
Modified multiscale sample entropy
computation of laser speckle contrast
images and comparison with the
original multiscale entropy algorithm

Anne Humeau-Heurtier
Guillaume Mahé
Pierre Abraham



Modified multiscale sample entropy computation of
laser speckle contrast images and comparison with
the original multiscale entropy algorithm

Anne Humeau-Heurtier,a,* Guillaume Mahé,b,c and Pierre Abrahamd

aUniversity of Angers, LARIS–Laboratoire Angevin de Recherche en Ingénierie des Systèmes, 62 avenue Notre-Dame du Lac,
49000 Angers, France
bPôle imagerie médicale et explorations fonctionnelles, Hospital Pontchaillou of Rennes, University of Rennes 1, 35033 Rennes Cedex 9, France
cInserm CIC 1414, 35033 Rennes cedex 9, France
dUniversity of Angers, Hospital of Angers, Laboratoire de Physiologie et d Explorations Vasculaires UMR CNRS 6214-INSERM 1083,
49033 Angers cedex 01, France

Abstract. Laser speckle contrast imaging (LSCI) enables a noninvasive monitoring of microvascular perfusion.
Some studies have proposed to extract information from LSCI data through their multiscale entropy (MSE).
However, for reaching a large range of scales, the original MSE algorithm may require long recordings for reli-
ability. Recently, a novel approach to compute MSE with shorter data sets has been proposed: the short-time
MSE (sMSE). Our goal is to apply, for the first time, the sMSE algorithm in LSCI data and to compare results with
those given by the original MSE. Moreover, we apply the original MSE algorithm on data of different lengths and
compare results with those given by longer recordings. For this purpose, synthetic signals and 192 LSCI regions
of interest (ROIs) of different sizes are processed. Our results show that the sMSE algorithm is valid to compute
the MSE of LSCI data. Moreover, with time series shorter than those initially proposed, the sMSE and original
MSE algorithms give results with no statistical difference from those of the original MSE algorithm with longer
data sets. The minimal acceptable length depends on the ROI size. Comparisons of MSE from healthy and
pathological subjects can be performed with shorter data sets than those proposed until now. © 2015 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.12.121302]
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1 Introduction

Optical medical imaging has found an increased interest for
the monitoring of peripheral cardiovascular systems, such as the
microvascular system. Among the optical medical imaging tech-
niques that have emerged recently for the evaluation of the
microvascular network, we find laser speckle contrast imaging
(LSCI).1–4 LSCI is based on the wide-field illumination with a
coherent light source of the tissue surface under study. Due to
constructive and destructive interference coming from phase
differences involved in the backscattered light, a speckle pattern
is obtained on the detector. In LSCI, the resulting laser speckle
pattern is imaged with a camera. Because some of the photons
scatter dynamically from moving particles in the tissue, a decor-
relation (blurring) of the laser speckle pattern is obtained on
the camera. This blurring can be quantified by computing the
speckle contrast K as

Kðx; yÞ ¼ σN
μN

; (1)

where σN and μN are, respectively, the standard deviation and
mean of the pixel intensity in a neighborhood N around the
pixel in the speckle raw data. The LSCI perfusion index is then
computed from the contrast value: LSCI perfusion value is
inversely proportional to the contrast K (see below). LSCI

has the advantage of being a full-field noninvasive optical tech-
nique with no scanning procedure to capture the data and which
gives images with high spatial and temporal resolutions.5–8

Moreover, the optical system can be obtained with low-
cost devices.9 LSCI is still the object of many studies and
improvements.10–15

Once medical images are acquired, the challenge is to extract
relevant physiological information. This is often possible via the
use of signal processing concepts. Among these signal process-
ing concepts, sample entropy has proven to be of interest for
several kinds of data.16–20 Sample entropy is based on a single-
scale analysis. The cardiovascular system is regulated by multi-
ple processes and each of them has its own temporal scale. Their
interactions lead to a multiscale behavior for the cardiovascular
system. A single-scale entropy analysis cannot, therefore, reveal
these multiscale effects. In order to be able to observe activities
on multiple scales, multiscale entropy (MSE), which is based on
sample entropy computation, has been proposed.21,22 This algo-
rithm is composed of two steps:21,22 construction of consecutive
coarse-grained time series and computation of the sample
entropy of each coarse-grained time series. MSE analyses have
been used to study various pathologies, such as chronic heart
failure, fetal distress, atrial fibrillation, type 1 diabetes mellitus,
and Alzheimer’s disease, among others.21–26

Recently, using this original MSE algorithm, an analysis of
LSCI data has been proposed.27 From the latter work, it has been
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reported that, when the time evolution of LSCI single pixels is
studied, a monotonic decreasing pattern is found for MSE. This
pattern is similar to the one of Gaussian white noise. Moreover,
when the time evolution of the mean of the LSCI pixel values
from regions of interest (ROIs) is studied, the MSE pattern
becomes close to the one of laser Doppler flowmetry signals
for a large enough ROI.27

In their initial algorithm for the computation of MSE,
referred to as original or standard MSE algorithm hereafter,
Costa et al. proposed that the shortest coarse-grained time series
from the cardiovascular system should contain 1000 or more
samples.21,22 The authors mentioned that the minimum number
of data points required to apply the MSE method depends on the
level of accepted uncertainty. Several studies used smaller
lengths for the shortest coarse-grained time series.24,28–30 This
is probably due to the following dilemma: authors wish to obtain
results on a large set of scales, which necessitates having long
recordings, but it is often difficult to obtain long recordings due
to the lack of cooperation of the subjects or difficulties for the
subjects to stay still during the experiments. This is particularly
critical for recordings performed in children or in patients with
tremors. This problem is especially annoying for LSCI because,
by definition, the technique is sensitive to movements.31,32

However, to the best of our knowledge, no systematic compari-
son of the results given by the original MSE algorithm with
different lengths for the shortest coarse-grained time series has
been proposed yet.

Moreover, recently, a novel approach to compute MSE has
been proposed: the short-time MSE (sMSE) algorithm.33 The
authors of the latter work report that, when applied on pulse
wave velocity signals, sMSE is able to differentiate among
healthy, aged, and diabetic populations with less data than the
original MSE algorithm and with preservation of sensitivity.33

We propose herein (1) to apply, for the first time, the sMSE
algorithm in LSCI data; (2) to compare the results given by the
sMSE algorithm with those given by the standard MSE algo-
rithm proposed by Costa et al. when 1000 samples for the short-
est coarse-grained time series are chosen; (3) to compare the
results given by the standard MSE algorithm proposed by
Costa et al. using 1000 samples for the shortest coarse-grained
time series with those obtained with the same algorithm but
when shorter coarse-grained time series are used.

Our work will, therefore, serve as a basis for future studies on
MSE analyses of LSCI data. Thus, comparison of MSE in
healthy and pathological subjects could become accessible
with shorter data sets than the ones suggested until now.

2 Theoretical Background

2.1 Original Multiscale Entropy Algorithm

Entropy is a measure of the uncertainty associated with a ran-
dom variable. In 2000, Richman and Moorman proposed the
sample entropy to estimate entropy of experimental data (short
and noisy times series).34 Sample entropy provides a quantifi-
cation of the irregularity of a temporal series. A low value for
the sample entropy reflects a high degree of regularity, while a
random signal has a relatively higher value of sample entropy.
Sample entropy is equal to the negative of the natural logarithm
of the conditional probability that sequences close to each other
for m consecutive data points will also be close to each other
when one more point is added to each sequence. In this
algorithm, the distance between two vectors is defined as the

maximum difference of their corresponding scalar components.
More precisely, let Bm

i ðrÞ be the product of ðN −m − 1Þ−1 by
the number of vectors xmðjÞ similar to xmðiÞ (within r), where
j ¼ 1: : : N −m with j ≠ i to exclude self-matches. BmðrÞ is
defined as34

BmðrÞ ¼ 1

N −m

XN−m

i¼1

Bm
i ðrÞ: (2)

In the same way, Am
i ðrÞ is defined as the product of

ðN −m − 1Þ−1 by the number of vectors xmþ1ðjÞ similar to
xmþ1ðiÞ (within r), where j ¼ 1: : : N −m with j ≠ i. AmðrÞ is
defined in a similar manner as in Eq. (2). BmðrÞ is the probability
that two sequences will match for m points, whereas AmðrÞ is
the probability that two sequences will match for mþ 1 points.
The sample entropy is defined as SampEnðm; rÞ ¼ limN→∞−
ln½AmðrÞ�∕½BmðrÞ�, which is estimated by the statistic
SampEnðm; r; NÞ:34

SampEnðm; r; NÞ ¼ − ln
AmðrÞ
BmðrÞ : (3)

Costa et al. were the first to propose the MSE concept. MSE
quantifies the degree of irregularity of a time series over a range
of time scales.21,22 The associated algorithm for a time series
fx1; : : : ; xi; : : : ; xNg is composed of two steps:21,22

1. Construction of consecutive coarse-grained time series
fyðτÞg as

yðτÞj ¼ 1

τ

Xjτ

i¼ðj−1Þτþ1

xi; 1 ≤ j ≤ N∕τ; (4)

where τ is the scale factor. The coarse-grained time
series for scale i is, therefore, obtained by averaging
the data points inside consecutive nonoverlapping

windows of length i. For scale factor τ ¼ 1, fyð1Þj g is
the original signal. The length of each coarse-grained
time series is N∕τ.

2. Computation of the sample entropy of each coarse-
grained time series and plot of the results as a function
of the scale factor τ.

MSE, therefore, quantifies the information content of a signal
over multiple time scales: in the MSE algorithm, the sample
entropy value is studied as a function of the scale factor τ.21,22

2.2 Short-Time Multiscale Entropy Algorithm

Recently, an sMSE algorithm has been proposed.33 It has been
reported that sMSE is able to determine MSE values with shorter
data sets.33 sMSE has originally been applied to assess the com-
plexity of pulse wave velocity signals in healthy and diabetic
subjects.33 For a time series fx1; : : : ; xi; : : : ; xNg, the sMSE
algorithm has the following steps:33

1. Construction of the coarse-grained time series yðpÞðτÞ

with 0 ≤ p ≤ τ − 1 as
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yðpÞðτÞj ¼ 1

τ

Xjτþp

i¼ðj−1Þτþ1þp

xi; 1 ≤ j ≤ ðN − pÞ∕τ:

(5)

2. The τ yðpÞðτÞ time series are subjected to sample
entropy computation and are averaged, giving an
sMSE of scale factor τ:

sMSEτ ¼
1

τ

Xτ−1

p¼0

SEðyðpÞðτÞÞ; (6)

where SEðyðpÞðτÞÞ corresponds to the sample entropy
for the time series yðpÞðτÞ.

For LSCI data, our goal is to compare MSE values given by
the sMSE algorithm with those given by the original MSE algo-
rithm proposed by Costa et al.21,22 For these two algorithms,
the results obtained with different lengths for the shortest
coarse-grained time series are studied.

2.3 Measurement Procedure

The study was carried out in accordance with the Declaration of
Helsinki. LSCI data were acquired on the dorsal face of the fore-
arm of eight subjects (between 20 and 37 years old) without
known disease. All the subjects provided written, informed con-
sent prior to participation. LSCI is highly sensitive to move-
ments. Therefore, the subjects had to be completely still during
the acquisition. The participants were placed in a quiet room
with controlled temperature and without any air movements,35

see Fig. 1. LSCI data were acquired in arbitrary laser speckle
perfusion units with a PeriCam PSI System (Perimed, Sweden)

having a laser wavelength of 785 nm, a maximum output power
of 70 mW, and an exposure time of 6 ms. The distance between
the laser head and skin was set at 15.5 cm.36 This gave images
with a resolution of 0.44 mm (see an example in Fig. 2). In
the imager used, the perfusion is computed as Perfusion ¼
k × ð1∕K − 1Þ, where K is the contrast and k is the signal gain
factor. The signal gain factor is calibrated to ensure equal per-
fusion values for different instruments on a motility standard.
The signal gain factor is instrument specific and may change
after recalibration. LSCI images were acquired with a sampling
frequency of 18 Hz on a computer. This sampling frequency has
been chosen based on a previous work27 and also to be able to
capture the heart beats that could be the origin of the nonmo-
notonic evolution of MSE.27 The recordings stopped when
23,000 images were recorded (∼22 min of acquisition).

2.4 Implementation

For the implementation of the two algorithms on LSCI data
(sMSE and original MSE algorithms), we randomly chose
three pixels (noted hereafter as P1, P2, and P3) in the first
image of the time sequence of each subject.27 Around each of
these pixels, square ROIs were determined as (1) square of size
3 × 3 pixels2 (1.74 mm2); (2) square of size 9 × 9 pixels2

(15.68 mm2); (3) square of size 15 × 15 pixels2 (43.56 mm2);
(4) square of size 23 × 23 pixels2 (102.41 mm2); (5) square
of size 31 × 31 pixels2 (186.05 mm2); (6) square of size 61×
61 pixels2 (720.39 mm2); (7) square of size 71 × 71 pixels2

(975.93 mm2). For each ROI, the mean of the pixel values inside
the ROI was computed and followed on each image of the
sequence to obtain a time-evolution signal.37 For each subject,
we, therefore, had temporal signals from laser speckle contrast
images that lasted at least 22 min (23,000 samples). The pixels
P1, P2, and P3 were also followed in the image sequence to
obtain their time-evolution values. Then, the 192 ROIs (for
each of the eight subjects, 3 pixels chosen and seven ROIs
around each pixel + the pixels themselves) of eight different

Fig. 1 Measurement setup (computer and head of the imager).
Fig. 2 Laser speckle contrast image of a zone on the forearm of a
healthy subject.
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sizes (0.19 to 975.93 mm2) were processed with the two algo-
rithms (sMSE and original MSE algorithms).

In our whole study, we implemented the two algorithms with
standard parameter values m ¼ 2 and r ¼ 0.15.21,34 Moreover,
for all our data, a normalization has been performed before the
application of the two algorithms (subtraction of the mean and
division by the standard deviation). Finally, our work was con-
ducted from scale factor τmin ¼ 1 to scale factor τmax ¼ 23.

Costa et al. reported that the consistency of the original MSE
algorithm is progressively lost when the number of samples in
the time series decreases.21 The coarse-graining procedure gen-
erates time series with a decreasing number of data points, but
the resulting time series is not a subset of the original sample
sequence: the coarse-grained time series contains information
about the entire original time series. Costa et al., therefore, men-
tioned that the error due to the decrease of coarse-grained time
series length in the original MSE algorithm is lower than that
resulting from selecting a subset of the original signal.21 One
of our goals is to analyze MSE values given by the sMSE algo-
rithm and by the original MSE algorithm when using different
lengths for the shortest coarse-grained time series. Moreover, for
all our computations, we studied MSE of LSCI data between
scale factors τmin ¼ 1 and τmax ¼ 23. Therefore, because τmax

is constant and because the shortest coarse-grained time series
length varies, this amounts to working with original time series
of different lengths. Several values for the shortest coarse-
grained time series have been tested in our work: 1000, 500,
250, 200, 150, 100, and 50 samples. We, therefore, worked
with signals of different lengths: 23,000 (23 × 1000) samples,
11,500 (23 × 500) samples, . . . , 1150 (23 × 50) samples.

Moreover, we first apply the two algorithms on two differ-
ent kinds of synthetic signals with known expression for their
multiscale entropy. The first kind of synthetic signal is a
Gaussian white noise (mean: 0; variance: 1; uncorrelated
noise). The second kind of synthetic signal is a 1∕f (long-
range correlated) noise. Theoretical multiscale entropy values
for white noise and 1∕f noise can be found in Ref. 21. For each
of the two kinds of synthetic data, 24 signals have been gen-
erated. Here again, our study was performed for τmin ¼ 1 to
τmax ¼ 23.

2.5 Statistical Analysis

Statistical analyses were performed using a Wilcoxon test.38 We
compared MSE values given by the original MSE algorithm
when 1000 samples are chosen for the shortest coarse-grained
time series with the ones given by the sMSE algorithm (using
different lengths for the shortest coarse-grained time series) and
with the ones given by the original MSE algorithm when <1000
samples are chosen for the shortest coarse-grained time series.
For each statistical analysis, a p value <0.05 was considered
significant.

3 Results and Discussion
Figure 3 shows MSE values computed from the original MSE
algorithm and from the sMSE algorithm for simulated Gaussian
white noise. For the sMSE algorithm, the results obtained with
several lengths for the shortest coarse-grained time series are
shown: 1000, 500, and 50 samples. The statistical tests show
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Fig. 3 Multiscale entropy (MSE) values for white noise time series. Numerically estimated values
obtained with the original MSE algorithm and with the short-time MSE (sMSE) algorithm are shown.
For the original MSE algorithm, the shortest coarse-grained time series has 1000 samples. For the
sMSE algorithm, results obtained with different lengths for the shortest coarse-grained time series
are shown (1000, 500, and 50 samples). The line is the numerical evaluation of analytic MSE calculation
(nits):21 − ln ∫ þ∞

−∞ ð1∕2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðτ∕2πÞp ferf½ðx þ r Þ∕ ffiffiffiffiffiffiffiffi
2∕τ

p � − erf½ðx − r Þ∕ ffiffiffiffiffiffiffiffi
2∕τ

p �gexp½ð−x2τÞ∕2�dx , where τ and
erfð Þ refer to the scale factor and to the error function, respectively.
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Fig. 5 MSE values (mean and standard deviations) obtained with 24 laser speckle contrast imaging
(LSCI) time series computed from region of interest (ROI) sizes of 1 × 1 pixels2 (a) and 3 × 3 pixels2

(b) recorded in eight subjects without known disease. Numerically estimated MSE values obtained
with the original MSE and with the sMSE algorithms using 1000 samples for the shortest coarse-grained
time series are shown. Results given by the sMSE algorithm with the smallest length of the shortest
coarse-grained time series, which leads to MSE values having no statistical difference from the ones
given by the original MSE algorithm using different 1000 samples for the shortest coarse-grained
time series, are also shown.
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Fig. 4 MSE values for 1∕f noise time series. Numerically estimated values obtained with the original
MSE algorithm and with the sMSE algorithm are shown. For the original MSE algorithm, the shortest
coarse-grained time series has 1000 samples. For the sMSE algorithm, results obtained with different
lengths for the shortest coarse-grained time series are shown (1000, 500, and 50 samples). The line is
the numerical evaluation of analytic MSE calculation:21 1.8 nits for all scale factors τ.
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that for all the lengths of the shortest coarse-grained time series
tested in the sMSE algorithm (1000, 500, 250, 200, 150, 100,
and 50 samples), the results obtained are not statistically differ-
ent from those given by the original MSE algorithm when 1000
samples are chosen for the shortest coarse-grained time series.

Figure 4 shows the MSE values computed from the original
MSE algorithm and from the sMSE algorithm for simulated 1∕f
noise. For the sMSE algorithm, the results obtained with several
lengths for the shortest coarse-grained time series are shown:
1000, 500, and 50 samples. The statistical tests show that,
when the length of the shortest coarse-grained time series in
the sMSE algorithm is equal to 500 samples, the results obtained
are not statistically different from those given by the original
MSE algorithm when 1000 samples are chosen for the shortest
coarse-grained time series. However, for the other lengths tested,
the results are statistically different from the ones given by the
original MSE algorithm when 1000 samples are chosen for the
shortest coarse-grained time series (for all scales when 250, 200,
150, 100 or 50 samples are chosen).

For LSCI data, our results show that, when the time evolution
of LSCI single pixels is studied, the original MSE algorithm
(with 1000 samples for the shortest coarse-grained time series)
leads to a monotonic decreasing pattern, similar to the one of
Gaussian white noise, see Fig. 5. However, when the mean
of LSCI pixel values is computed in an ROI and followed
with time, the original MSE algorithm (with 1000 samples
for the shortest coarse-grained time series) leads to patterns

where distinctive scales become visible for ROI large enough
(see Figs. 5 to 8). These distinctive scales are found around τ ¼
6 and τ ¼ 17. These results are in accordance with a previous
work where similar results have been reported.27 Moreover, it
has been suggested that origins of the distinctive scales could
be dominated by the cardiac activity.39 The sMSE algorithm
(with 1000 samples for the shortest coarse-grained time series)
leads to patterns that are similar to the ones obtained with the
original MSE algorithm: a decreasing pattern with scales is
observed when LSCI single pixels are studied with time and the
emergence of distinctive scales for time evolution of ROI large
enough (see Figs. 5 to 8). We find no statistical difference
between the MSE values given by the two algorithms when
1000 samples are chosen for the shortest coarse-grained time
series.

Table 1 shows the smallest lengths for the shortest coarse-
grained time series, in the sMSE and original MSE algorithms,
for which no statistical difference from the original MSE algo-
rithm using 1000 samples for the shortest coarse-grained time
series is found. The corresponding results are shown in
Figs. 5 to 8. From Table 1, we observe that the length of the
shortest coarse-grained time series in the sMSE algorithm
that leads to results with no statistical difference from those
given by the original MSE algorithm using 1000 samples for
the shortest coarse-grained time series varies with the size of
the LSCI ROI studied. The same conclusion can be drawn
from the results obtained with the original MSE algorithm
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Fig. 6 MSE values (mean and standard deviations) obtained with 24 LSCI time series computed from
ROI size of 9 × 9 pixels2 (a) and 15 × 15 pixels2 (b) recorded in eight subjects without known disease.
Numerically estimated MSE values obtained with the original MSE and with the short-time MSE (sMSE)
algorithms using 1000 samples for the shortest coarse-grained time series are shown. Results given by
the sMSE algorithm with the smallest length of the shortest coarse-grained time series that leads to MSE
values having no statistical difference with the ones given by the original MSE algorithm using different
1000 samples for the shortest coarse-grained time series are also shown.
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when different lengths are used for the shortest coarse-grained
time series.

Tables 2 and 3 show the lengths of the shortest coarse-
grained time series, in the sMSE and original MSE algorithms,
and associated scale factors, for which statistical differences
from the original MSE algorithm in which 1000 samples are
chosen for the shortest coarse-grained time series are found.
From these tables, we observe that obtaining no statistical differ-
ence with a given length of the shortest coarse-grained time
series (in the sMSE algorithm or original MSE algorithm)
does not mean that no statistical difference is found for larger
values of the shortest coarse-grained time series length. The
analysis of these results deserve attention in future works.

Our results lead to the conclusion that, for LSCI data, the
sMSE algorithm is valid to compute MSE values. The length
of the shortest coarse-grained time series that gives results
that are not statistically different from those given by the original
MSE algorithm when 1000 samples are chosen for the shortest
coarse-grained time series depends on the ROI size studied (see
Table 1). The same conclusion can be drawn for the original
MSE algorithm when different lengths for the shortest coarse-
grained time series are studied. Thus, for an ROI size of 3×
3 pixels2, the optimal length for the shortest coarse-grained
time series, both for the sMSE and original MSE algorithms,
is 200 samples. This is five times lower than what was originally
proposed in the original MSE algorithm. Thus, in order to study
scale factors τ from 1 to 23, we have to use 23 × 200 ¼ 4600
samples instead of 23 × 1000 ¼ 23;000 samples as initially
proposed (use of 1000 samples for the shortest coarse-grained

time series). For LSCI data recorded with a sampling frequency
of 18 Hz, this means that 4.3 min are necessary instead of
21.3 min.

The main problem in using the MSE algorithm with LSCI
data in a clinical setting was that long recordings were necessary
in order to observe the patterns with distinctive scales. Because
LSCI is very sensitive to movements, the subjects need to stay
totally immobile. A total immobilization is difficult for periods
as long as 21 min; our work overcomes this drawback because
we show that the distinctive scales, which may be linked to
central physiological activities, become accessible for periods
of ∼4 min. These findings make possible the design of studies
including larger cohorts of healthy subjects and patients with
a pathology where the microcirculation is affected (e.g.,
diabetes). It would now be interesting to determine if the
MSE methodology would lead to relevant clinical data. For
example, would the MSE pattern obtained from subjects
with a microvascular disease be able to reveal systemic path-
ologies? Furthermore, for a patient with an acute myocardial
infarction, could MSE pattern predict future cardiovascular
events? Moreover, from previous papers where LSCI reproduc-
ibility has been studied,40 we can hope that only one recording
would be enough for such studies. Our work, therefore, serves
as a basis for future studies of MSE analyses of LSCI data in
clinical practice.

Other directions could also be studied in the future:

• In our study, we reduced the number of the original time
series while keeping constant the highest scale factor

0 5 10

(a) (b)

15 20 25
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Scale factor τ

S
am

pl
e 

en
tr

op
y 

(n
its

)
23x23 pixels2 (102.41 mm2)

 

 

1.1542

1.4427

1.7312

2.0198

2.3083

2.5969

2.8854

3.1739

3.4625

3.751

1.1542

1.4427

1.7312

2.0198

2.3083

2.5969

2.8854

3.1739

3.4625

3.751

1.1542

1.4427

1.7312

2.0198

2.3083

2.5969

2.8854

3.1739

3.4625

3.751

S
am

pl
e 

en
tr

op
y 

(b
its

)

Original MSE with 1000 samples for the shortest coarse-grained time series
sMSE with 1000 samples for the shortest coarse-grained time series
sMSE with 50 samples for the shortest coarse-grained time series

0 5 10 15 20 25
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Scale factor τ
S

am
pl

e 
en

tr
op

y 
(n

its
)

31x31 pixels2 (186.05 mm2)

 

 

1.1542

1.4427

1.7312

2.0198

2.3083

2.5969

2.8854

3.1739

3.4625

3.751

1.1542

1.4427

1.7312

2.0198

2.3083

2.5969

2.8854

3.1739

3.4625

3.751

1.1542

1.4427

1.7312

2.0198

2.3083

2.5969

2.8854

3.1739

3.4625

3.751

S
am

pl
e 

en
tr

op
y 

(b
its

)

Original MSE with 1000 samples for the shortest coarse-grained time series
sMSE with 1000 samples for the shortest coarse-grained time series
sMSE with 150 samples for the shortest coarse-grained time series

Fig. 7 MSE values (mean and standard deviations) obtained with 24 LSCI time series computed from
ROI sizes of 23 × 23 pixels2 (a) and 31 × 31 pixels2 (b) recorded in eight subjects without known disease.
Numerically estimated MSE values obtained with the original MSE and with the sMSE algorithms using
1000 samples for the shortest coarse-grained time series are shown. Results given by the sMSE algo-
rithm with the smallest length of the shortest coarse-grained time series, which leads to MSE values
having no statistical difference from the ones given by the original MSE algorithm using different
1000 samples for the shortest coarse-grained time series, are also shown.
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studied (τmax ¼ 23). Therefore, the shortest coarse-
grained time series was reduced with the reduction of
the original time series length. For all our computations,
we used the standard values for parameters m and r
(m ¼ 2 and r ¼ 0.15). In order to avoid spuriously

high entropy values when reducing the time series length
(high entropy values generated by the finding of none or
very few matches in the computation), other work could
be conducted in order to analyze the results obtained with
less restrictive r values.
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Fig. 8 MSE values (mean and standard deviations) obtained with 24 LSCI time series computed from
ROI sizes of 61 × 61 pixels2 (a) and 71 × 71 pixels2 (b) recorded in eight subjects without known disease.
Numerically estimated MSE values obtained with the original MSE and with the sMSE algorithms using
1000 samples for the shortest coarse-grained time series are shown. Results given by the sMSE algo-
rithm with the smallest length of the shortest coarse-grained time series, which leads to MSE values
having no statistical difference from the ones given by the original MSE algorithm using different
1000 samples for the shortest coarse-grained time series, are also shown.

Table 1 Smallest length of the shortest coarse-grained time series—in the short-time multiscale entropy (sMSE) and in the original MSE algo-
rithms—for which no statistical difference is found with the original MSE algorithm in which 1000 samples are chosen for the shortest coarse-
grained time series. Results obtained for different regions of interest (ROI) sizes are shown. The results have been obtained testing different lengths
for the shortest coarse-grained time series: 1000, 500, 250, 200, 150, 100, and 50 samples.

ROI size
(pixels2)

Smallest length of the shortest coarse-grained time series in
the sMSE algorithm for which no statistical difference is found
with the original MSE algorithm in which 1000 samples are
chosen for the shortest coarse-grained time series

Smallest length of the shortest coarse-grained time series in
the original MSE algorithm for which no statistical difference is
found with the original MSE algorithm in which 1000 samples
are chosen for the shortest coarse-grained time series

1 × 1 100 samples 100 samples

3 × 3 200 samples 200 samples

9 × 9 150 samples 50 samples

15 × 15 50 samples 150 samples

23 × 23 50 samples 50 samples

31 × 31 150 samples 50 samples

61 × 61 150 samples 50 samples

71 × 71 150 samples 50 samples
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• In our work, the lengths that have been tested for the
shortest coarse-grained time series are 1000, 500, 250,
200, 150, 100, and 50 samples. The minimal length for
the shortest coarse-grained time series was, therefore, set
to 50 samples. No shorter length has been studied. The
results that would arise from shorter lengths for the short-
est coarse-grained time series remain to be studied. Other
lengths (especially between 1000 and 500 samples) could
also be tested. Moreover, further work could be conducted
in order to analyze if the Bootstrap method of statistics
could anticipate our results.

• Our analysis was conducted on MSE values; no entropy
index (sum of sample entropy values over a predefined
range of scales) has been computed, as proposed in other
papers.28,33 A study similar to the one presented herein
could now be conducted when dealing with entropy
indices.
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