8

Noninvasive, low-cost, safe, and portable methods based on optics for extracting hemoglo-
bin-derived biomarkers have become vital tools in patient management that can be applied in real
time at the bedside. Despite widespread use of methods such as pulse oximetry, the uptake of
newer technologies that go beyond point measurements remains relatively limited; however,
there are many promising tools in development, ranging from 3D volumetric imaging of vascular
architecture to spatially-resolved functional images of tissue oxygenation. Being less expensive
and more portable in general than conventional radiological imaging methods, these have the
potential to impact patient care in a wide range of debilitating illnesses, ranging from rheumatoid
and vascular diseases to neurodegenerative diseases and cancer.

Here, we review these noninvasive methods for quantifying hemoglobin-derived biomarkers,
including pulse oximetry, as commonly used in clinical practice worldwide, together with prom-
ising tools emerging in the research setting for imaging. The relative strengths and weaknesses of
different methods are considered according to the application, grouped by mode of operation,
including single-point detection, superficial imaging (up to 1- to 2-mm depth); and deep tissue
imaging. We compare techniques based on the technology used, analysis methods, and current
research or clinical applications; we then highlight limitations that would benefit from future
research.

2 Impact of Tissue Properties on Optical Measurement of Hemoglobin
Biomarkers

2.1 Biology of Human Blood

Human blood consists of plasma (about 55 vol.%) and cells (∼45 vol.%) in which 99% of the
cells are red blood cells (RBCs) and the remaining 1% are leukocytes and thrombocytes.9,10

Plasma is a complex composition of dissolved ions (electrolytes), lipids, sugars, and
proteins.10 RBCs, also known as erythrocytes, have a flat biconcave shape and a mean volume
of 90 μm,3 9,11 and they contain about 30 pg of hemoglobin, a globular metalloprotein respon-
sible for oxygen transport throughout the body.9,11 Hemoglobin concentrations range from 134 to
173 g∕L in whole blood and 299 to 357 g∕L in RBCs, varying according to age, gender, and
health status. For example, anemia, cancer, or hereditary hemochromatosis decrease hemoglobin
levels in the blood.9,12

Each hemoglobin molecule contains four heme groups that can be bound to oxygen; the
unbound state is referred to as deoxygenated hemoglobin, Hb, and the saturated bound state
is considered oxygenated and denoted by HbO2.

10 Sometimes the oxygen saturation of arterial
blood, SaO2, is differentiated from that of peripheral blood, StO2, because arterial blood oxy-
genation should be the same throughout the body. In contrast, peripheral blood has varying oxy-
genation levels as oxygen is absorbed from the blood by peripheral systems.11,13,14 Hemoglobin
is also able to bind to other molecules forming carboxyhemoglobin, which arises during carbon
monoxide inhalation;15,16 sulfhemoglobin, which arises due to the irreversible binding of sulphur
in the presence of sulfonamides;17 and carbaminohemoglobin, which results from the binding of
hemoglobin in venous blood to carbon dioxide.18 A further variant state of hemoglobin is met-
hemoglobin,19–21 in which hemoglobin binds iron in the Fe3þ state (unlike normal hemoglobin
that binds Fe2þ), which prevents the binding of oxygen. Methemoglobin occurs naturally in
blood at ∼1% to 2% concentration,15 but it can be elevated due to side effects of medication
or environmental factors.22 Finally, genetic variants of hemoglobin, such as hemoglobin S, which
causes sickle cell anemia, can influence hemoglobin structure and binding properties.23

Myoglobin, a chromophore commonly found in muscles, binds oxygen with a higher affinity
than hemoglobin.24 Myoglobin has a similar spectral response to hemoglobin and may be found
in the bloodstream following muscle injury.24,25
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2.2 Optical Properties of Biological Tissue

Tissue is a complex turbid medium composed of different cell types and protein-rich extracel-
lular matrix, which strongly impact the propagation of light.11,26,27 Absorption is the transfor-
mation of light energy to some other form of energy, such as heat, sound or fluorescence, as light
traverses tissue and is quantified by the absorption coefficient, μa (cm−1). Absorption is the
primary optical interaction that is exploited to measure hemoglobin biomarkers. In turbid media,
scattering is a major contributor to light attenuation and can confound attempts to measure hemo-
globin absorption because blood is a highly scattering liquid with strong anisotropy. Scattering
refers to a change in the direction of light propagation and is quantified by the scattering coef-
ficient, μs (cm−1), together with directional factors such as the scattering phase function and
anisotropy factor, which further relate to the tissue refractive index.

2.2.1 Optical properties of RBCs, hemoglobin, and its derivatives

The absorption coefficient of hemoglobin is a function of wavelength and the binding state
(Fig. 1).32 Hemoglobin is usually oxygen-bound, whereas other variants mentioned above can
modify the absorption spectrum and should be considered if relevant to the pathology being
assessed because they can confound the measurement.10,13,23,33,34 It should be noted that the
spectra of hemoglobin and its variety of physiologically relevant bound states are often measured
after extracting the hemoglobin protein from RBCs, so they do not consider variation that arises
due to scattering from different RBC geometries and orientations.

In the absence of shear stress, human RBCs are biconcave discs with a diameter of 7 to 8 μm,
maximal thickness of 2 to 3 μm, and minimal thickness of 0.8 to 1.5 μm.35,36 Concentrations of
Hb within an RBC are high, on the order of 300 to 360 mg∕mL, and the total refractive index of
the cell is well approximated by that of pure hemoglobin through the application of the Kramers–
Kronig relations on the total absorption spectrum.37,38 When light is incident upon a single RBC,
scatter from the near and far membrane interfaces leads to a characteristic oscillatory scattering
spectrum and phase function.36,39 The oscillatory spectral shape makes oximetry of a single RBC
impossible without a priori knowledge of the precise shape and orientation of the RBC; how-
ever, averaging over many cells with random orientation can smooth this oscillation, which per-
mits measurement of oxygen saturation of RBCs in capillaries.39,40 In addition, hematocrit, the
volume fraction of RBCs in whole blood, the presence of blood plasma, and other factors affect
the absorption spectra.18,41–44

The most common hemoglobin-derived optical imaging biomarkers are total hemoglobin
(referred to as THb hereafter) and oxygen saturation (referred to as sO2 hereafter). THb is often
evaluated using a single wavelength absorption measurement taken at an isosbestic point of

Fig. 1 The optical absorption of hemoglobin and associated variants. Representative spectra
are shown for oxygenated,28 deoxygenated,28 carbamino,18 carboxy (visible29 and NIR19,20),
methemoglobin (visible30 and NIR19,20), and sulfhemoglobin.31
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HbO2 and Hb (i.e., when their absorption coefficients are equal). sO2 requires an absorption
measurement to be made at multiple wavelengths (at least 2), usually spanning regions where
either HbO2 and Hb dominate the absorption properties. Data are then often analyzed by apply-
ing multivariate statistical approaches for spectral unmixing45 to extract the sO2 value. The
absorption coefficients of HbO2 and Hb are related through sO2 to the overall optical absorption
μa as11,45

EQ-TARGET;temp:intralink-;e001;116;663sO2 ¼
½HbO2�

½HbO2� þ ½Hb� ; (1)

EQ-TARGET;temp:intralink-;e002;116;607μaðλÞ ¼ cHb

�
sO2

100
μaHbO2

ðλÞ þ
�
1 −

sO2

100

�
μaHbðλÞ

�
; (2)

where cHb is the concentration of hemoglobin in the tissue.
In addition to hemoglobin, many other molecules interact with light depending on their con-

centration and distribution throughout the tissue,46 which can disrupt light propagation and also
introduce spectral coloring at depth in tissue, confounding attempts to measure THb and sO2.
Furthermore, the scattering and refractive index properties of blood are affected by hemoglobin
concentration, erythrocyte volume, shape, and aggregation, each of which can be modified in
disease. Unlike the absorption coefficient, the anisotropy and the scattering coefficients of blood
are not dependent on the changes in oxygenation.9,47

Hemoglobin-derived biomarkers often rely on variations in the absorption or scattering by
hemoglobin molecules or RBCs, and the hardware used to make these measurements varies,
including the use of LEDs or lasers for illumination with optical sensors (both arrays and point
sensors) or ultrasound sensors for detection. The methods described in this review are summa-
rized in Table 1.

3 Point Sensing of Hemoglobin sO2 through Pulse Oximetry

Pulse oximetry makes a localized measurement of arterial hemoglobin sO2. To make this meas-
urement, the absorption of tissue is evaluated at two or more different wavelengths, selected
according to where the absorption coefficients of Hb and HbO2 differ sufficiently for their ratio
to be evaluated as a biomarker that can be correlated directly to sO2 [Eq. (1)].

3.1 Clinical Applications and Research Studies

Pulse oximetry has been extensively reviewed elsewhere.13,48,49,135,136 Pulse oximetry is deployed
in many medical applications, from at-home first aid to clinical intensive care units and surgical
theaters13, and it has found particular utility in assessing hypoxemia in COVID-19 patients137 as
nonspecialists with minimal training can efficiently operate pulse oximeters.49,138 Pulse oximetry
research in the clinic focuses on its use in treating and diagnosing diseases, such as optimizing
oxygenation of ventilated patients, screening neonates for congenital heart diseases, and mon-
itoring patients with sleep apneas.50,51,139,140 Despite widespread use, it is also well established
that pulse oximetry can suffer racial bias, which results in less accurate oxygenation readings for
patients with more skin melanin content, a trait associated with darker skin. The impact of such
bias is severe as it has been shown to result in less adequate medical treatment of such patients,
meaning that it is important for clinicians to be aware of this limitation and it is also an important
area for future research and development.141,142 Although this bias has been well known for some
time, it has been increasingly studied as a result of COVID-19 and the increased clinical use of
pulse oximeters to treat respiratory conditions.

3.2 Technology

Light absorption in pulse oximetry is typically measured using alternating illumination by LEDs
at two different wavelengths.135,143,144 Because the wavelength of the illuminating light is altered
with time, oxygenation measurements are susceptible to motion artifacts, which change the area
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of tissue being illuminated and coupling to the tissue, resulting in inaccuracies. Commonly used
wavelength pairs are 660 and 940 nm or 665 and 894 nm,13,52–55 which are applied in two differ-
ent modes.

• Transmission: Tissue such as the finger, toe, or earlobe is illuminated, and the light trans-
mitted through the tissue is detected by a sensor to determine the amount of light attenuated
by the tissue [Fig. 2(a)].

• Reflection: Tissue such as the finger, foot, or forehead is illuminated, and the amount of
light reflected by the tissue and underlying bone is detected by a sensor and used to deter-
mine the amount of light that the tissue has absorbed. Reflection pulse oximetry tends to

Fig. 2 Pulse oximetry. Schematic illustration of pulse oximetry in the two different operation
modes: (a) transmission and (b) reflection. The detected light is cyclic due to the pulsatile nature
of blood in the peripheral vascular system. Both transmission and reflection modes have alternat-
ing components (AC) and direct components (DC). In tissue, the transmission and reflection of
light vary based on the changes in absorption due to blood volume and oxygenation. That is
Rþ Aþ T ≈ 1, whenR,A, and T are the normalized reflection, absorption, and transmission inten-
sities, respectively. For this reason, in reflection pulse oximetry, the peak intensity of light will be off
by half a cycle from that of the transmission cycle. Examples of pulse oximeter devices include
(c) transmission-based devices widely used in a clinical setting. Reproduced with permission
from Ref. 145. (d) Low-power devices in development that adhere to the skin and use flexible
OLED illumination. Reproduced with permission from Ref. 51. (e) Battery-free pulse oximeters
in development that use near field communication for power. Reproduced with permission from
Ref. 146.

Taylor-Williams et al.: Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis

Journal of Biomedical Optics 080901-7 August 2022 • Vol. 27(8)



have a higher signal when there is low perfusion.13,147 In reflection pulse oximetry, it can be
challenging to isolate the light that has gone deeper into tissue from light that has been
scattered or reflected at the surface of the tissue [Fig. 2(b)].

Evolving from the traditional fingertip pulse oximeters [Fig. 2(c)], the current development
of the technology mainly targets wearable devices and focuses on low power usage [Fig. 2(d)],
optimization of signal detection, reduction of motion artifacts, flexible illumination and detec-
tion [Fig. 2(e)], low-cost devices, miniaturization, and calibration techniques.51,56–59

3.3 Analysis

The theory of oximetry analysis has been extensively reviewed by Mackenzie and Harvey,148 so
it will be only briefly introduced; readers are referred to the prior review for a more detailed
description. The total extinction coefficient for blood is denoted as ε and related to SaO2 as13

EQ-TARGET;temp:intralink-;e003;116;571ε ¼ εOSaO2 þ εDð1 − SaO2Þ: (3)

Further analysis of the extinction coefficient is needed to isolate the signal from arterial blood
because venous blood also absorbs the light, along with other chromophores that appear in the
light path, such as melanin (in the skin). It is possible to exploit the cyclic nature of the extinction
coefficient due to the pumping of blood by finding the ratio of the variable component (AC) and
constant component (DC) at two different wavelengths [Figs. 2(a) and 2(b)], where the differ-
ence in light absorption is rather large13,48,135

EQ-TARGET;temp:intralink-;e004;116;467R ¼ ðAC∕DCÞ1
ðAC∕DCÞ2

: (4)

The ratio R, also known as the modulation ratio, is then related to SaO2 through a calibration
procedure using best-fit analysis according to the equation

EQ-TARGET;temp:intralink-;e005;116;397SaO2 ¼ aþ bR; (5)

where the variables a and b are calculated for each device during testing, based on a linear
regression between the modulation ratio and the SaO2 value.135,149 Calibration was originally
performed with human volunteers, changing SaO2 values by limiting the oxygen in the air that
they breathed from 70% to 100% SaO2, which determined the R values.150 These are valid across
devices with the same design, which means that individual devices did not have to be calibrated.
Calibration techniques have evolved, so volunteers are no longer required. For example, several
devices simulate the circulatory system and finger using pumps to mimic the pulsatile flow of
arterial blood and venous blood.12,151–155 The system is then sealed off, and the oxygenation of
the blood can be controlled by varying the oxygen content of the system. Alternatives include
electrical simulators that emit light from an LED corresponding to the light detected by the
sensor to mimic the light transmitted in a typical finger. This technique requires prior knowledge
of the pulse oximeter being calibrated. Once in operation, pulse oximeters are rarely
recalibrated.150

3.4 Limitations

Pulse oximetry measurements typically have an error of 3% to 4% depending on the device and
calibration used, which is actually sufficient to impact patient care in some cases.150,156 In addi-
tion, standard pulse oximeters cannot detect the presence of methemoglobin, carboxyhemoglo-
bin, or hemoglobin mutations, although their presence and concentrations outside of the
expected range will affect the oxygenation readings.15,23 Some targeted pulse oximeters are able
to detect methemoglobin and carboxyhemoglobin, but they are usually used in specific scenarios
in which high levels of these derivatives are expected due to exposure.157 Hemoglobin F, present
in fetuses and infants under 6 months, has a greater oxygen affinity, which allows the fetus to
absorb oxygen from the mother’s bloodstream;10 in infants, its presence can increase the error in
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pulse oximetry by a further 3% in addition to the typical errors.13 Additionally, when there is
poor perfusion to tissues, pulse oximetry can be limited, and if there is not a significant pulse
detected, the technique will have increased inaccuracies.55 Finally, pulse oximetry has been
found to suffer racial bias in two large cohorts, in which black patients had nearly three times
the frequency of occult hypoxemia not detected by pulse oximetry as white patients.141,142 Skin
pigmentation leads to an overestimation of arterial oxygen saturation in dark-skinned individ-
uals, which could seriously impact medical decision making and long-term outcomes.158 These
limitations merit increased attention in research and development given the potential for long-
term and widespread use of pulse oximetry in COVID-19 patient management and the interest in
deployment of the technology in the wearable setting.

4 Reflectance Imaging of Hemoglobin

Optical imaging of hemoglobin biomarkers requires the operator to build a spatially resolved
map of hemoglobin absorption at multiple wavelengths, again exploiting the differential absorp-
tion coefficients of Hb and HbO2.

26,71,159 Several methods can be used to achieve this, including
point-scanning spectroscopy, multispectral imaging, and hyperspectral imaging [Fig. 3(a)]. The
result is a 3D dataset (ðx; y; λÞ)26,72,159,163 that can be subjected to multivariate analysis methods
to extract from the measured spectra the concentrations of their contributing chromophores (e.g.,
Hb and HbO2), referred to as “endmembers” for unmixing.26,72,164–167 From these multivariate
analyses, biomarkers that relate to THb and sO2 can then be extracted.

Fig. 3 Spectral reflectance imaging. (a) Overview of spectral reflectance imaging methods.159

Point-scanning spectroscopy can be used to build spectral information using a standard spectrom-
eter. Alternatively, a spectral camera can be used to collect either a limited number of wavelengths
(multispectral, typically <10 spectral bands) or a more continuous spectrum (hyperspectral).
(b) Endoscopy images of the esophagus with (i) RGB imaging and (ii) narrowband imaging, which
improves the contrast of the blood vessels. Reproduced with permission from Ref. 160.
(c) Endoscopy of a porcine esophagus to determine tissue viability with 24 spectral bands from
460 to 690 nm (spectral resolution of 10 nm) using a slit hyperspectral imaging and fiber bundle
probe and the resulting (i) reconstructed RGB image and (ii) unmixed oxygenation. Reproduced
with permission from Ref. 161. (d) Hypoxia of tumors can be imaged using a liquid crystal tunable
filter in conjunction with a CCD; this is demonstrated in mouse tumors; (i) and (iii) light microscopy
of tumor vasculature in a dorsal skin window chamber, and the additional information of hemo-
globin saturation is shown in (ii) and (iv) illustrating low oxygen saturation of the tumors.
Reproduced with permission from Ref. 162.
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4.1 Clinical Applications and Research Studies

A widespread application of reflectance hemoglobin imaging is in gastrointestinal endoscopy.
Virtual chromoendoscopy methods adapt the light source of the endoscopy to focus on two
wavelength bands (415 and 540 nm), where hemoglobin absorbs strongly (Fig. 1), thus provid-
ing a high contrast morphological image of the tissue vasculature to the clinician.2,168

Narrowband imaging is the most widely established of these methods and meets the ASGE
thresholds for targeting biopsies when imaging patients with Barrett’s esophagus for early signs
of cancer.169 More recently, clinical research studies have demonstrated that, by expanding the
number of wavelengths captured in endoscopy,72,73,170 it is possible to derive hemoglobin bio-
markers of THb and sO2 from spectral information to classify disease status;171 however, further
clinical study is needed to demonstrate efficacy.

Capillaroscopy is another reflectance-based imaging technique; it is used to image the blood
vessels in the finger nailfold to diagnose disease, particularly to identify rheumatic diseases such
as systemic scleroderma. Capillaries are microblood vessels from which oxygen and other
nutrients are exchanged with the surrounding cells. In the finger nailfold, the capillaries are
oriented in loops parallel to the skin, allowing for full visualization at high resolution in reflec-
tance imaging mode. Capillary walls, formed from a single layer of endothelial cells lining the
vessels, can rarely be detected during capillaroscopy, whereas the RBC column is visible, and
morphological features associated with the capillary can be measured using monochrome, nar-
rowband, and RGB imaging.60 Capillary blood flow in the finger ranges in velocity from 0.67
to 4 mm∕s depending on physiological factors and the cyclic nature of perfusion.172–174

Morphological dysfunction of the capillaries is easily identified using the current techniques,
but current methods do not make oximetry measurements related to this dysfunction.

Reflectance-based oximetry imaging has been widely explored in retinal imaging because the
retina is one of the most metabolically active tissues in the human body.175 Commercial retinal
oximeters are applied to fundus cameras and use dual-wavelength illumination, akin to pulse
oximetry, to acquire images simultaneously at one isosbestic wavelength and one sensitive
to HbO2. Abnormal retinal oxygenation has been shown to detect diabetic retinopathy, age-
related macular degeneration, and glaucoma.74,75,176 In addition, the retina has similar vascular
properties to the brain, making it a perfect window for understanding and diagnosing neurologi-
cal disease in addition to ocular disease.75 Nonetheless, retinal oximetry has yet to find routine
clinical application, limited primarily by the impact of fundus pigmentation and vessel size on
quantification.75 Although some hyperspectral imaging technologies have been explored in an
attempt to overcome these limitations, to the best of our knowledge, they have not found clinical
application.

In smaller scale studies, clinical trials of reflectance-based hemoglobin imaging have been
applied in areas from the skin to the brain. For example, the hemodynamic response of the
human cortex has been visualized during open-cranium surgery using hyperspectral imaging
combined with multivariate analysis.76 Evaluation of hemoglobin oxygenation and melanin con-
tent in the face has been of interest for dermatological treatments such as the detection of skin
cancer, assessment of scar healing, and evaluation of skin thickness.177–180 Spectral imaging of
hemoglobin in burns,8 wounds,6 and bruises30,77 has been explored to assess the progress of
healing in a quantitative manner. Moreover, spectral imaging of tissue sO2 has found application
in intraoperative imaging.161,181 Postoperative imaging can also provide clinicians with informa-
tion on how tissue is healing such as following breast reconstruction in which water, hemoglobin
concentration, and oxygen saturation are key indicators for tissue perfusion, an important factor
in recovery.182

4.2 Technology

The simplest imaging oximetry methods include two or three wavelengths akin to pulse oxime-
try, which can be applied using sequential illumination by the target wavelength bands and im-
aging with a single camera or simultaneous illumination of all wavelengths (e.g., with broadband
illumination) and capture using a spectrally resolved method, such as image splitting through
band pass filters applied in front of two cameras. Expanding the spectral range of wavelengths to
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capture more spectral features of Hb or HbO2 (in the visible but also near-infrared range183)
requires more complex hardware.

There are three main types of multi or hyperspectral systems used in medical imaging that
can be applied for unmixing oxygenation of tissue.78,79,159 In spatial scanning, a spectrograph
records the spectral dimension (λ) while being scanned across a sample. A one-dimensional
spectrograph may be point-scanned or a two-dimensional (2D) spectrograph may be line
scanned. The approach sacrifices temporal resolution and hence requires minimal movement
of the sample to avoid motion artifacts. In spectral scanning, a 2D camera records the spatial
dimensions ðx; yÞ, while the spectral dimension is scanned, e.g., by changing the illumination
wavelength or by filtering the imaging light path (e.g., with a filter wheel or tunable filter). This
also has a scanning time associated with it, so it requires minimal movement to prevent spectral
artifacts.

Finally, in snapshot methods, a system outputs spectral and spatial dimensions ðx; y; λÞ
simultaneously without scanning.78,79 Snapshot systems may use beam splitting with dichroic
filters, volume holographic optical element splitters, image replicating spectrometers, or multi-
spectral filter arrays in the imaging path. Snapshot methods avoid motion artifacts, which makes
them an exciting prospect for clinical application; however, they often exhibit poor optical effi-
ciency. They also require a trade-off between spatial and spectral resolution, although this is
less problematic for hemoglobin measurements, in which the target spectra are well character-
ized, and extensive evidence exists for the application of optical measurements. Nonetheless,
optimization of the target wavelengths for snapshot imagers can substantially improve their
performance.166,184–187

In addition to these intensity-based imaging methods, spatial frequency domain imaging
(SFDI) can be used to interrogate hemoglobin-related biomarkers by exploiting modulated illu-
mination of the tissue. SFDI typically uses sinusoidal patterns and extracts the demodulation of
these patterns reflected from tissue to calculate absorption and scattering properties; 123,188 low
frequencies are more sensitive to absorption whereas high frequencies are more sensitive to
scattering.123 Multiwavelength illumination189 can then be used to calculate hemoglobin content
and oxygenation,190,191 e.g., in monitoring of peripheral circulation and vascular diseases,192

for which there are FDA-cleared devices, as well as ulcers,193 burns,194 or tumor margin
detection.195,196 SFDI provides relatively high-resolution images, but conventional methods can
be sensitive to motion artifacts188 and computational processing can limit the rate of image dis-
play. More recent reports have shown that it is possible to overcome these limitations using
single snapshot of optical properties methods, which can achieve video-rate imaging.197

4.3 Analysis

Two- or three-wavelength imaging methods may be viewed qualitatively and interpreted by the
operator, as in narrowband imaging, or processed to output quantitative THb or sO2 biomarkers
in a manner similar to pulse oximetry, through calculation of image ratios and calibration of the
results. For spectral imaging methods, analysis can be time-intensive due to the large amount of
data collected, which can be problematic for clinical translation in which the real-time display of
biomarker data is often desired. Analysis methods vary depending on the biomarkers targeted
and the type of tissue imaged from the simplest techniques such as linear spectral unmixing198,199

to more complex methods such as multivariate analysis and machine learning.26,72,164,165 Linear
spectral unmixing determines the type and concentration of chromophores present based on
input reference spectra for oxy and deoxy hemoglobin, from which oxygen saturation can
be calculated.76,170,200,201 Spectral signatures can also be used directly in classification of disease
status, e.g., cancer.171,181,202,203 Sometimes, a combination of classification and unmixing tech-
niques can produce the optimal results, allowing for data corrections to be applied in certain
tissue types.26,76,166,170 Similar methods are also used in depth-resolved imaging, but data may
need to be corrected based on the imaging depth and the associated level of optical absorption
and scattering. Machine learning methods have shown promise in this regard, enabling more
accurate determination of hemoglobin oxygenation, particularly at depth, than classic linear
spectral unmixing.204
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4.4 Limitations

Imaging tools for the assessment of hemoglobin can be subject to the same limitations as pulse
oximetry. In addition, constraints that presently prevent clinical adoption of reflectance-based
spectral imaging include cost, reliability of THb and sO2 measurements, clinical evidence for
sensitivity and specificity of THb and sO2 in the diseases shown to be of interest in small-scale
studies, and the need to process data in real time.2,71,167 These challenges are common in the
clinical translation of optical imaging biomarkers,2 though fortunately, in the case of hemoglobin
biomarkers, many devices have already navigated the pathway to the clinic, enabling initial stud-
ies to be undertaken.

5 Depth-Resolved Imaging

A key limitation of pulse oximetry and reflectance-based imaging is their inability to provide
depth-resolved imaging of hemoglobin biomarkers. Two modalities are available to determine
THb and sO2 in tissue up to and beyond depths of 1 cm: photoacoustic imaging (PAI) and diffuse
optical imaging (DOI); both have been evaluated in clinical trials and are at different stages of
clinical adoption. PAI exploits the generation of acoustic waves by the absorption of pulsed light
by hemoglobin to create deep tissue volumetric maps using pulsed illumination and ultrasound
detectors [Fig. 4(a)].86–88 DOI measures the properties of light scattering in tissue to generate
absorption maps using synchronized illumination and photodiode-based detection [Fig. 4(b)].124–126

At more restricted depths, below 1 cm, spectroscopic optical coherence tomography (OCT) is
also applicable, combining broadband illumination with spectrally-resolved interferometric
detection. Although these methods have been widely explored in the clinical research setting,
they are only just beginning to find routine application in the clinic for patient management.

5.1 Photoacoustic Imaging (PAI)

5.1.1 Clinical research studies

By far, the most explored clinical PAI application is human breast cancer detection, extensively
reviewed elsewhere,208,209 due to the enhanced angiogenesis of breast cancers compared with
background breast parenchyma and the scalability of PAI geometry allowing for a broad view
of the area [Fig. 5(a)].86,89,208,209,213,214 Multicenter clinical trials have recently been concluded
covering >2000 women; these established the ability of PAI to increase the specificity of ultra-
sound imaging using a real-time map of relative Hb and HbO2.

213,215 PAI has also been explored
in other cancer types, considering that neoangiogenesis is a hallmark of cancer, including thy-
roid,216 prostate,215 and melanoma among, others.217 Beyond applications in cancer, PAI has
found a wide range of potential applications in which depth-resolved information is required,
e.g., in endoscopic procedures;90,91 for evaluation of inflammation, such as arthritic joints,88,92

foot ulcers,93 and Crohn’s disease;218 vascular imaging;94 and for the guidance of interventional
procedures, such as in fetal placentas.95

5.1.2 Technology

Pulsed illumination is required to excite PAI signals. Typically, tunable pulsed lasers with nano-
second pulse durations have been used; however, pulsed laser diodes and LEDs have emerged
recently as viable alternatives.219 The generated acoustic waves are detected by ultrasound trans-
ducers, which may be single-element, linear, or curvilinear arrays or in a spherical arrangement,
depending on the system’s geometry. The type of transducer and associated center frequency or
bandwidth is usually governed by the application, depending on the absorber size, laser pulse
width, and required imaging depth.220 PAI can be deployed in different geometries, including
tomography, mesoscopy, and microscopy. Tomography systems have found the most widespread
clinical application as they provide an adequate field of view and spatial resolution for imaging
of hemoglobin in deep tissue such as the breast; mesoscopy systems have also been applied
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clinically to visualize vascular network architectures in the skin given their limited penetration
depths.221

5.1.3 Analysis

The acoustic wave generated in response to pulsed optical illumination depends on the absorp-
tion properties of tissue according to

Fig. 4 Principles of depth-resolved imaging. (a) In photoacoustic imaging, the absorption of light
pulses generates a broadband acoustic wave detected at the tissue surface by an ultrasound
transducer. (b) Photoacoustic imaging of oxygenation of the finger in combination with ultrasound
to image the veins and arteries. Reproduced with permission from Ref. 205. (c) In DOI (and DCS
techniques), illuminated light is scattered in tissue collected by an offset optical detector at the
tissue surface. (d) DOI data acquired from the human finger is processed to quantify oxygenation,
hemoglobin concentration, and water. Reproduced with permission from Ref. 206. (e) In OCT,
coherent light illuminates the tissue, and the light that reflects at interfaces is collected and com-
bined with a reference arm, so interference occurs; from this interference, depth-resolved images
of the absorption and scattering properties of tissue can be resolved. (f) Oxygen resolved spectro-
scopic OCT on mice brains illustrating how the fraction of inspired oxygen (FiO2) affects the
oxygenation of the arteries and veins in the brain. Reproduced with permission from Ref. 207.
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EQ-TARGET;temp:intralink-;e013;116;239p0ðzÞ ¼ ΓμaF0e−μ0z; (13)

where p0 is the initial pressure, Γ is the Gruneisen parameter, F0 is the initial fluence, μ0 is a
constant, and z is the depth of the tissue.96 PAIs are reconstructed using a range of beamforming
methodologies, akin to ultrasound imaging.94,96 3D tomographic images can be reconstructed by
combining the temporal and spatial information collected, which is often achieved analytically
using a simple back-projection inversion or numerically using model-based methods.96 Images
reconstructed from data acquired at several wavelengths can then be subjected to the same multi-
variate analysis methods described in Sec. 4 for spectral unmixing. However, frame-to-frame
coregistration may be needed to avoid spatial or spectral corruption due to motion.

5.1.4 Limitations

The attainable depth of PAI depends on the optical and acoustic attenuation of the sample. In soft
tissue, acoustic attenuation scales as a function of ultrasound frequency, so at low frequencies of

Fig. 5 Tomographic imaging of the human breast for cancer detection (a) PAI of sO2 in breast with
infiltrating ductal carcinoma (IDC); S-factor was defined to account for system accuracy and flu-
ence compensation. Reproduced with permission from Ref. 210. (b) DOI of breast IDC (indicated
by the red box) resolves sO2, THb, H2O, lipid, concentrations of which serve to highlight the tumor.
Reproduced with permission from Ref. 211. (c) DCS of blood flow relative to an ultrasound image
of low-grade carcinoma; the tumor is circled in yellow. These images are referenced to positions
s1 and s2 to compare the ultrasound, 3D reconstruction, and cross-section. Reproduced with
permission from Ref. 212.
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a few MHz, optical attenuation tends to dominate and is the constraining factor for imaging
depth.96 For spatial resolution, the constraining factor is the bandwidth of the acoustic wave,
usually limited by the acoustic attenuation of soft tissue and the frequency response of the
detecting transducer.97 The latter is particularly important for imaging more superficial features
when the bandwidth of the signal can extend to 100MHz and beyond, for which there is a limited
availability of high-performance transducers. The maximum acoustic frequency transmitted
decreases with depth, meaning that typically systems that operate at higher penetration depths
have lower spatial resolutions than those designed for shallow imaging.97

A key challenge for PAI is biomarker quantification. During reconstruction, a number of
assumptions are made; these include the speed of sound in tissue, transducer impulse response,
detection bandwidth, and continuous sampling.96 If these assumptions break down, for example,
due to heterogeneities in tissue due to air cavities, there will be distortions in the image.
Furthermore, when evaluating biomarkers such as THb and sO2 the nature of light propagation
in tissue can lead to distortions in the spectral properties of the illumination as a function of
depth. Although some methods have been explored to compensate for such “spectral color-
ing,”94,222 they often break down in the complex scenarios found in human tissue and have yet
to be validated in a clinical setting. Finally, as with all hemoglobin sensing and imaging methods,
calibration of the extracted biomarkers is vital. PAI calibration and clinical quality assurance
methods are still under development, particularly through a community-led effort.98

5.2 Diffuse Optical Spectroscopy and Imaging

5.2.1 Clinical research studies

Diffuse optical spectroscopy (DOS) is commonly referred to as near-infrared spectroscopy
(NIRS) because it uses light in the near-infrared range; the term functional NIRS (fNIRS) is
also commonly used but is usually restricted to applications monitoring functional responses
to stimuli in the brain via neurovascular coupling. Quantifying and monitoring changes in oxy-
genation of blood in the brain has found many applications that range from understanding
seizures223 to detecting brain damage.7 Unlike reflectance hemoglobin imaging [Figs. 6(a)–6(d)],
in which an open cranium is required (see Sec. 4), fNIRS typically achieves imaging depths of up
to 15 mm through the skull [Figs. 6(e) and 6(f)], which covers the outer cerebral cortex in healthy
adults.127,223–225 fNIRS imaging of the brain to identify intracranial hematomas due to brain
trauma has been clinically approved by the FDA recently; however, it has yet to be widely
deployed in clinical settings.7

Similar to PAI, DOI has also been deployed in clinical trials to detect cancer, particularly in
the breast226,227 [Figs. 5(b) and 5(c)] and thyroid,127 where it has also been used to monitor
response to therapy. DOI tends to be lower in spatial resolution than PAI (Fig. 5), but it can
often resolve other biomarkers in addition to hemoglobin. PAI typically has a lower temporal
resolution compared with DOI.228,229 In addition, DOI has been used to image muscle tissue such
as the forearm, peripheral tissue, and joints.127,225 Several reviews have been published illustrat-
ing the importance of DOI.230–233

5.2.2 Technology

DOI techniques typically use near-infrared light in the 650 to 900 nm range.127,225,228,230 Below
650 nm, light can experience poor penetration due to the absorption of hemoglobin in superficial
tissues, whereas above 920 nm, water absorption comes to dominate.225 Most DOI and fNIRS
systems use two (or more) different wavelengths, one that is in the lower range below the NIR
isosbestic point, such as 680, 695, 705, or 730 nm, and another that has a longer wavelength,
such as 830 or 850 nm. The number of light sources and detectors varies depending on the
system from 1 to >48, with some designed to allow for more light sources and detectors to
enable customization of spatial resolution according to the target application.228,234

DOS is similar to DOI but provides single-point measurements of tissue properties such as
hemoglobin and blood oxygen saturation similar to pulse oximetry.235 There are three main
modalities of DOS/I: continuous wave (CW), time-domain (TD), and frequency-domain

Taylor-Williams et al.: Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis

Journal of Biomedical Optics 080901-15 August 2022 • Vol. 27(8)



(FD) systems.127,225,228 CW systems detect changes in the intensity of illumination, making them
relatively simple and inexpensive.236 Slight changes in surface coupling can affect the intensity
measurements, resulting in poor reproducibility unless well controlled. TD systems correlate the
time between emission and detection of photons to measure the photon flight time. Tissue scat-
tering determines photon flight time, whereas absorption determines the overall intensity of pho-
tons reaching the detector. FD systems are based on similar principles to TD systems but instead
measure the phase shift of the incoming light. Frequency domain systems are significantly less
expensive than TD systems due to lower costs for the sensors and detectors. TD and FD systems
can distinguish contaminating signals due to background illumination because these signals will
be uncorrelated. Because TD and FD systems can separate out the effects of scattering and
absorption, these techniques can quantify absolute concentrations of hemoglobin and its oxy-
genation, whereas CW systems typically measure the relative change in concentration but not
the absolute quantities.

Fig. 6 Hemoglobin imaging of the human brain. (a)–(d) Reflectance spectral images of the brain in
an adult undergoing epileptogenic tissue resection (a) reference RGB rendering, (b) change in
oxygenated hemoglobin over a single timeframe, (c) change in deoxygenated hemoglobin over
a single timeframe, and (d) change in total hemoglobin over a single timeframe. Reproduced with
permission from Ref. 76. (e), (f) DOI of a neonate during a seizure: (e) changes in HbT concen-
tration mapped throughout the onset of a seizure and (f) average changes in Hb, HbO2, and tHb
postonset of the seizure. Reproduced with permission from Ref. 223.
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DOI can be deployed in different geometries, either topographic, with imaging of a single
plane with limited depth information, or tomographic (DOT), including depth resolution,
which allows for full 3D reconstruction of the pertinent properties of tissue. In transillumination
techniques, the illumination and detection are on opposite sides of the tissue being imaged;
however, this is limited to body parts with small radii. Measurements at multiple and over-
lapping source–detector separations can be used to create depth measurements and reconstruct
a 3D image. In tomographic systems, the illumination and detection sensors are placed on
the available surface to simultaneously measure the changes in illumination throughout the
sample.

Finally, it is worth noting that diffuse correlation spectroscopy (DCS) is similar to DOI and
DOS, but it uses an autocorrelation function through a combination of hardware and software to
measure an index of blood flow in tissue [Fig. 5(c)].128 Due to the similarities in apparatus,
sometimes DCS is combined with DOI or DOS systems128 to provide a spatially-resolved indi-
cation of blood flow as a complementary biomarker to THb or sO2.

128 Blood flow in tissue can
also be detected using laser speckle contrast imaging (LCSI), which looks at fluctuations in the
speckle pattern reflected from tissue to determine the flow rate of the blood.237,238 Laser Doppler
flowmetry (LDF) finds the flow rate and concentration of blood by quantifying the Doppler shift
that causes spectral broadening of reflected light. 238,239 All three of these techniques can resolve
flow rate, but they typically have relatively low spatial resolutions or are confined to single-point
measurements. Recent advances, particularly in LCSI, are now reaching near real-time operation
at higher spatial resolutions, benefitting from increased computing power available in portable
systems.240

5.2.3 Analysis

The analysis for DOI depends on the type of imaging system used. The measured signals can be
converted into optical absorption maps by understanding the transport of light in tissue, which
can be modeled using the radiative transport equation (RTE)127,225 or Monte Carlo methods. The
RTE is an analytical approach that approximates Maxwell’s equations in diffuse media, assum-
ing a constant refractive index. Solving the RTE is computationally expensive,225 but it can be
sped up by exploiting symmetries or by making approximations. For example, the diffusion
approximation assumes isotropic scattering,127 so it can be applied only in diffusive tissues;
it does not work well in nondiffusive tissue, such as the cerebrospinal fluid that surrounds the
brain or in anisotropic media, such as the skin and nervous system, where prior information is
required to reach a solution. Numerical techniques, such as the finite element method, finite
difference method, finite volume method, and boundary element method, can be used to solve
the diffusion approximation. The use of prior information such as MRI, CT, or other imaging
techniques can vastly improve DOI resolution by reducing the number of assumptions about the
tissue structure that are made.225

Light transport can also be understood by forward modeling the propagation of light using
Monte Carlo methods to calculate the propagation of photons through media. The accumulated
forward modeling statistics can then be analyzed with respect to real data from DOI systems to
address the inverse scattering problem for various anisotropic scattering media.225 Monte Carlo
methods have traditionally also been computationally expensive, but they are now reaching
higher speeds with deployment on GPU and cloud-based servers.241

5.2.4 Limitations

DOI exploits the scattering properties of tissue, unlike other imaging techniques that are ham-
pered by light scattering. Despite this, DOI still has limited spatial resolution (on the order of
1 mm230) and often requires anatomical priors from another modality such as MRI or CT for
analysis, which constrains applications127,225,230,235 and adds cost and complexity to high-reso-
lution DOI systems.225 Standardization of DOI systems for clinical translation is ongoing, e.g.,
through a project to characterize DOI systems using phantoms,242 particularly for breast cancer
detection.243
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5.3 Spectroscopic OCT

5.3.1 Clinical research studies

While OCT is primarily deployed for structural imaging, its spectrally-resolved detection can be
harnessed for angiography and oximetry in vivo, albeit not yet in clinical practice. OCT is typ-
ically implemented in the NIR for structural assessment due to its greater penetration through
tissue and availability of light sources with suitable coherence. Extraction of blood sO2 from
OCT measurements in human retinal vasculature was first demonstrated in the NIR (800/
850 nm),244 but it had limited precision due to weak absorption in this range. The development
of visible OCT systems improved the available signal-to-noise ratio and hence precision,
enabling measurements from single erythrocytes110,111 and high-resolution capillary oximetry
in 3D.112,113,245 Advances in reconstruction algorithms and high-speed instrumentation have
improved OCT angiography to a point at which it has found clinical use for high contrast im-
aging of retinal and dermal vasculature.246,247 Visible OCT measurement of retinal sO2 has been
tested in humans114 alongside angiography,115 but it is still in development. Laser exposure limits
and natural aversion restrict the usable power level for visible OCT in the eye compared with
clinical NIR OCT, but continuing improvements in OCT technology have allowed for high-
quality imaging and sO2 measurement.

5.3.2 Technology

OCT is a noncontact imaging modality that can be considered an optical analog of ultrasound
imaging.116 The distinguishing feature of OCT is the use of low-coherence interferometry to
decouple the lateral and axial imaging resolution: lateral resolution is determined by the numeri-
cal aperture of the focusing optic, whereas axial resolution is determined by the temporal coher-
ence of the laser used for imaging. Scanning OCT systems operate in the Fourier domain,248

where a broad spectrum of light interrogates the tissue and is then collected through spec-
trally-resolved detection for postprocessing and image reconstruction by an inverse Fourier
transform. Within this class, there are two major varieties: spectral-domain OCT (SD-OCT),
which uses broadband illumination and parallel detection with a spectrometer, and swept-source
OCT (SS-OCT), which uses a high-speed spectral scanning source with single-channel detection
for temporally-resolved spectral acquisition.

Recent advances in SS-OCT laser technology, including the tunable vertical-cavity source
emitting laser, have enabled the realization of high-speed, robust, and compact instruments,
which leads to greater imaging depths. Current SS-OCT systems operate exclusively in the
NIR range due to swept laser availability; for imaging performance (and potential Hb oximetry)
in the visible domain, SD-OCT systems using a visible spectrometer are required. In recent
years, the high power and spatial coherence of newly available supercontinuum lasers have
enabled good-quality visible OCT imaging in research systems,117,249,250 which could enable
future developments toward clinical translation.

5.3.3 Analysis

The raw data for SD-OCT are acquired from a high-speed spectrometer with line readout
synchronized to a scanning mechanism, allowing for the mapping of each spectrum to a spatial
position. The spectrum is normalized, filtered, and converted to a spatial reflectance profile,
known as an A-line, through an inverse Fourier transform. For oximetry, the SD of this analysis
must be narrowed, typically through a windowing function; although full spectral resolution of
the OCT volume may be realized through the application of the short-time Fourier transform, the
dependence of axial resolution on spectral bandwidth poses a necessary trade-off between spec-
tral resolution and axial resolution in the spectroscopic OCT image. For sO2 measurement and
spectral-contrast angiography, spectral windows are chosen to maximize the contrast of hemo-
globin, typically in the range of 550 to 650 nm.112,251 The spectrally-resolved total extinction
coefficient is measured through depth fitting of the spectroscopic OCT A-line signal to the
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Beer–Lambert law, from which the relative contributions of Hb and HbO2 can be unmixed to
determine sO2.

5.3.4 Limitations

OCT is highly versatile, being deployed for imaging the inner walls of blood vessels and luminal
organs,252–256 having an ultrawide field of view for scanning skin,257–259 and with corrective
lenses, compensating for ocular refraction in the ophthalmologic clinic. Nonetheless, there are
several fundamental issues that are limiting its general adoption. First, the scanned acquisition
adds instrumental complexity and can produce motion artifacts in patients. Although this is
addressed in full-field OCT systems, these typically do not work with rough samples. Next,
the spectral resolution of OCT imaging determines the maximum depth range that can be
imaged, an aspect referred to as the sensitivity roll-off. Finally, because OCT is primarily sen-
sitive to singly-scattered photons in tissue, the penetration depth of imaging is restricted to 1 to
2 mm in most human tissues. For this reason, large-scale clinical deployment of OCT has largely
been limited to ophthalmology, dermatology, and cardiology, but creative advances in OCT
probe and capsule technology will allow for continued in situ exploration of hemoglobin-related
biomarkers from OCT in disease pathology throughout the body.256,260–262

6 Summary and Perspective

Moving beyond pulse oximetry to exploit the optical absorption of hemoglobin in imaging appli-
cations has shown significant promise in the clinic, with both superficial 2D and depth-resolved
3D implementations described in this review. Two wavelength THb and sO2 imaging are already
widely used in endoscopic and ophthalmic applications, respectively, and have reached large-
scale clinical trials in depth-resolved PAI. Conversely, reflectance-based spectral imaging
remains largely exploratory.

6.1 Trade Offs

Choosing the optimal hemoglobin imaging technique for a particular application involves con-
sideration of several factors that often require trade-offs, including signal-to-noise ratio, spatial
and temporal resolutions, target depth, and route to integration with existing clinical practice.
Optical imaging techniques are ultimately restricted by the maximum permissible exposure at the
illumination site, which places a fundamental limit on the signal-to-noise ratio available in the
clinical setting. Some techniques are further restricted in the type of illumination used such as
OCT, which requires coherent light, and PAI, which requires short, pulsed light; this can add to
the complexity of safety considerations in the clinic.

Considering the factors of resolution and depth, reflectance-based imaging can achieve high
spatiotemporal resolution in applications in which depth resolution is not vital, for example, with
retinal, endoscopic, or intraoperative imaging. One could argue that depth-resolution will
become increasingly prevalent with the emergence of more advanced solutions from spectro-
scopic OCT, PAI, and DOI, particularly as costs decrease. Nonetheless, depth-resolution
typically implies a sacrifice of spatial or temporal resolution, which must be determined early
in the discovery and development phase of the associated device. Furthermore, different
approaches to achieving depth resolution have different strengths and weaknesses. PAI may suf-
fer from shielding effects due to the absorption of overlying tissue and tends to resolve only
larger vessels, whereas the use of multiple scattering by DOI enables better detection of capillary
oxygenation, despite the overall poorer spatial resolution. This trade-off may explain why PAI
has developed more rapidly in clinical translation for breast cancer detection, whereas DOI is
more developed for imaging the brain. Given the common contrast source across many of the
techniques described, it may also be desirable to combine multiple approaches in a single device
for validation purposes or to provide views of the same tissue at different resolution scales, over-
coming some of the limitations of the existing technologies.263 Combining two or more optical
imaging techniques can be beneficial because they reduce the imaging limitations that arise as
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a result of a single technique. A good example of this is the enhanced perfusion oximetry system
that combines diffuse reflectance spectroscopy with LDF to quantify blood oxygenation and
flow rate for imaging of microvasculature and burns.264–266

6.2 Clinical Implementation

There are many factors to consider regarding the route to integration of new techniques into
clinical practice. For example, if imaging is required to be non-contact, for example, in delicate
targets like the eye, this may restrict the implementation of methods such as PAI or DOI, in
which contact with the tissue is typically required. The pathway to clinical adoption may be
smoother in the case of an existing optical imaging solution already being deployed. An obvious
example is the large-scale deployment of OCT for ophthalmic applications, which provides
a direct route for adoption of spectroscopic OCT in the community. Another factor in clinical
translation is the assessment of the precision, accuracy, and bias of new biomarker
measurements.2 These factors can be affected by both device operation and data interpretation,
requiring standardization of data acquisition and careful consideration of any signal processing
or analysis methods applied before presenting the data to the interpreter, whether this is a human
or a machine. Because reflectance-based imaging techniques are usually less computationally
intensive compared with the depth-resolved methods, the development of systems and software
for real-time imaging is more easily attainable; this is seen most effectively in narrowband
imaging of blood vessels in endoscopy.

Further clinical considerations arise later in the translational pathway when the question of
biomarker efficacy in decision-making finally arises. Instrument prototypes are often used first in
pilot clinical trials at a single clinical center to gather initial data for validation and may be
subject to multiple design iterations at this stage. Having successfully passed the first transla-
tional gap, which may include CE marking or FDA approval for the device and multicenter
clinical trials, the technique is then subject to advanced qualification and ongoing technical val-
idation to determine clinical utility in the healthcare setting, whereby the measurement can be
used in clinical decision making. These larger-scale clinical trials help to determine sources of
variation that will influence the classification and diagnosis of disease, providing clinical
evidence of the ability to change patient management. They also provide extensive reference
data sets that can be used to improve interpretation, particularly when machine learning-based
methods are involved.

Reflectance-based spectral imaging techniques are still largely in the earlier stages of devel-
opment with first in-person trials, whereas fNIRS of the brain and PAI of the breast are being
used in multiple centers as part of larger-scale clinical trials and DOI has found some level of
adoption into the clinic.71,87,208,228,231,267 Data arising from these trials is extremely valuable
and making annotated datasets open source for the community in the future will not only help
accelerate the development of new algorithms but could also enhance our understanding of
the biology of hemoglobin oxygenation in disease.

6.3 Disease Monitoring

Hemoglobin imaging methods could find further applications in monitoring disease, to detect
treatment efficacy or disease relapse. The noninvasive nature of these techniques can allow for
continuous or periodic monitoring, for which there are several excellent examples that have been
highlighted. Pulse oximetry can be applied to a patient for long periods so that clinicians can
observe if there are any changes to overall arterial oxygenation. DOI and NIRS also can be used
longitudinally to monitor changes in brain function to assess if there is improved brain activity.267

Furthermore, periodic monitoring of diseases such as scleroderma using nailfold capillaroscopy
can indicate progression in the stage and severity of the disease, which may influence the treat-
ment provided or indicate if further medical intervention is required.

Periodic monitoring can be applied in the short term, for monitoring wound or burn healing,
or in the longer term in the context of endoscopic cancer surveillance in at-risk patient groups
such as those with Barrett’s esophagus that are at increased risk of developing cancer. The fre-
quency of monitoring applied is determined by the disease being observed and the rate at which
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change is expected, as well as by the training required for instrument use and data interpretation.
For example, applying pulse oximetry is relatively quick with nonspecialists able to do it, and
some more straightforward versions of capillaroscopy can be done using handheld devices.
Conversely, endoscopies, OCT, DOI, and NIRS typically require training of specialist operators;
hence it can be more expensive to conduct the procedures, meaning they are typically used for
less frequent monitoring.

6.4 Outlook

The acceptability and relevance of new hemoglobin sensing and imaging technologies to cli-
nicians will be driven by various factors, including cost, complexity, and physical size of the
systems, as well as the ease of use and data interpretation. The commonplace use of pulse oxi-
metry means that the clinical community is already well aware of the use of systemic sO2 as
a disease biomarker. Ongoing technological developments that lead to miniaturization of light
sources, optical components, and cameras, as well as decreasing their cost, mitigate some of the
technical limitations highlighted in this review. Advances in image processing, including con-
volutional neural networks, promise to aid in distilling rich datasets to actionable clinical infor-
mation, enabling imaging systems to be more easily integrated into clinical care. Research
questions remain regarding the sensitivity of hemoglobin sensing techniques in diverse popu-
lations and the diagnostic power of hemoglobin-derived biomarkers in the wide array of disease
presentations included in this review, which will only be answered through comprehensive clini-
cal trials. Hemoglobin imaging techniques add a new dimension of knowledge in a range of
clinical settings, from capillaroscopy and endoscopy to intraoperative imaging; emerging tech-
nologies are well placed to further enhance these areas of existing clinical practice, but are also
likely to contribute to the decentralization of healthcare to tertiary care centers and through the
deployment of wearable technologies for self-monitoring in the home.
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