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Abstract. The global chip industry is grappling with dual challenges: a profound shortage of new chips and
a surge of counterfeit chips valued at $75 billion, introducing substantial risks of malfunction and unwanted
surveillance. To counteract this, we propose an optical anti-counterfeiting detection method for semiconductor
devices that is robust under adversarial tampering features, such as malicious package abrasions,
compromised thermal treatment, and adversarial tearing. Our new deep-learning approach uses a
RAPTOR (residual, attention-based processing of tampered optical response) discriminator, showing the
capability of identifying adversarial tampering to an optical, physical unclonable function based on randomly
patterned arrays of gold nanoparticles. Using semantic segmentation and labeled clustering, we efficiently
extract the positions and radii of the gold nanoparticles in the random patterns from 1000 dark-field images
in just 27 ms and verify the authenticity of each pattern using RAPTOR in 80 ms with 97.6% accuracy
under difficult adversarial tampering conditions. We demonstrate that RAPTOR outperforms the state-of-
the-art Hausdorff, Procrustes, and average Hausdorff distance metrics, achieving a 40.6%, 37.3%, and
6.4% total accuracy increase, respectively.
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1 Introduction
The semiconductor industry has grown into a $500 billion global
market over the last 60 years. However, the semiconductor
fabrication pipeline has become fragmented, inadvertently giving
rise to a $75 billion counterfeit chip market that jeopardizes safety
and security across multiple sectors dependent on semiconductor
technologies, such as aviation, communications, quantum, arti-
ficial intelligence, and personal finance.1–5 Several techniques
aimed at affirming semiconductor authenticity have been intro-
duced to detect counterfeit chips, largely leveraging physical
security tags baked into the chip functionality or packaging.6–13

Central to many of these methods are physical unclonable

functions (PUFs),14,15 which are unique physical systems that
are difficult to replicate, either because of economic constraints
or inherent physical properties. Rather than being grounded in
cryptographic hardness, PUFs emphasize the economic and
technological challenges of duplicating a given system’s physical
characteristics.16 Optical PUFs, which capitalize on the distinct
optical responses of random media, are especially promising.
However, achieving scalability and maintaining accurate dis-
crimination between adversarial tampering and natural degrada-
tion, such as physical aging at higher temperatures, packaging
abrasions, and humidity, poses significant challenges.17–19

To combat these difficulties, this study focuses on an optical
PUF model utilizing the distance matrix constructed of the posi-
tions and radii of random gold nanoparticles.20 The overview
process of the PUF tamper detection method is demonstrated in
Fig. 1. Due to the extreme difficulty of replicating large sets of
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nanoparticles with precise positions and radii, the distance
matrix acts as the PUF signature. However, we demonstrate that
current verification methods for distance matrix PUFs are neither
sufficiently scalable nor robust enough for discriminating between
natural disturbances and adversarial tampering. First, we take
dark-field images of nanoparticles that are randomly distributed.
The random positions and radii are extracted using semantic seg-
mentation and labeled clustering. Then, the nanoparticles undergo
treatment due to either natural degradation, e.g., minor thermal
treatment and packaging abrasions, or adversarial tampering,
e.g., substrate tearing, thermal tampering, and refilling. After
the nanoparticles are exposed to either kind of treatment, the nano-
particle positions and radii are remeasured, and a new, posttam-
pered distance matrix is compared against the pretampered
distance matrices. Previous works use variations in the Hausdorff
distance metric to classify pre- and posttampering detection. In
addition to the Hausdorff metric, we also apply the Procrustes
matrix distance and average-Hausdorff-distance metrics21–30 as
analytical, classical methods for discrimination.

However, under more difficult assumptions of adversarial
tampering, both the Hausdorff and Procrustes metrics can be
provably tampered with, as we show in Sec. 4. Addressing this
gap, we present a novel deep-learning approach using residual,
attention-based processing of tampered optical responses
(RAPTOR),31–33 showing marked improvements in both speed
and accuracy under diverse adversarial tampering conditions.

Overall, the novelty of our approach is demonstrated as

(1) being the first method to apply an attention mechanism
for PUFs authentication, using the nanoparticle radii as
soft weights and the posttamper distance matrix as a
value matrix;

(2) developing data set generation methods for gold nanopar-
ticle PUFs for which there is no existing public data set;

(3) achieving high verification accuracy under difficult, real-
world tampering schema using machine learning to
verify the gold nanoparticle PUFs.

We begin by discussing the importance of optical PUFs for
semiconductor authentication and then spotlight the challenges

in current verification methods. We then introduce a statistical
approach to overcoming these challenges by formalizing the
problem of adversarial tampering detection. We conclude by
providing accuracy and speed results for both the average dis-
tance analysis and RAPTOR.

2 Background

2.1 Physical Unclonable Functions

PUFs are distinctive physical systems characterized by a unique,
irreplicable, physical fingerprint. PUFs yield a probability dis-
tribution over random measurements of a system that is practi-
cally unclonable due to current technology, economic factors, or
time constraints. That is, given two random physical systems,
the probability of obtaining the same distribution of measure-
ments is extremely low. An adversary will attempt to replicate
the physical system that yields the measurement distribution in
order to spoof any detection schemes. The detection of adver-
sarial tampering features introduced during the spoofing process
is based on the following steps: (1) PUF system preparation,
(2) pretamper measurements, (3) random tampering, and
(4) posttampering adversarial detection. Previous works pri-
marily implement this detection method using optical PUFs,
which construct unique scattering and/or spectral responses of
random media.9,14 Optical PUFs are easy to fabricate and quick
to measure, making them ideal for proof-of-concept experi-
ments. Likewise, several other physical systems exhibit similar
levels of randomness and measurability, including resonators,17

laser-induced speckle patterns,6 memristors,10 memtransistors,10

and intentional damaging in glass.34 However, nanoscale metal-
lic optical systems, otherwise known as plasmonic PUFs, have
been rising in popularity due to their strong scattering response
at optical wavelengths, increasing robustness during posttam-
pering measurements. Among the early instances of plasmonic
PUFs are responses from dichroic gold barcodes,35 anisotropic
gold nanoparticles grown within thin silicon dioxide films,36 dis-
tinct surface plasmon resonance modes,37 unique molecular con-
figurations embedded in multilayer structures,18,38 and 100 nm
gold nanorods.39 Nevertheless, while serving as viable PUF

Fig. 1 PUF sampling process. An overview of the PUF tamper detection method using distance
matrices of randomly positioned gold nanoparticles. The process consists of four primary stages.
(i) Gold nanoparticles are randomly introduced, serving as a distinct physical system. (ii) The
nanoparticles’ distance matrix is recorded and archived in a reference database. (iii) The system
may experience external tampering or natural degradation that can modify its initial state. (iv) The
distance matrix is reassessed and cross-referenced with the initial database to identify any
potential tampering or other changes.
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prototypes, these methods grapple with scalability challenges,
either in fabrication or measurement robustness. To address these
limitations, we reintroduce a streamlined, plasmonic PUF suitable
for large-scale applications: the distance matrix verification of
gold nanoparticles.20 As we argue in Appendix A (Sec. 6.4),
gold nanoparticles are sufficiently random during fabrication
and can easily be measured using dark-field microscopy, a
readily available technique that can integrate seamlessly into
any stage of the semiconductor fabrication pipeline.

2.2 Distance Matrix PUFs

Figure 2 shows the distance matrix extraction process based on
gold nanoparticle PUFs from dark-field images. The detailed
segmentation process is found in Sec. 4.1 and Appendix A
(Sec. 6.3). Distance matrix PUFs are given by the distance ma-
trix D constructed by all pairwise distances between nanopar-
ticle positions. Let dðri; rjÞ be the Euclidean distance between
nanoparticles i and j, with positions ri and rj, respectively; then

the distance matrix elements Dij are defined as Dij≜dðri; rjÞ.
The merit of the distance matrix as a PUF lies in its symmetry
properties: it is rotationally and translationally invariant, renor-
malizable, and simple enough for computer-vision measure-
ments across varying fields of view and orientations. It is
important to note that the use of distance matrix PUFs makes
an implicit assumption that the probability of introducing ran-
dom translations and rotations during measurement is much
higher than that of fabricating two systems that are identical
under a rotation and translation symmetry. This ensures that
in-plane distance matrices are uniquely associated with their
system state, barring unlikely rotational and translational sym-
metries introduced during fabrication. This motivates our use of
distance matrices as reliable PUFs as we now introduce their
analysis. Smith et al.20 showed that the Hausdorff distance is
robust in accounting for 5 μm translations as well as illumina-
tion discrepancies in the imaging process. In this study, we ex-
panded the tests with a wider range of adversarial tampering
through simulation by increasing the translation and rotation
of the imaging lens, increasing the noise perturbations of the
nanoparticle positions, and introducing adversarial tearing and
refilling, as described in detail in Sec. 3.2.

3 Methods
Figure 3 presents our machine-learning-assisted authentication
flowchart from fabrication to tampering detection. Consider a
physical system state x ∼ pðxÞ generated by a fabrication pro-
cess pðxÞ. A PUF gives a distribution over measurements
m ∼ pðmjxÞ of the system conditioned on the system state.
After recording a set of measurements M ¼ fm0;…;mjMj−1g,
the system state x evolves to a new state x0 via either an adver-
sarial tampering process x0 ∼ qaðx0jxÞ or natural degradation
process x0 ∼ qnðx0jxÞ, e.g., natural thermal changes, packaging
abrasions. An independent Bernoulli variable β ∼ B chooses
which of the two distributions produces the state evolution.
The general tampering distribution qðx0jx; βÞ is conditioned
on the initial system state x and the tampering indicator β,
i.e., qðx0jx; β ¼ 0Þ ¼ qnðx0jxÞ and qðx0jx; β ¼ 1Þ ¼ qaðx0jxÞ.
Once the system has undergone the chosen tampering, we
record the posttampering measurements m0 ∼ pðm0jx0Þ in a
new database M0 ¼ fm0

0;…;m0
jM0 j−1g. Using a discriminator

function Yθðm;m0Þ, with variational parameters θ, we infer
the tampering indicator β to determine whether the system
underwent a natural degradation process or the adversarial tam-
pering process. Our objective function for detecting adversarial
tampering is optimized by finding the optimal variational
parameters θ for our discriminator function Y, as

arg min
θ

Ex∼pðxÞ½E β∼B
m∼pðmjxÞ

m0∼pðm0 jβ;xÞ

½jYθðm;m0Þ − βj��; (1)

where pðm0jβ; xÞ ¼ R
pðm0jx0Þqðx0jx; βÞdx0 is the marginal dis-

tribution of the posttampering measurements m0, given the ini-
tial system state x and tampering indicator β, which are baked
into the expectation implicitly. We now apply this definition to
distance matrix PUFs.

3.1 Nanoparticles for the PUF-D Problem

The gold nanoparticles are uniformly distributed on the sub-
strate ri ∼ U½0,1�2, but their radii are normally distributed
ρi ∼N ðμr; σrÞ, which yield a system state x ¼ fr; ρg. Then,
a database M of randomly positioned dark-field images is

Original Dark-Field Image xirtaMecnatsiDegamIdetnemgeS
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t
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Fig. 2 Distance matrix extraction from dark-field images. Nanoparticle dark-field images of size
448 × 448 pixels are prepared using dark-field microscopy. Then, the segmentation process
classifies pixels as belonging to either a nanoparticle pattern or the dark-field background.
Next, nanoparticle pattern pixel regions are clustered into local particle patterns, and their centers
of mass (purple points) are extracted. Finally, the distance matrix is generated by evaluating all
pairwise distances between these nanoparticle patterns. We visualize the distance matrix using
its minimum spanning tree, despite the full tree being all-to-all. All scale bars represent 20 μm.
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created through dark-field microscopy. Due to the extremely
large number of samples taken during dark-field microscopy,
the measurement density is highly correlated to the fabrication
prior through a narrow Gaussian peak (Assuming dark-field
microscopy is i.i.d. sampling, then the law of large numbers dic-
tates the measurement will converge as σi

2∕n where n is the
number of measurements taken by the dark-field microscope
on a single nanoparticle with variance σi2.) and is approximately
localized pðmjxÞ ≈ δðx − x̂ðmÞÞ, where x̂ðmÞ ¼ fr̂; ρ̂g is our
approximation to the true system state x ¼ fr; ρg. Therefore,
the problem objective in Eq. (1) can be approximated as

Ex∼pðxÞ½E β∼B
m0∼pðm0 jβÞ

½jYθðm;m0Þ − βj��; (2)

by marginalizing out x and x0 from the inner expectations using
the delta function. Taking the distance matrices of the inferred
system state x̂ and the evolved system state x0 yields a distance
matrix objective function,

EDðxÞ∼pðxÞ½E β∼B
Dðx̂ðm0ÞÞ∼pðm0 jβÞ

½jYθðDðx̂Þ; Dðx0ÞÞ − βj��; (3)

where Y is now defined on the distance matrix space. (As men-
tioned previously, we assume here that the probability of intro-
ducing random translations and rotations during imaging is far
less likely than that of producing the same distance matrix for
two sets of nanoparticles.) This becomes our objective function
for constructing RAPTOR. Now, we explicitly consider features
of the tampering distribution q.

3.2 Adversarial Tampering

During the random tampering step, the system may undergo ei-
ther natural changes given by qn or adversarial tampering given
by qa. Thermal fluctuations may occur for both treatments, and
they introduce varying degrees of random Gaussian translations
of the nanoparticles, i.e., r0 ¼ rþ rΔ∶rΔ ∼N ð0; σΔÞ. However,

adversarial tampering introduces Gaussian translations as well
as substrate tearing and refilling, as shown in Fig. 4. Adversarial
tearing introduces a random cut through the plane, displacing
each nanoparticle location ri by a magnitude of wffiffiffiffiffiffiffiffiffiffi

jri−αij
p ,

orthogonal to a cut vector α weighted by a tearing coefficient
w. As demonstrated in Fig. 4(c), introducing tears alters the
average distance, thereby making adversarial tearing detectable
by statistical discrimination. In the less ideal case, an adversary
will attempt to refill the tear by introducing nanoparticles of a
similar density as the fabrication density to recover similar fea-
tures to the natural degradation. As shown in Fig. 4, filling the
tear makes the average nanoparticle distance indistinguishable
from natural degradation noise, with some constant distance.
Therefore, a purely expected distance discrimination method
between the tampering distributions qn and qa is completely
unfeasible for small sample sizes under adversarial filling.
Therefore, discrimination tasks necessitate conditioning on
the measurements M and M0.

3.3 Distance Matrix Authentication

Three analytical distance metrics are explored for distance ma-
trix authentication: Hausdorff distance, Procrustes distance, and
the average Hausdorff distance (AHD). For each of these met-
rics, the binary classification threshold is determined via logistic
regression. If the distance between two matrices is above the
logistic threshold, the posttamper matrix is considered too dis-
similar to arise from the environment or natural degradation.
Otherwise, the matrix is considered to have an acceptable level
of natural changes and is therefore authentic.

3.3.1 Hausdorff metric

The Hausdorff distance metric H is the maximum Euclidean
distance dðri; r0jÞ between each point ri and its nearest neighbor
r0j as shown in Eq. (4). (Using the distance matrix elements D
and D0 instead of r and r0 does not yield significant differences
in results for our purposes.)

Fig. 3 Machine-learning-assisted authentication is trained by classifying synthetic posttamper
measurements as being either adversarially tampered or naturally degraded, indicated by β̂.
We use a pretrained segmentation model, along with a labeled clustering algorithm, to compute
the distance matrix and radii of the nanoparticles for both samples. Then, the discriminator network
is trained by randomly choosing a synthetic tampering type according to the tampering Bernoulli
distribution β ∼ B.
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Hðr; r0Þ ¼ max
∀ ri∈r

½ min
∀ r0j∈r

0
dðri; r0jÞ�: (4)

3.3.2 Procrustes metric

An alignment matrix is a matrix that aligns two sets of multi-
variate data by transforming one into the other. Procrustes analy-
sis is a statistical method that finds the optimal alignment matrix
A that minimizes the sum of squared distances between corre-
sponding points in Ar and r0, thus accounting for rotational,
translational, and scaling discrepancies.40 Procrustes distance
P is then given by the sum,

Pðr; r0Þ ¼
X

ri∈r
dðAri; r0iÞ2: (5)

Ordering and data set size constraints make Procrustes a less
reliable method for distance matrix matching. Likewise, finding
the optimal alignment matrix is an iterative and time-consuming
process compared to Hausdorff.

3.3.3 Average Hausdorff distance metric

An average-nearest-neighbor approach offers a more robust
solution in practice than the Hausdorff and Procrustes metrics.
Rather than simply considering the maximum nearest neighbor,
it considers all nearest neighbors and is thus less sensitive to
slight changes in any single nanoparticle position.21 The AHD
is defined as

AHDðr; r0Þ ¼ 1

jrj
X

∀ ri∈r
½ min
∀ r0j∈r

0
dðri; r0jÞ�: (6)

Despite the previously reported 100% accuracy of distance
matrix verification schemes involving a Hausdorff-inspired
metric similar to AHD,20 we demonstrate in Sec. 4.2 that under
more difficult adversarial tampering conditions, AHD eclipses
both Hausdorff and Procrustes metrics, but is still beaten by
RAPTOR.

3.4 RAPTOR

RAPTOR (Fig. 5) takes a more supervised approach to compute
the authenticity of a distance matrix. For each nanoparticle i,
we reweight the posttamper matrix D0 by a soft-weight matrix
Ai to indicate the probability that nanoparticle i in the pretam-
per matrix D is nanoparticle j in the posttamper matrix D0
[Fig. 5(a)]. Let Γi ¼ ½…; jρi − ρ0jj;…� be the query row tensor;
then for each nanoparticle i, we compute the soft-weight Sij ¼
softmaxðΓi∕τiÞ where τi is a variational parameter. Then, we
multiply each row μ of the value matrix D0 by the soft-weight
Siμ, thereby creating a unique attention distance matrix Ai for
each nanoparticle i, i.e.,

Ai
μν ¼ SiμD0

μν: (7)

This mechanism zeroes out rows in the posttamper matrixD0,
whose nanoparticles are unlikely to be the same before and
after tampering based on the difference in radii. Then, using
the pretamper distance matrix D, we compute the probability
that nanoparticle i is the same as nanoparticle j, defining the
matrix elements Bij, by first encoding all pairwise rows between
both matrices using a 3D ResNet encoder model fθðAi;DÞ to
compute the element Bij in Fig. 5(b). The feature matrix B along
with Γ,D,D0, and Si are concatenated along the channel dimen-
sion and fed into the residual attention-based classifier shown in
Fig. 5(c). An algorithmic description of RAPTOR is included in
Appendix B (Sec. 7.1).

4 Results and Discussion

4.1 Semantic Segmentation

To reliably extract the nanoparticle centers and radii, we employ
semantic segmentation networks to separate the image into
two classes: nanoparticle and dark-field background. First,
we trained the unsupervised semantic segmentation network
STEGO as ground-truth labels for a data set of 10,000 dark-
field images.41 We chose STEGO due to its prominence in

(a) (b) (c)

Fig. 4 Adversarial tampering is introduced through tearing of the substrate, thereby separating
the gold nanoparticles according to their distance from the tear line, and filling the tear with
new nanoparticles uniformly distributed in the tear to match the original distribution. The tearing
of the substrate is modeled as a random cut that shifts the nanoparticles based on the inverse
square root of the perpendicular distance to the cut. (a), (b) The tearing coefficients w ¼ 0.01 and
w ¼ 0.05 demonstrate the increased separation dependent on the tearing coefficient. (c) The nor-
malized expected distance between nanoparticles is plotted for natural degradation, adversarial
tearing without filling, and adversarial tearing with filling.
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the literature in assigning meaningful and high-quality segmen-
tation to unlabeled data. The training data set for STEGO is cre-
ated by randomly selecting and positioning gold nanoparticles
obtained from a data set of 2400 gold nanoparticles extracted
from 40 dark-field images. Particle extraction is performed
via brightness thresholding at 4% intensity, followed by regional
clustering and is manually verified for each input image. A min-
imum pattern radius of 0.5 μm is enforced to discern the par-
ticles from noise. From this data set, samples of transformed
particles are generated to match the source distributions of
on average 79 particles per image (σ ¼ 20) and source dimen-
sions (1280 × 960 pixels at 0.069 μm∕pixel), thus creating an
augmented data set that is visually indistinguishable from
source images. We injected 4% intensity Gaussian noise to
match realistic noise levels from the dark-field images data set.
The particle density is uniform across samples as discussed in
Appendix A (Sec. 6.4). We list detailed explanations for choos-
ing the parameter values mentioned in Appendix A (Sec. 6.5).

STEGO is very powerful but slow for simple semantic seg-
mentation. Hence, we train both a lightweight ResNet-based

attention convolutional neural network and a Gaussian blurring
filter for mimicking STEGO. Overall, as demonstrated in
Table 1, our CNN model and Gaussian filters achieve binary
cross-entropy losses of 10−3 and 0.56 and compute 1000 images
in 27 and 33 ms on a T4 GPU, as opposed to 24 min for 1000
images using STEGO. After computing the semantic segmen-
tation labels, all images are fed into a labeled clustering algo-
rithm that extracts the center of mass and radii of 1000 images
in 250 ms.

4.2 Tampering Discrimination

The tampering data set is generated synthetically at run-time
offline from semantic segmentation. A substrate of size 2 × 2
is filled uniformly with a nanoparticle density of 100 per
unit square, and the radii are normally sampled i.i.d.
ρi ∼N ðμρ ¼ 0.006; σρ ¼ 0.004Þ. Natural degradation is intro-
duced through a simple displacement of nanoparticles by a
factor 0.05 · rΔ using the r.v. rx;iΔ ; ry;iΔ ∼N ðμn ¼ 0; σn ¼ 1Þ. For
adversarial tampering, a tampering configuration is chosen at

Table 1 Overall performance comparison of each method for distance matrix extraction and discrimination tasks. For all results in the
table, a 1000-sample tensor was loaded onto an NVIDIA T4 GPU (except Procrustes, which used all CPU RAM) and batched at maxi-
mum capacity for the particular model. Accuracy is measured by the number of correct pixels or authentication classifications over
the total. For semantic segmentation, we include the BCE loss to show a marginal advantage in using ResNet over Gaussian blur.
The computation time is measured by preloading all data onto an NVIDIA T4 GPU or CPU RAM before recording the start time.

Task Method Average Accuracy (%) Computation Time

Distance matrix extraction STEGO 100% (ground truth) 24 min for 1000 images

ResNet attention CNN 10−3 (BCE) or 99% 27 ms for 1000 images

Gaussian blur 0.56 (BCE) or 99% 33 ms for 1000 images

Discrimination RAPTOR 97.6% 80 ms for 1000 matrices

AHD 91.2% 13.5 ms for 1000 matrices

Hausdorff 54.9% 22.9 ms for 1000 matrices

Procrustes 58.2% 3.30 s for 1000 matrices

(a) (b) (c)

ResNet Encoder

Fig. 5 RAPTOR uses an attention mechanism for prioritizing nanoparticle correlations across pre-
tamper and posttamper samples before passing them into a residual, attention-based deep con-
volutional classifier. (a) RAPTOR takes the top 56 nanoparticles in descending order of radii to
construct the distance matrices D and D 0 and radii ρ and ρ0 from the pretamper and posttamper
samples. (b) The radii and distance matrices form the query and value embeddings of an attention
mechanism. The attention mechanism is then used alongside the raw distance matrices D 0 and D ,
the soft weight matrix, and L2 matrix generated from the radii vectors for the classifier. (c) The
classifier uses GELU activation and attention layers before applying a kernel layer and max pool
layer. Then, the output is flattened into a multilayer perceptron to compute the final classification β̂.
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random using the following scheme. For adversarial displace-
ment noise, we multiply the noise r.v. by a random coefficient,
i.e., ca · rΔ, where ca ∈ f0.035; 0.04; 0.05;…; 0.1g is chosen
uniformly. The tear coefficient w ∈ f0.01; 0.03; 0.05g is also
chosen uniformly. Tampering data are generated under harsher
conditions than the expected imaging conditions to show robust-
ness. Note that the tampered data are produced in the same man-
ner as training data, with an additional tampering step. Finally,
to test the imaging robustness, we randomly decide to rotate all
nanoparticles about the center by a uniformly chosen angle. We
also apply a constant translation in a randomly uniform direction
with translation coefficients in f0; 0.01;…; 0.12g. After apply-
ing the randomly chosen tampering configuration, all nanopar-
ticles within the center unit square are sorted in descending
order of radii, and their associated distance matrix and radii
are extracted for authentication. RAPTOR is trained to discrimi-
nate tampering under eight different noise levels, causing ran-
dom particle movements of up to 10% image width from a
pessimistic 5% natural degradation level. The adversarial filling
is performed under worst-scenario conditions in which filling
precisely matches perforation boundaries while matching initial
particle density. RAPTOR is trained in batches of 100 images,
on information from the 56 largest radii particle patterns in each
image, with a learning rate of 0.01. During training, RAPTOR is
compared to analytical methods: Hausdorff, Procrustes, and
AHD. For all analytical methods, the output distance metric
is fit to a logistic regression model for determining authenticity.

Table 1 shows the average accuracy and computation times
of RAPTOR alongside the analytical methods. RAPTOR has
the highest average accuracy, correctly detecting tampering in
97.6% of distance matrices under worst-case-scenario tamper-
ing assumptions and exceeding the performance of the
Hausdorff, Procrustes, and AHD methods by 40.6%, 37.3%,
and 6.4%, respectively. The AHD has the fastest computation
time in discrimination tasks and the highest accuracy among
the three analytical methods.

5 Conclusion
In this work, we demonstrate the robustness of a new RAPTOR
for the authentication of semiconductor devices, using random
pattern arrays of gold nanoparticles as distance-matrix-based
optical PUFs. The arrays are imaged using dark-field micros-
copy, and the positions and radii of individual particle patterns
are extracted using semantic segmentation and labeled cluster-
ing. We introduce difficult, yet realistic, adversarial tampering
features through tearing and substrate refilling, or natural devi-
ations through thermal noise with varying levels of substrate
heating. We demonstrate that RAPTOR achieves a tampering
accuracy of 97.6%, greatly outperforming the Hausdorff,
Procrustes, and AHD distance metrics by 40.6%, 37.3%, and
6.4%, respectively. These results indicate that RAPTOR signifi-
cantly outperforms known classical distance matrix metric
methods for authenticating PUFs built on the random arrays
of gold nanoparticles in accuracy and speed.

The ease of fabrication of gold nanoparticles, along with
rapid and robust tampering detection with RAPTOR, opens
up a large opportunity for the adoption of machine-learning-
based tampering detection schemes in the semiconductor indus-
try. However, more work is required in material development to
ensure that these methods are robust to unforeseen types of tam-
pering and natural degradation. Furthermore, hyperparameter
optimization and alternative deep networks may improve the

speed or accuracy of RAPTOR. While our scheme greatly im-
proves on the core bottlenecks found in these verification
schemes, future work could consider the computation of the
distance matrices directly without labeled clustering, or a full
end-to-end network that does not use semantic segmentation
as an intermediate step in the verification process.

6 Appendix A: PUFs and Data Set

6.1 Nanoparticle PUFs Fabrication

A diluted nanoparticle suspension (1 μL) of 75 nm Au (1 μL)
(nanoComposix, Inc.) in deionized (DI) nanopure water (2 mL)
is drop cast onto the precleaned silicon substrate, which is
prepared by standard solvent cleaning [placed substrate within
toluene, acetone, and iso-propyl alcohol (IPA) in three separate
steps, with 5 min sonication at each step] and piranha cleaning
[placed substrate in 3:1 volume ratio concentrated sulfuric acid
(H2SO4) and hydrogen peroxide (H2O2) for 15 min] in a con-
trolled cleanroom environment. Then, the sample is placed hori-
zontally to let the liquid evaporate naturally to leave the gold
nanoparticle pattern on the substrate.

6.2 Optical Imaging

The dark-field optical imaging system consists of a Keyence
VHX-6000 digital microscope with a high-brightness LED light
source, a 1/1.8-in. CMOS image sensor with virtual pixels 1600
(H) × 1200 (V) maximum, a ZS-200 RZ×200-×2000 objective
lens with a fine adjustment for working distance, and a color
LCD monitor with 16,770,000 colors and a 1000:1 contrast ra-
tio. The dark-field images are taken at 1500× magnification to
form the training data set for semantic segmentation and verify
the uniformity of the formed PUFs prior.

6.3 Synthetic Dark-Field Image Dataset Generation and
Segmentation

We built a data set of 10,000 images by augmenting 40 dark-
field images. Over 2400 nanoparticle bounding boxes are
extracted from 40 source images via connectivity-based clus-
tering of thresholded image segments. Augmented images are
generated by randomly placing nanoparticles from the set of
bounding boxes in uniformly distributed positions. To ensure
maximal variability in the augmented data set, we apply ran-
dom rotation, shear, and additive noise transformations to each
particle before placement. Due to the resolution of the dark-
field microscope, we only consider nanoparticle scattering
patterns with radii greater than 0.5 μm, as any smaller patterns
cannot be verified to be gold nanoparticles. Gaussian noise is
injected into the background to further mimic the original im-
ages, effectively reintroducing nanoparticles with average radii
less than 0.5 μm to the augmented data set.

A ResNet-based convolutional neural network and a
Gaussian filter are demonstrated to accurately segment 1000
dark-field images in only 27 and 33 ms, respectively. Each
of these methods achieves 99% segmentation accuracy, greatly
outperforming the classical methods and the ground truth unsu-
pervised segmentation network STEGO in speed with negligible
error in accuracy. (It takes 24 min for STEGO to segment 1000
images.) These segmented images are postprocessed for reliable
position and radii extraction using labeled clustering.
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6.4 Uniformity of PUFs

For a normalized uniform distribution, the expected dis-
tance between any two points is given exactly by42

1
15
½2þ ffiffiffi

2
p þ 5 logð1þ ffiffiffi

2
p � ≈ 0.521405. To test the uniformity

of the nanoparticle placements, we took 40 dark-field images of
randomly embedded nanoparticles on the substrate and mea-
sured the expected distance between any two nanoparticles to
be 0.521318, which has an error of 0.017%.

6.5 Parameters Choices

Our study provides a research-oriented example to demonstrate
a comprehensive feasibility study. Forming an optimal or adap-
tive threshold for the following parameters may require addi-
tional study with auxiliary training and analysis, especially
for industry-level systems.

• 2400 gold particles: The dark-field image data set must be
augmented to contain maximally varied nanoparticles re-
sembling a wide variety of real-life conditions. Also, for
noninteracting scatterers, when we have a sufficiently large
number of scatterers, we could apply statistical or average
properties reliably in statistical mechanics and condensed
matter physics.43 To this end, we sample from 2400 nano-
particles that were extracted from an original data set of 20
dark-field images. Extracted nanoparticles were addition-
ally transformed (rotations and shear transformations) to
maximize the diversity of segmentation shapes. We found
this level of variety to be sufficient to demonstrate the dex-
terity of tested segmentation techniques after experiments.

• 4% intensity brightness threshold: The original data set
nanoparticle extraction was manually verified. A 4%
brightness magnitude threshold was chosen for our spe-
cific imaging procedure. As stated above, an optimal or
adaptive threshold may require additional study. For
STEGO and attention CNN segmentation methods, bright-
ness thresholding is not used. For Gaussian blur-based seg-
mentation, a brightness threshold can be manually chosen
to match imaging conditions or optimized to match the
semantics of the former methods.

• Minimum pattern radius of 0.5 μm: The 0.5 μm minimal
radius was enforced for the original data set creation to
discern the particles from noise, since it was a typical gold
nanoparticle scattering pattern radii distribution observed
during the fabrication of samples and optical characteriza-
tion of dark-field images. Here, we assume that particles
are noninteracting. Otherwise, the scattering pattern may
reach substantially larger radii. During verification, this
minimal radius would be implicitly learned and optimized
by the chosen segmentation method.

• 79 particles per image (σ ¼ 20) and source dimensions
(1280 × 960 pixels at 0.069 μm∕pixel): Particle density
is a function of molecular interaction of gold nanoparticles
as well as other fabrication parameters and is chosen to
reflect densities seen in the original dark-field images (this
density is uniform and consistent across samples, as de-
scribed in Section 6.4). Image dimensions are arbitrary
with respect to segmentation and are chosen simply to re-
flect typical imaging parameters.

• 2 × 2 size substrate filled with a nanoparticle density of
100 per unit square: A 2 × 2 frame was filled with nano-
particles so that a randomly placed 1 × 1 canvas of

nanoparticles could be “imaged” out of a larger set.
This approach simulated framing imprecision in real-world
substrate imaging and allowed us to determine which
methods were robust against that translational framing
error. Nanoparticle density is relevant to tamper detection,
since the number of nanoparticles within a unit frame de-
termines the amount of information available to discrimi-
nation algorithms. We chose 100 to match dark-field image
nanoparticle density upon sampling of a 960 × 960 pixels
square subset from a 1280 × 960 pixels image.

• Natural degradation is introduced through a simple dis-
placement of nanoparticles by a factor of 0.05: To mimic
the extreme physical tampering behavior, we chose to
translate particles up to 5% image width to reflect a
worse-than-expected case scenario of PUF degradations.
However, this number could be changed depending on
the real-life packaging degradation measured for a particu-
lar packaging type.

7 Appendix B: Authentication Methods

7.1 RAPTOR Algorithmic Overview

Inputs:

• Pre-/posttamper nanoparticle distance matrices: D, D0
(k × k tensors)

• Pre-/posttamper nanoparticle radii: ρ, ρ0 (k × 1 vectors)

RAPTOR:

• L2 ← L2 normalization of Euclidean distances between
elements of particle radii vectors ρ, ρ0

• Soft weights ← Softmax of L2 matrix divided by a trained
parameter.

• Attention matrix: A ← k × k attention matrices for all
nanoparticles encoding predicted particle correspondence
between pre-/posttamper systems

• ResNet encoded particle correspondence: B ← trained
ResNet(A, D)

• ResNet classifier: residual/attention blocks and a fully
connected layer

Outputs:

• Likelihood of adversarial tampering during transit: B̂

7.2 Analytical Methods

We introduce statistical authentication methods using Hausdorff,
Procrustes, and AHD metrics and benchmark their performance
in authenticating distance matrices extracted from dark-field im-
ages. All learning is performed in the same Jupyter environment
on an NVIDIA T4 GPU with 16 GB of GPU RAM and an
Intel(R) Xeon(R) CPU running at 2.30 GHz with 12.7 GB of
system RAM. Each discrimination model is trained for 5000
epochs with a mini-batch of 100 random graph instances with
random tampering, as discussed in Sec. 4.2. Training graphs
are randomly generated at training time to prevent overfitting.
Our validation step measures the average accuracy across the
most recent 500 epochs. Reported accuracy is the maximum
accuracy achieved by each discrimination method during the
validation step.
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7.3 Alternative Deep-Learning Networks

In an attempt to compare against other deep-learning methods,
we used the same data fed into RAPTOR with different net-
works. We tried deep feed-forward multilayer perceptron net-
works, Siamese graph encoder networks, and deep residual
convolutional layers. However, these were not able to consis-
tently outperform the AHD, achieving accuracies below 70%.
We also attempted to use the AHD metric as a resource for these
networks, but these networks relied too heavily on the metric
and converged to the same performance with minimal improve-
ments below RAPTOR.
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