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Abstract. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denois-
ing, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising
algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet
transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the
retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the
limited number of frames that can be recorded due to eye movements, by providing a comparable image quality
in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In
addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. © 2012

Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.11.116009]
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1 Introduction

The unique optical properties and physical characteristics of the
human eye make it possible to noninvasively visualize the
structure and morphology of the retina and diagnose retinal
pathologies such as diabetic retinopathy, macular degeneration,
and glaucoma using various optical imaging modalities.!

Applications of optical coherence tomography (OCT), as a
noninvasive optical imaging technique to perform high-
resolution imaging of retinal microstructure, have well been
demonstrated and commercialized in ophthalmology.> Automatic
analysis of OCT images, such as retinal layer segmentation,
provides objective quantification of retinal layers from the nerve
fiber layer to the pigment epithelium layer. Measurements derived
from such image analysis methods may improve the clinical
diagnosis during glaucoma progression and age related macular
degeneration.

OCT images are subject to various distortions that introduce
artifacts in the OCT cross-sections such as floaters and saccades.
Speckle noise, as a dominant source of artifacts, also occurs in
the OCT image because particles composed in the underlying
tissue structures are smaller than the coherence length of the
light source.? In other words, there is a limited spatial-frequency
bandwidth of OCT interference signals.

Recently, wavelet techniques have been employed success-
fully in speckle noise reduction for OCT images.*” Adler et al.,
Wagner et al., and Mayer et al., applied the discrete wavelet
transform which provides the most compact representation,
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however, it has two main limitations which include the fact
that it is not shift-invariant and not oriented in two
dimensions.**® The dual-tree complex wavelet transform
overcomes these limitations. The complex wavelet transform
was used for wavelet denoising in OCT images where Chitchian
et al. applied a denoising algorithm to reduce speckle noise
using the dual-tree complex wavelet transform.””

Advanced retinal tracking systems and registration
algorithms are generally used to average multiple image frames
to improve overall image quality and presentation. However,
these methods have practical limitations due to the inability
of patients to maintain fixation during examinations. By
averaging multiple frames, these distortions may be suppressed,
but information that could improve diagnosis or allow for more
sophisticated image analysis is also lost. Using the same clinical
system and wavelet denoising of eight frames, Wagner et al. and
Mayer et al. recently reached an SNR which is comparable to an
averaging of 29 frames.®’

More recently, Leigh et al. demonstrated that wavelet noise
estimation technique is the overall preferred noise estimation
technique for most image and video processing applications.!®
Therefore, building on the earlier results, a denoising algorithm
using double-density dual-tree complex wavelet transform is
applied to a two-frame OCT image, the original image from
OCT clinical system without preprocessing, to improve the
image quality and overcome the limitations of commonly
used multiple-frame averaging technique.” Image quality
metrics improvements and SNR increase that are better than
those of 50-frame averaged images, as processed by the system,
are achieved.
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2 Wavelet Shrinkage Denoising

The wavelet shrinkage denoising algorithm requires the follow-
ing four-step procedure,’

Y=W(X) A=d(Y) Z=D(Y.)) S=W1(2Z). (1)

where W(-) relates to the wavelet transform, d(-) selects a data-
adaptive threshold, D(-, 4) denotes the denoising with threshold
A, and W=!(-) performs the inverse wavelet transform. More
detailed descriptions of each step are presented below.

2.1 Double-Density Dual-Tree Complex Wavelet
Transform

The dual-tree complex wavelet transform (CDWT) calculates
the complex transform of a signal using two separate discrete
wavelet transform (DWT) decompositions. By utilizing a
Hilbert transform pair, it is possible for one DWT to produce
the real coefficients and the other the imaginary coefficients.’

The double-density wavelet transform (DD-DWT) is defined
by recursively applying the three-channel analysis filter bank to
the signal. Selesnick previously presented approximate Hilbert
transform pairs of wavelet frames that have the advantages of
both types of wavelet frames described above.!! The DWT
based on these wavelet frames is called the double-density
dual-tree complex wavelet transform (DD-CDWT). The Double-
Density Wavelet Software by Selesnick et al. was used for
implementation of the wavelet transform.'?

2.2 Shrinkage Denoising

Operator d(-), in Eq. (1), selects a data-adaptive threshold and
D(-,A) denotes the denoising operator with threshold A.
Bivariate shrinkage with local variance estimation algorithm
is applied for shrinkage denoising."?

After estimating the signal components of the noisy coeffi-
cients in the wavelet domain, the inverse wavelet transform,
W-1(.), is taken to reconstruct the noise-free image.

3 Results

The top of Fig. 1 shows the scanning laser ophthalmoscope
(SLO) image captured by the Spectralis OCT (Heidelberg Engi-
neering, Heidelberg, Germany) during the eye scanning process.
The B-Scans positions are marked, as well as an example of
OCT B-Scans, is also shown. The scans were centered on
the fovea in order to image the macular region of the retina.
The B-Scans consisted of 768 A-Scans. Each A-Scan consists
of 496 pixels. The B-Scans were cropped into 288 X 288 pixels
for analysis. The axial resolution of the Spectralis is 7 ym in
tissue. The pixel length in the lateral direction is 5.73 ym.

For the present work, 7 B-Scans were acquired from a
subject. 7 B-Scans are two-frame averaged images, the original
images from the Spectralis OCT system without preprocessing.

The algorithm was executed on a Intel Core i5-2400,
3.10 GHz desktop personal computer. The total time for the
denoising process was less than half a second using Matlab
7.14 (MathWorks, Natick, MA).

The unprocessed two-frame OCT image of the retina is
shown in Fig. 1(a). Figure 1(b) shows the image after DD-
CDWT denoising.

The performance of a new wavelet denoising procedure can
be compared to the averaging approach which is now being
used in latest clinical OCT systems including the Spectralis to
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Fig. 1 SLO image captured by the Spectralis OCT and a corresponding
OCT B-Scan (top). The selected image: (a) original; (b) DD-CDWT
denoised. Eight ROIs are shown in the original image. Combined appli-
cation of the proposed denoising algorithm and the averaging method
available in clinical systems: (c) 10-frame averaged image; and (d) DD-
CDWT denoised of the averaged image.

remove speckle noise and improve SNR. Because of the eye
movement and the time the eye can be kept open, especially
in elder patients, there are limitations for clinicians not to
average more than 20 frames. For quantitative comparison, the
50-frame averaged images were used because they have more
improved results compared to the 20-frame averaged images.
All averaged images were acquired using retinal tracker
capability of the Spectralis. Also, the images were from a
young and healthy subject with perfect fixation. It is clear
that, in any cases of abnormalities, the results of denoising
are more effevtive.

Image quality metrics were used to assess the performance of
the denoising technique by measuring the contrast-to-noise ratio
(CNR), the equivalent number of looks (ENL), the correlation p,
the structure similarity (SSIM), and full-width half-maximum
(FWHM) over regions of interest (ROIs). Eight ROIs were
defined in the original images, as shown in Fig. 1(a). The
ROIs were chosen to cover different retinal layers and edges,
and were used for different measurements. The metrics were
calculated as the average over the ROIs used. In addition, the
global SNR is calculated.

The CNR measures the contrast between image features [red
and blue ROIs in Fig. 1(a)] and an area of background noise,
while the ENL measures smoothness in areas that should
have a homogeneous appearance [blue ROIs in Fig. 1(a)].’

Performance of edge preservation or sharpness is evaluated
based on correlation. A parameter, p, is calculated as: 1
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where x is the unprocessed image and x is the enhanced image
in the location of the ROI, and

L(xy,x) = Z xi (i, J) - x2(i. j)- 3

(i.j)EROI

Furthermore, SSIM index was also used to compare the
structure of the unprocessed image, x, and the enhanced
image, X, in the ROI,

(Zﬂxﬂi + Cl)(zgxfc + CZ)

SSIM(x, x) = ,
) = T Z T o) ol t §)

“)

where C; and C, are constants used to avoid instability. SSIM
compares local patterns of pixel intensities that have been nor-
malized for luminance and contrast.'® p and SSIM are measured
in the red and blue ROIs in Fig. 1(a).

The sharpness of the edges is measured by FWHM at differ-
ent edge ROIs in the image [green ROIs in Fig. 1(a)]. The exam-
ined edge in the ROl is deformed to a straight line. The values in
the direction of the edge are summed up to reduce the influence
of the noise. A logistic sigmoid function is fitted to the resulting
values by using a nonlinear regression method. The FWHM is
the width of the derivation of this fitted sigmoid function at its
half maximum. The smaller this value is, the sharper the edge.
We measured the FWHM at two sharp edges as well as one edge
with low contrast. The sigmoid function is defined as follows

q>

Ox) =g + ——F—=,
1 +exp (—%)

®)

where g, to g, are parameters that are optimized by the non-
linear regression using the Matlab nlinfit method.

The FWHM measures the width of ®(x) at the half of the
maximum (®'(—q3)/2),

FWHM — 1n<—2d+1— 1—4d>’ ©
M\ a i vizaad)!
with
e'(-
d— (6]3)6]4_ 7
q>

Table 1 shows image quality values for the original, 50-frame
averaged, CDWT, and DD-CDWT wavelet denoised images.
The values of CNR, ENL, SNR, p, and SSIM for seven sample
images show significant improvement. A paired -test was
performed for comparison of CDWT and DD-CDWT wavelet
denoising algorithms with statistical significance given by
values of P < 0.05. Comparison of CNR, ENL, SNR, p, and
SSIM results in P values of 0.0083, 0.1633, 0.3788, 0.0001,
and 0.0001, respectively. The values for ENL and SNR are
considered not to be statistically significant. However, the
values for CNR, p, and SSIM are considered to be statistically
significant.

DD-CDWT has better functioning to retain both the structure
and sharpness of the unprocessed image in comparison to
CDWT, the differences are extremely statistically significant.
CDWT has superior CNR while ENL and SNR statistically
remain the same for both approaches.

The averaging approach is now being used in latest clinical
OCT systems including the Spectralis to remove speckle noise
and improve SNR. Comparison of the averaged and DD-CDWT
denoised images results in P values for CNR, ENL, SNR, p, and
SSIM of 0.0053, 0.0012, 0.0303, 0.0001, and 0.0001, respec-
tively. All values are considered to be statistically significant.
Comparison of FWHMs shows sharpness in the edges are not
reduced significantly using these methods.

While the averaging technique has a better ENL, almost four
times the value for DD-CDWT, its performance is reduced
compared to DD-CDWT denoising algorithm in terms of CNR
and SNR. The main disadvantage is deterioration of the struc-
ture and sharpness of the unprocessed image, 33.45 percent
and 53.70 percent, respectively. However, denoising, using
DD-CDWT technique, preserves the structure and sharpness

Table 1 Image quality values for comparison of original, 50-frame averaged, CDWT, and DD-CDWT wavelet denoised images of normal retina and
for comparison of original, CDWT, and DD-CDWT wavelet denoised images of a 20-frame averaged AMD case.

n=7 Image CNR (dB) ENL SNR (dB)  FWHM  p (%) SSIM (%) Time (s)
Original 6.4 352 24.85 3.46 100 100 0
Mean Averaged (50frame) 7.8 1975 25.96 3.61 53.70 33.45 4.4
Denoised (CDWT) 12.2 555 29.67 3.72 96.07 79.86 0.4
Denoised (DD-CDWT) 10.6 545 29.86 3.80 97.71 86.71 0.4
P value  Paired test [DD-CDWT vs. 50frame averaged) .0053 .0012 .0303 7375 .0001 .0001 .0001
P value Paired tfest (DD-CDWT vs. CDWT) .0083 1633 .3788 .6614 .0001 .0001 .0001
AMD Averaged (20frame) 8.4 1059 26.16 3.77 100 100 6.0
(n=1) Denoised (CDWT) of Averaged (20-frame) 11.4 1279 28.69 3.82 98.05 88.79 6.4°
Denoised (DD-CDWT) of Averaged (20-frame) 14.5 1410 31.07 3.85 97.54 87.88 6.4¢
*The averaging time was added to the denoising time.
Journal of Biomedical Optics 116009-3 November 2012 « Vol. 17(11)
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Fig. 2 Denoising of an intermediate AMD retinal image: (a) before
(20-frame averaged); (b) after DD-CDWT denoising.

by factors of 86.71 percent and 97.71 percent, respectively. In
other words, the enhancement approaches including averaging
and the proposed technique, can have a false inducing effect, an
artifact in the original image. By measuring sharpness and
SSIM, these artifacts were quantified.

Feature and sharpness preservation will play an important
role in accurately measuring cellular disruption to determine ret-
inal pathology. In summary, the proposed denoising algorithm is
a highly promising preprocessing approach which yields
enhanced retinal OCT images for further computational analysis
such as segmentation of retinal layers.

Last, it should be noted that enhancement based on averaged
frames takes more time than the proposed wavelet shrinkage
denoising algorithms and this is illustrated in Table 1. This
imposes limitations for clinicians not to average more than
20-frame because of the eye movement and the time the eye
can be kept open, especially in elder patients. An important
advantage of the proposed denoising technique is not only to
overcome this limitation with less than half a second enhancing
time which is equal to an order of magnitude less time compared
to the averaging method, but also to provide better results in
terms of image quality metrics.

Using the same OCT system and similar type of images,
Wagner et al. and Mayer et al. could improve SNR to the
level of 29-frame averaged performance by applying wavelet
denoising to the 8-frame averaged images.®” However, the intro-
duced approach went steps further to enhance SNR better than
the 50-frame averaged level by using only two-frame images
which are the original images from the Spectralis OCT system
without preprocessing.

Finally, in Fig. 1(c) and 1(d), we show the combined applica-
tion of the proposed denoising algorithm and the averaging
method available in clinical systems. Figure 1(c) shows the com-
monly used ten-frame averaged image by clinicians from the
Spectralis. The denoising result of Fig. 1(c) using DD-CDWT
is shown in Fig. 1(d). Comparison of Fig. 1(c) and 1(d) demon-
strates that the performance of the averaging method can also be
improved by applying the proposed denoising technique in series.

As a demonstration of clinical applicability, Fig. 2(a) and
2(b) gives an example of an intermediate age-related macular
degeneration (AMD) case before and after denoising, respec-
tively. This case represents significant disruption in retinal struc-
ture, particularly around the retinal pigment epithelium and
photoreceptors. The image before denoising, Fig. 2(a), is
20-frame averaged image acquired in the clinic. Table 1 quan-
tifies the image quality metrics before and after denoising,
demonstrating that the denoising algorithm substantially
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improves the image quality in terms of CNR, ENL, and SNR
while preserving structure and sharpness. The proposed
DD-CDWT denoising algorithm could attain 5 dB increase in
SNR along with 6 dB increase in CNR with less than 3 percent
and 13 percent reduction in p and SSIM, respectively.

4 Conclusion

The proposed denosing algorithm provides significant improve-
ments in image quality metrics while preserving subtle features
of the retinal layers. This technique may be implemented in
ophthalmic OCT systems currently being used to diagnose and
monitor patients with diabetes, glaucoma, age related macular
degeneration, and other retinal diseases.
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