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1 Introduction
Risley prisms, composed of two prisms with a small apex
angle, are widely used for beam scanning or steering in op-
tical instruments1–3 and other developing systems.4–7 The
beam steering using three prisms is also investigated for the
same applications.7 The primary concern for analyses of Ris-
ley prisms is to calculate the deviations of the ray passing
through them, thereby obtaining the steering or scan patterns.
The basic properties of Risley prisms can be understood as
the combination of deviations by each prism,8, 9 but the rigor-
ous calculation is complicated because several refractions at
planar surfaces are involved. In previous works, several meth-
ods have been used such as the three-dimensional model,2

analytic formula,10 and approximate formula.11, 12 Recently,
approximate formulas up to third-order of the apex angle
were obtained by expanding analytic solution.13 But all the
analytic formulas and the approximate ones in those works
were obtained for a single Risley prism composed of two
prisms. In this paper, by representing the deviation of a ray
passing through a prism by the product of rotation matri-
ces, a generalized first-order formula was obtained. It can be
applied to the system of an arbitrary number of prisms or
combination of Risley prisms. Related errors were discussed
and some numerical calculations were made and compared
with the exact solutions using the refraction equation. The
scan patterns of a single Risley prism or a combination of
two Risley prisms were calculated using the generalized first-
order formula, and the results were in good agreement with
the exact solutions.

2 Refraction Equation for Cascaded
Planar Surfaces

Let si and s′
i be unit vectors in the direction of incident and

transmitted rays at i’th surface, and Ni = (sin αi cos φi, sin
αi sin φi, cos αi) is the unit normal vector at this surface (see
Fig. 1), then Snell’s law can be written as14

ni Ni × si = n′
i Ni × s′

i , (1)
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where ni and ni
′ are refractive indices of the mediums be-

fore and after the i’th surface. Performing vector prod-
uct with Ni on both sides of Eq. (1) and using the
vector identity: A × (B × C) = (A · C)B − (A · B)C, we
obtain

ni [(Ni · si )Ni − si ] = n′
i [(Ni · s′

i )Ni − s′
i ]. (2)

This gives

s′
i = γ ′

i Ni − ni

n′
i

(γi Ni − si ), (3)

where the following definitions are used:

γi ≡ Ni · si = cos �i , γ ′
i ≡ Ni · s′

i = cos �′
i , (4)

where �i is the angle between Ni and si and �i
′ is defined

similarly. From Snell’s law: n′
i sin �′

i = ni sin �i and Eq. (4),
we have

γ ′
i =

√
1 − sin2 �′

i = 1

n′
i

√
n′2

i − n2
i + n2

i γ
2
i . (5)

Equation (3), with coefficients given by Eq. (5), is the refrac-
tion equation at i’th surface. For successive calculations, we
put si + 1 = s′

i and ni + 1 = n′
i . By applying the refraction equa-

tion successively to each surface, we can obtain directions
of a ray passing through an arbitrary number of surfaces. We
notice that the components of the ray vector si = (sxi, syi,
szi) are direction cosines of the ray. The components of the
refracted ray vector are represented as s′

i = (s ′
xi , s ′

yi , s ′
zi ). Nor-

mal vectors and ray vectors for analysis of a typical Risley
prism are shown in Fig. 2. We define the rotation angle ϕi of
each prism to be zero when the apex is directed downward
along the x axis as shown in Fig. 2. When the second and
third surfaces are orthogonal to the z axis, the azimuth an-
gles of normal vectors N1 and N4 are related to the rotation
angles by

φ1 = ϕ1, φ4 = π + ϕ2. (6)
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Fig. 1 Notations related to the refraction equation.

For the configuration of Fig. 2 with ϕ2 = π , we have φ4
= 2π , which means N4 = N1 when the apex angles are same,
as expected. In Sec. 4, we will use Eqs. (3)–(5) for numerical
calculations.

Substituting Eq. (5) into Eq. (3) gives s′
i = nsi

+
√

1 − n2 + n2γ 2
i Ni − nγi Ni where n is defined by n

= ni/n′
i . The refraction equation in this form is used for

analysis of the Risley prisms,13 and also for analyses of the
plano convex or hyperboloidal focusing lenses.15, 16

3 Derivation of the Approximate Formula
By applying Eqs. (3)–(5) to two successive surfaces of a
prism with refractive index n, we obtain

s′
2 = (γ ′

2 − nγ2)N2 + (nγ ′
1 − γ1)N1 + s1, (7)

which means the vector s′
2 − s1 is in the plane generated

by N1 and N2. So, if N1 and N2 are in the x-z plane, then
the effect of the prism is the rotation of the ray vector
s1 about the y-axis, and it is clear that the rotation is
counter-clockwise when the rotation angle ϕ is zero. Let δ
be the deviation angle of the prism, then this rotation can be
represented in matrix form as follows17

Ry(δ) =
⎛
⎝ cos δ 0 sin δ

0 1 0

− sin δ 0 cos δ

⎞
⎠ . (8)

Fig. 2 Normal vectors and ray vectors for analysis of a Risley prism;
the rotation angles are ϕ1 = 0 and ϕ2 = π .

To find the transmitted ray vector for a prism rotated by ϕ
in azimuth, the components of the incident ray vector have to
be transformed to the coordinate system with ϕ = 0, i.e., the
coordinate system fixed to the prism, then rotated about the y
axis by δ and transformed to the original coordinate system.
This operation can be represented as follows:

Mδ(ϕ) = Rz(ϕ)Ry(δ)Rz(−ϕ). (9)

Here the matrix Rz(ϕ) for the rotation about the z axis is

Rz(ϕ) =
(

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

)
. (10)

The incident ray vector s1 = (s1x, s1y, s1z) and the trans-
mitted ray vector s = (sx, sy, sz) which is equal to s′

2 of Eq. (8)
are related by

sT = Mδ(ϕ)sT
1 , (11)

where the superscript T represents the transpose operation for
the components of vector. Substituting Eq. (8) into Eq. (9),
and using the series expansion about δ gives

Mδ(ϕ) = M (1)
δ (ϕ) − 1

2
δ2 M (2)

δ (ϕ) + O(δ3)I, (12)

where the matrices are defined by

M (1)
δ (ϕ) =

(
1 0 δ cos ϕ
0 1 δ sin ϕ

−δ cos ϕ −δ sin ϕ 1

)
, (13)

and

M (2)
δ (ϕ) =

⎛
⎝ cos2 ϕ cos ϕ sin ϕ 0

cos ϕ sin ϕ sin2 ϕ 0
0 0 1

⎞
⎠ , (14)

and I in Eq. (12) is the unit matrix.
When the incident ray is in the x-z plane, i.e., s1y = 0, the

deviation angle δ is given by18

δ = � − α + sin−1[sin α · (n2 − sin2 �)1/2 − sin � cos α].

(15)

When s1y is not zero, the deviation angle must be defined
to be the angle between the vectors projected on the x-z plane,
i.e., s1p ≡ (s1x, 0, s1z) and sp ≡ (sx, 0, sz). If the angle between
s1p and N1 is denoted by �p, and the angle between s1p and
s1 by �v as shown in Fig. 3, then the corresponding angles
�′

p and �′
v for the refracted ray s′

1 are given by Snell’s law
in the following form:19

nr sin �p cos �v = n′
r sin �′

p cos �′
v (16a)

nr sin �v = n′
r sin �′

v , (16b)

where nr and n′
r are refractive indices of the mediums before

and after the surface. By using Eq. (16a) with nr = 1 and n′
r= n, and following the same method for derivation of

Eq. (15), we obtain

δ = �p − α + sin−1[sin α · (n2ψ2

− sin2 �p)1/2 − sin �p cos α], (17)

where ψ = cos �′
v/ cos �v . Using Eq. (16b), we have ψ

≈ 1 + [(n2 − 1)/(2n2)]�2
v . When �v is zero, we have �p
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= � and Eq. (17) reduces to Eq. (15). By expanding Eq. (17)
up to the third-order terms, we obtain

δ = (n − 1)α + (ν/n)α�2
p − να2�p

+ (ν/n)α�2
v + (n/3)να3, (18)

where the constant ν is defined by ν = (1/2)(n2 − 1). The
first-order approximation of δ is δ(1) = (n − 1)α as known,
and Eq. (18) can be written as δ = δ(1) + ε(3), where ε(3) is
the third-order terms:

ε(3) = (ν/n)α�2
p −να2�p + (ν/n)α�2

v + (n/3)να3. (19)

Figure 4 shows the deviation angles calculated by
Eqs. (17) and (18). It is for the case of the apex angle α
= 0.2 rad (≈11.5 deg) and the refractive index n = 1.5, so
that δ(1) = 0.1 rad. It is seen that the errors of the first-order
approximation are in the range of 0.6 to 2.5 mrad at �v
= 0.0 rad, and 1.5 to 3.5 mrad at �v = 0.1 rad. The graph
of the third-order approximation is symmetric about �p

= 0.15 rad because ε(3) is the quadratic equation of �p and
it has the minimum value at �p = (1/2)nα = 0.15 rad which
is the approximate value of the minimum deviation angle.

By substituting Eqs. (13) and (14) into Eq. (12), the com-
ponents of s can be written as

sx = s1x + δ cos ϕ · s1z − (1/2)δ2(s1x cos2 β + s1y cos β sin β) + O(δ3)s1x ,

sy = s1y + δ sin ϕ · s1z − (1/2)δ2(s1x cos β sin β + s1y sin2 β) + O(δ3)s1y, (20)

sz = s1z − δ cos ϕ · s1x − δ sin ϕ · s1y − (1/2)δ2s1z + O(δ3)s1z .

Using δ = δ(1) + ε(3), and s1x ≈ s1y ≈ � and s1z ≈ 1 in the higher order terms, Eq. (20) becomes

sx = s1x + δ(1) cos ϕ · s1z + ε(3) cos ϕ · s1z + O((n − 1)2α2�),

sy = s1y + δ(1) sin ϕ · s1z + ε(3) cos ϕ · s1z + O((n − 1)2α2�), (21)

sz = s1z − δ(1) cos ϕ · s1x − δ(1) sin ϕ · s1y + O((n − 1)2α2).

Equation (21) means that if we use the first-order approx-
imation Mδ (ϕ), i.e.,

Mδ(ϕ) =
⎛
⎝ 1 0 δ(1) cos ϕ

0 1 δ(1) sin ϕ

−δ(1) cos ϕ −δ(1) sin ϕ 1

⎞
⎠ , (22)

then the errors in calculating sx and sy are determined by the
third-order terms of α and �, and the one for sz is determined

Fig. 3 Geometry for definitions of incident angles �p and �v for an
oblique ray vector s1. Here the vectors s1p and N1 are on the x-z
plane.

by the second-order term of α. The last term in the equation
of sx or sy in Eq. (21) depends on �, so that the errors do
not vanish even in the case of ε(3) = 0. For example, when n
= 1.5, α = 0.2 rad, and � = 0.1, it is (n − 1)2α2� = 1.0
mrad. The order of magnitude of the third terms including
ε(3) are estimated by assuming ϕ = 0 rad and s1z = 1. Figure 4
shows that ε(3) ≈ 1.7 mrad when �p = �v = 0.1 rad, from
which the total error in calculation of sx or sy using the first-
order formula is estimated to be 2.7 mrad. When several
prisms are involved, the total error depends on the relative
orientations of the prisms, and the error analysis done here
will give only the order of magnitudes.

Hereafter, we will use Eq. (22) for calculations of ray
vectors, and also use δ = δ(1) by dropping the upper in-
dex. To investigate the scan patterns, only sx and sy are
needed, so that the errors of our first-order formula are of
third-order.

For analysis of a Risley prism, let the deviation angle of
the first prism be δ1, and the one of the second prism be δ2,
and the rotation angle of each prism be ϕ1 and ϕ2. Since
Mδ(ϕ) in Eq. (22) is independent of incident ray vectors, the
transmitted ray vector s can be obtained from the following
equation:

sT = Mδ2 (ϕ2)Mδ1 (ϕ1)sT
1 ≡ M̄sT

1 . (23)

Substituting Eq. (22) into (23) and keeping the terms of
the first-order with respect to δ1 or δ2, we have
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M̄ =
⎛
⎝ 1 0 δ1 cos ϕ1 + δ2 cos ϕ2

0 1 δ1 sin ϕ1 + δ2 sin ϕ2

−δ1 cos ϕ1 − δ2 cos ϕ2 −δ1 sin ϕ1 − δ2 sin ϕ2 1

⎞
⎠ . (24)

Using Eq. (23) gives

sx = sx1 + (δ1 cos ϕ1 + δ2 cos ϕ2)sz1,

sy = sy1 + (δ1 sin ϕ1 + δ2 sin ϕ2)sz1,
(25)

sz = −(δ1 cos ϕ1 + δ2 cos ϕ2)sx1

−(δ1 sin ϕ1 + δ2 sin ϕ2)sy1 + sz1.

Equation (25) is the first-order formula for the beam de-
viation of an arbitrary incident ray s1. There is no restriction
on the incident ray s1 in Eq. (25), so that it can be applied to
the axial ray or oblique rays. When the incident ray is axial;
s1 = (0, 0, 1), Eq. (25) gives

sx = δ1 cos ϕ1 + δ2 cos ϕ2,

sy = δ1 sin ϕ1 + δ2 sin ϕ2, (26)

sz = 1 .

Equation (26) has been used for analyses of scan patterns
of Risley prisms.8, 9, 12

When δ2 = δ1, ϕ1 = 0, and ϕ2 = ϕ′, Eq. (26) gives

sx = δ1(1 + cos ϕ′), sy = δ1 sin ϕ′, sz = 1. (27)

A formula equivalent to Eq. (27) can be obtained by using
the polar angle θ and the azimuth angle χ of the ray vector
s = (sx, sy, sz). Since sin2θ = sx

2 + sy
2 and sin2θ ≈ θ 2,

Eq. (27) gives

θ ≈
√

2δ2
1(1 + cos ϕ′) = 2δ1 cos

ϕ′

2
, (28)

and since tanχ = sy / sx, it gives

tan χ = sin ϕ′

1 + cos ϕ′ = tan
ϕ′

2
. (29)

Equations (28) and (29) were obtained directly by the
vector-summation of the deviations.8
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Fig. 4 Deviation angles of a single prism: α = 0.2 rad, n = 1.5.

It is straightforward to generalize Eq. (25) to the formula
for a system composed of arbitrary number of prisms, and
the result is

sx = sx1 +
(

N∑
i=1

δi cos ϕi

)
sz1,

sy = sy1 +
(

N∑
i=1

δi sin ϕi

)
sz1,

(30)

sz = −
(

N∑
i=1

δi cos ϕi

)
sx1

−
(

N∑
i=1

δi sin ϕi

)
sy1 + sz1 ,

where N is the number of prisms, and δi is the deviation
angle, and ϕi is the rotation angle for the i’th prism.

4 Numerical Calculations for Sample Cases
To obtain the scan patterns of a Risley prism, we put the
rotational frequencies of the prisms to be f1 and f2 each so
that the angles of rotations are

ϕ1(t) = ϕ
(i)
1 + 2π f1t, ϕ2(t) = ϕ

(i)
2 + 2π f2t, (31)

with time t and initial angles ϕ
(i)
1 and ϕ

(i)
2 . The scan patterns

depend on the initial angles of rotations and the following
ratios:11

k ≡ δ2/δ1, M ≡ f2/ f1. (32)

For the first case, we consider the configuration where the
second prism rotates in the opposite direction with the same
frequency, i.e., f2 = − f1, and the initial angles are ϕ

(i)
1 = 0

and ϕ
(i)
2 = π so that we have ϕ2(t) = π − ϕ1(t). Let the devi-

ation angles be the same; δ2 = δ1. This case corresponds to k
= 1 and M = − 1. From Eq. (26), we obtain the approximate
solutions for the components of the transmitted ray vector as
follows:

sx = 0, sy = 2δ1 sin(2π f1t), sz = 1, (33)

which means the linear scan along the y axis. In this paper,
all the refractive indices are assumed to be n = 1.5, and
the apex angle of prism 1 to be α1 = 0.2 rad, so that δ1
= (n − 1)α1 = 0.1 rad. The exact numerical calculation using
Eqs. (3)–(5) can be performed straightforwardly, where the
azimuth angles of normal vectors are determined by Eq. (6).
Figure 5 shows the scan patterns generated during one period
of rotation for prism 1. The maximum error in the x direction
is about 1.6 mrad at sy ≈ 0.17, which is comparable with
the total error (=2.7 mrad) obtained for a single prism in
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Fig. 5 Scan patterns of Risley prism : ϕ1
(i) = 0, ϕ2

(i) = π , M = − 1,
k = 1.

Sec. 3. The bow tie pattern of the exact solution is one of the
typical properties of the Risley prisms with the same apex
angle.20

Figure 6 is an example of scan patterns obtained by the
approximate calculations using Eq. (25) and the exact numer-
ical calculations using Eqs. (3)–(5), in which we consider the
axial and the oblique incident rays which are specified by s1
= (sinθ , 0, cosθ ) with the polar angles θ = 0.0 and 0.1
rad each. The case of θ = 0.0 rad is comparable to the one
given in Ref. 11. It can be seen that the error of the approx-
imate solution for θ = 0.0 rad at sx = 0.0 and sy = 0.17 is
approximately 2.8 mrad in the y direction, and the one for
θ = 0.1 rad is approximately 4.2 mrad in the x direction. The
errors in the x direction are approximately zero in both cases.
The approximate solutions are in reasonably good agreement
with the exact solutions even though the errors increase with
the polar angle θ .

When two Risley prisms are combined as in Fig. 7, it can
generate more general two-dimensional scan patterns. As an
example, we use the configuration in which the second Risley
prism is rotated by 90 deg, and the apex angles of prisms in

-0.2 -0.1 0.0 0.1 0.2
-0.2

-0.1

0.0

0.1

0.2

θ = 0.1θ = 0.0

M= -1, k= 0.7

s
y

s
x

 Exact
 Approx.

Fig. 6 Scan patterns of Risley prism for axial (θ = 0) and oblique
(θ = 0.1 rad) incident rays: ϕ

(i)
1 = 0, ϕ

(i)
2 = π , M = − 1, k = 0.7.

Fig. 7 Geometry of a combination of two Risley prisms.

each Risley prism are the same. Here the directions of rotation
in each Risley prism are opposite. Let the deviation angles of
the prisms in each Risley prism be δA and δB, and the rotation
angle be ϕA and ϕB. Therefore we put δ1 = δ2 = δA, ϕ1
= ϕA, ϕ2 = π − ϕA for Risley prism A. Using Eq. (24), we
obtain

M̄A(ϕA) =
⎛
⎝ 1 0 0

0 1 2δA sin ϕA

0 −2δA sin ϕA 1

⎞
⎠ . (34)

For Risley prism B, we put δ1 = δ2 = δB, ϕ1 = (π /2)
+ ϕB, ϕ2 = − (π /2) − ϕB, so that we obtain

M̄B(ϕB) =
⎛
⎝ 1 0 −2δB cos ϕB

0 1 0
2δB cos ϕB 0 1

⎞
⎠ . (35)

The transmitted ray vector s = (sx, sy, sz), when
the incident ray vector is s1, is given by the following
equation:

sT = MδB (ϕB)MδA (ϕA)sT
1 . (36)

When the incident ray is axial, substituting Eqs. (34) and
(35) into Eq. (36) gives

sx = −2δB sin ϕB, sy = 2δA sin ϕA, sz = 1. (37)

To obtain a scan pattern, we put the rotational frequencies
to be fA and fB for each Risley prism so that

ϕA(t) = 2π f At, ϕB(t) = 2π fBt. (38)

The ratios similar to the ones in Eq. (32) can be defined
by

k ≡ δB/δA, M ≡ fB/ f A. (39)

For exact calculation using the refraction equation, we need
to specify the rotation angles of each prism. Let ϕA1 and ϕA2
be rotation angles of prisms in Risley prism A (referring to
Fig. 7), and ϕB1 and ϕB2 be the ones of prisms in Risley prism
B, then we have

ϕA1(t) = 2π f At, ϕA2(t) = π − 2π f At,

ϕB1(t) = π

2
+ 2π fBt, (40)

ϕB2(t) = −π

2
− 2π fBt .

Using Eqs. (6) and (40), we can determine all the components
of the normal vectors, and perform exact calculations using
Eqs. (3)–(5).
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Fig. 8 Scan patterns of a combination of Risley prisms: ϕ
(i)
A1 = 0, ϕ

(i)
A2 = π , ϕ

(i)
B1 = π /2, ϕ

(i)
B2 = −π /2. (a) M = 6, k = 1, (b) M = 7, k = 1.

Figure 8 shows the scan patterns generated during one
period of rotation of the prism A1 for the two cases of M
= 6, k = 1, and M = 7, k = 1.

It can be seen that the errors of the approximate solutions
for M = 6 are about 10 mrad in the x direction and 7 mrad
in the y direction at the point of sx = 0.2 and sy = 0.2. The
errors of the same level of magnitudes are obtained for the
case of M = 7. We can notice that the approximate solutions

have reasonable accuracies for describing the scan patterns.
It is also observed that the scan patterns obtained from this
configuration are composed of closed curves when M is even.

5 Conclusion
A first-order formula for calculations of the direction cosines
of the rays refracted by Risley prisms was derived. The
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formula was obtained by representing the deviation of the
ray passing through a prism by the product of rotation
matrices, and using the series expansion of the product. It
can be applied to the system of arbitrary number of prisms
or combination of Risley prisms. It permits the calculations
of the direction cosines of the transmitted ray vectors for
arbitrary incident rays such as oblique rays. The errors
associated with the first-order formula were analyzed by
using the series expansion of the expression for the deviation
angle. It showed that the errors are of third-order of the
prism’s apex angle and the incidence angle. The numerical
estimation using examples showed that the total error for a
single prism is reasonably small, approximately 2.7 mrad
for incident angles of 0.2 rad. The generalized first-order
formula was applied to the numerical calculations of the
scan patterns of a single Risley prism and a combination of
two Risley prisms, and the results were compared with the
exact solutions using the formulation based on the refraction
equations. The maximum error in the scan patterns of the
single Risley prism in the example was 2.8 mrad for axial
incident rays and 4.2 mrad for oblique rays with the polar
angle of 0.1 rad. The maximum error in the scan patterns of
the combination of two Risley prisms in the example were
about 10 mrad in the x direction at the point of sx = 0.2 and
sy = 0.2. Even though the errors tend to increase with the
number of prisms, the first-order approximate formula will
be useful for analyzing the scan patterns of Risley prisms.
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