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Abstract. The main curative therapy for patients with
nonsmall cell lung cancer is surgery. Despite this, the sur-
vival rate is only 50%, therefore it is important to more
efficiently diagnose and predict prognosis for lung cancer
patients. Raman spectroscopy is useful in the diagnosis of
malignant and premalignant lesions. The aim of this study
is to investigate the ability of Raman microscopy to diag-
nose lung cancer from surgically resected tissue sections,
and predict the prognosis of these patients. Tumor tissue
sections from curative resections are mapped by Raman
microscopy and the spectra analzsed using multivariate
techniques. Spectra from the tumor samples are also com-
pared with their outcome data to define their prognostic
significance. Using principal component analysis and ran-
dom forest classification, Raman microscopy differentiates
malignant from normal lung tissue. Principal component
analysis of 34 tumor spectra predicts early postoperative
cancer recurrence with a sensitivity of 73% and specificity
of 74%. Spectral analysis reveals elevated porphyrin levels
in the normal samples and more DNA in the tumor
samples. Raman microscopy can be a useful technique for
the diagnosis and prognosis of lung cancer patients receiv-
ing surgery, and for elucidating the biochemical properties
of lung tumors. © 2010 Society of Photo-Optical Instrumentation Engi-
neers. �DOI: 10.1117/1.3323088�
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1 Introduction
Lung cancer is still the most common cancer-related death
globally, with an estimated 1.3 million new cases diagnosed
annually.1 80% of cases are histologically classified as nons-
mall cell lung cancer, for which surgery is the main curative
treatment. Despite this, 50% of these patients suffer recur-
rence within 5 years. A number of prognostic markers that
predict postoperative recurrence have been suggested, but

1083-3668/2010/15�2�/026015/8/$25.00 © 2010 SPIE
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one have been clinically validated. Several optical tech-
iques are being developed for the diagnosis of lung cancer,
he most prominent being autofluorescence.2,3 Raman spec-
roscopy is a well-established analytical technique where the
tructure and binding of molecules can be studied by exami-
ation of their light scattering properties.4–6 Recently, the sen-
itivity of Raman spectrometers has improved as a result of
everal technical advances, allowing the acquisition of high
uality Raman spectra from tissue sections and cells.5 Be-
ause no staining or tissue preparation is required, and Raman
tudies can be conducted under nondestructive conditions, the
echnique can be applied in vivo.6,7 The method has been ap-
lied to a number of biomedical applications, and several
olid organ cancers have been successfully analyzed using
aman spectroscopy.8–12 Two studies have recently demon-

trated that Raman spectroscopy can differentiate malignant
rom normal lung tissue.13,14 Huang et al. used an excitation
avelength of 785 nm to distinguish tumor from normal
ronchial tissue, with a sensitivity and specificity of 94 and
2%, using only the ratio of two distinctive features in the
aman spectrum 1445:1655 cm−1. Yamazaki et al. used a
igher wavelength of 1064 nm to distinguish tumor from nor-
al parenchymal tissue, and obtained a sensitivity of 91% and
specificity of 97%. However, the conventional Raman spec-

roscopy approach employed in these studies analyzed contri-
utions from a heterogenous tissue involving a complicated
ombination of cell types and stromal tissues, all with differ-
nt biochemical profiles. This issue has been addressed in a
tudy examining normal bronchial tissue sections using Ra-
an microscopy, in which conventional Raman spectroscopy

s combined with optical microscopy to achieve spatial as
ell as spectral resolution.15 Several chemical differences
ere identified between the individual layers, such as epithe-

ium and supporting stromal layers.
Our aim in the present study has been to investigate

hether Raman microscopy can: 1. distinguish lung cancer
ells from normal bronchial epithelium, 2. explore its poten-
ial for prognosis in patients undergoing lung cancer surgery,
nd 3. investigate biochemical differences between normal
nd malignant bronchial cells.

Materials and Methods
.1 Sample Preparation

3 patients undergoing lung cancer resection were recruited
or this study. A 1�0.5�0.5 cm3 sample of tumor tissue and
ormal lung tissue, distant from the tumor, were obtained
rom each patient. Of the 43 normal lung samples, 28 con-
ained identifiable normal bronchial epithelium. Of the 43 tu-

or specimens, 34 were suitable for analysis: four were not
onsmall cell cancer, two tumors were too small for residual
issue to be collected, and three tumor tissues suffered burn
amage in the analyzing laser beam. Using a cryotome stage,
he sections were mounted in Tissue Tek®, and frozen tissue
ections measuring 5 �m in thickness were prepared. The
rst section was placed on a glass microscope slide and
tained with hematoxylin and eosin. The next consecutive sec-
ion was placed onto a quartz microscope slide and then im-

ersed for 5 min in 99% ethanol to preserve the tissue. This
ournal of Biomedical Optics 026015-
second unstained section was then analyzed by Raman mi-
croscopy using the first section as a “stained map.” These
maps were also assessed by a pathologist and given a diagno-
sis of normal or nonsmall cell lung carcinoma. All the patients
gave informed consent, and the study had the approval of the
Queen’s University Belfast Research Ethics Committee.

2.2 Confocal Raman Microscopy
Raman spectra were recorded using a Horiba Jobin Yvon
LabRam HR800 Raman microscope �Horiba, Limited, Kyoto,
Japan�. Light from a 785-nm diode laser was focused on the
sample with a 100� objective �numerical aperture is 0.9� and
an excitation power of 20 mW at the sample. A 785-nm notch
filter was used to reject elastic scattering from the incident
light and a 300-groove mm−1 diffraction grating was used to
provide a spectral resolution of 6 cm−1 over the spectral range
from 600 to 1800 cm−1 on a Peltier-cooled charge-coupled
device �CCD� detector �Andor Technology, Belfast, Ireland,
model DU420�. Spectra were acquired and processed using
Labspec software �Jobin-Yvon, Villeneuve d’Ascq, France�.

Using the stained section of normal bronchial tissue for
guidance, two normal areas of bronchial epithelium were
identified on the unstained section and scanned with the
Raman microscope. These areas measured on average
30�30 �m, included five to ten cells, and were sampled
over 16 points using a 4�4 square grid. The integration time
for each point was four minutes. Mean spectra were calcu-
lated from these areas; therefore for each patient, two spectra
were obtained for normal tissue and two for malignant tissue.

2.3 Spectral Preprocessing and Analysis
Residual cosmic spikes were removed from each spectrum
and a mean spectrum was calculated using the 16 spectra from
the 4�4 grid. The position of the phenylalanine peak was
used to check for any x-axis shift in recorded spectra from
sample to sample. Raman scattering from a clean quartz slide
was measured in a similar fashion to the tissue and was sub-
tracted from each of the mean spectra to reduce the influence
of quartz in the spectra. Background noise and fluorescence
were removed by multiple linear baseline subtraction; nine
points over regions known to have no major Raman activity
were manually chosen to fit the background, and this baseline
was subtracted from the spectra. The spectra were then nor-
malized by dividing by the total area under the curve.

Mean normal and malignant spectra were compared using
a Student’s t-test. The ability of Raman microscopy to cor-
rectly classify normal and malignant lung tissue was tested
using principal component analysis �PCA�16 with a leave-one-
out cross-validation �LOOCV�, and by Random forest
classification17 with training and test sets. The ability of
Raman microscopy to predict postoperative recurrence in 34
patients was also analyzed by principal component analysis
with leave-one-out cross-validation. A survival analysis for
these patients was performed using the scores from the recur-
rence analysis and pathological parameters �log-rank test�.
These statistical analyses were performed by Unscrambler
�Camo, Oslo, Norway�, SPSS �SPSS Incorporated, Chicago,
Illinois�, and the R software �R Foundation for Statistical
Computing, Vienna, Austria�.
March/April 2010 � Vol. 15�2�2
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2.4 Reference Spectra

To assist with spectral identification of the loadings from the
PCA, spectra from several reference materials were recorded
with the Raman microscope using 785-nm excitation. Horse
heart cytochrome C �C-7150� was purchased from Sigma
�Saint Louis, Missouri�. Human DNA was isolated from the
whole blood of a control subject. Genomic DNA was purified
using “salting-out” method with a Gentra Puregene purifica-
tion kit.

3 Results

Patient characteristics for the 34 patients in the prognostic
analysis are shown in Table 1. There were 15 �44%� cases of
early postoperative recurrence, defined on the basis of radio-
logical or pathological evidence of local or distant recurrence
within 12 months of surgical resection. Recurrence only in
the mediastinal nodes was noted in three patients. The remain-
ing recurrences were metastatic.

30 µm

(b)

(d)

th hematoxylin and eosin; the box in �b� illustrates the area of tissue
alignant sample �10� � stained with hematoxylin and eosin; and �d�
Table 1 Patient characteristics.

Patients
with early
recurrence

Patients
without
early

recurrence

ean age
range�

63 �49 to 79� 66 �51 to 78�

-stage status

1 8 11

2 4 6

3 3 2 p=0.45

djuvant
hemotherapy

7/15 �47%� 5/19 �26%� p=0.29

ymphovascular
nvasion

8/15 �53%� 7/19 �37%� p=0.49
(a)

(c)

ig. 1 Light microscopy images of normal samples �63� �: �a� is stained wi
nalyzed with Raman microscopy; �c� shows light microscopy images of a m
hows the consecutive unstained section.
March/April 2010 � Vol. 15�2�3
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Light microscopy images of two sequential normal tissue
ections are shown in Figs. 1�a� �stained with hematoxylin
nd eosin� and 1�b� �not stained�. The box within Fig. 1�b�
llustrates the area analyzed by the Raman microscope. Fig-
res 1�c� and 1�d� show a malignant tissue section at a lower
agnification. Again, these are consecutive sections and only
ig. 1�c� has been stained. The histopathological diagnosis
as confirmed on the stained section, which was morphologi-

ally indistinguishable from the section used for Raman
nalysis. These figures illustrate that the stained sections can
e used as a guidance map for the unstained sections that
ere analyzed by Raman microscopy. The figure also illus-

rates how a small group of individual cells can be targeted
ith the microscope.

There are many subtle differences in intensities between
he two main spectra but the main difference identified was in
he intensity and width of the amide I band at 1662 cm−1

Fig. 2�, which is consistent with reports in previous papers on
oth lung cancer and other solid organ tumors.8–13 However, it
hould be pointed out that there was no significant difference
etween the mean intensities at 1662 cm−1 when compared
sing an independent samples t-test �p=0.894�.

In the principal component analysis of the 124 normal and
alignant spectra recorded in the present study, 60% of varia-

ion in the spectra was described by the first two principal
omponents. These two components also most efficiently
lassified normal and tumor spectra, for which a scatter plot is
hown in Fig. 3. The dashed, diagonal line separates these
core plots into normal and malignant groups. Thus, it was
ound that Raman microscopy can differentiate malignant
rom normal lung tissue with a sensitivity of 84% and a speci-
city of 61% �positive predictive value 72%, negative predic-

ive value 76%�.
Principal component loadings are a graphical representa-

ion of the mathematical function that PCA uses to explain the
eparation between normal and tumor spectra. Their interpre-

Raman Shift (cm-1)
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Malignant
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ig. 2 Mean spectra from normal and malignant samples �after
reprocessing�.
ournal of Biomedical Optics 026015-
tation is useful because peaks in the loading correspond with
Raman peak positions, recorded in wavenumbers �cm−1�, for
chemical species that are more abundant in the tumor
samples, and troughs correspond with entities more abundant
in the normal samples. To provide some pointers as to the
possible origin of the differences between malignant and nor-
mal tissue, Fig. 4�a� displays the loading from principal com-
ponent 1, overlaid by the spectrum recorded for cytochrome
C. While a number of the troughs in the loading coincide with
some major cytochrome C peaks, including features at 1585,
1352, and 1240 cm−1, there are also some notable absences,
particularly a prominent feature at 1450 cm−1. The favorable
correlation analysis in Fig. 4�b� �Spearman rho correlation
coefficient=−0.65, p�0.001� may suggest that excess por-
phyrin within the normal samples could explain the majority
of the variation between the normal and malignant samples.
Nevertheless, the peak discrepancies noted preclude this as a
definitive conclusion.

The second principal component was analyzed in a similar
fashion to PC 1. The loading from the second principal com-
ponent, trace �a�, is shown in Fig. 4�c� and compared with a
reference Raman spectrum of DNA, trace �b�. While some of
the major bands in the DNA again exhibit a satisfactory cor-
relation with peaks in the loading �Fig. 4�d�, Spearman rho
coefficient=0.60, p�0.001�, some DNA features are absent
in the loading plot �see Sec. 4�.18

Being a linear multivariate technique, principal component
analysis is limited to a linear separation of the data, and for
this reason the use of a nonlinear classification technique was
explored. Random forest classification17 is an augmented form
of decision tree analysis, where many decision tree models are
constructed by randomly selecting subgroups of samples from
a training set to construct models for each subgroup. Each
decision tree then classifies each sample from an independent
test set, and the final classification for this sample is decided
by a weighted “majority vote” from all these decision trees. A
randomly chosen training set was used to train the software to
classify normal and malignant spectra. 40 independent spectra
were randomly chosen to test this classification model. Ran-
dom forest classification, with 28 variables tried at each split,
was constructed on the training set and applied to the test set,
resulting in a test set sensitivity of 90% �2 /20 tumor samples
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Fig. 3 Scatter plot of scores from principal component scores 1 and 2,
illustrating the PCA classification of normal and malignant tissue
samples.
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isclassified� and specificity of 75% �5 /20 normal samples
isclassified�. The accuracy was unaffected by the number of

ariables tried �for values between 20 and 60�.
Because Raman microscopy provides a unique chemical

ignature of tumor tissue, it provides a window into the
hemical make-up of that tissue and may offer an insight into
ow aggressive a tumor is. Raman spectra from the tumor
amples of 34 patients, for which there was at least
2 months postoperative follow-up, were analyzed using
rincipal component analysis with leave-one-out cross-
alidation. The patients were divided into two groups depend-
ng on whether their cancer recurred within twelve months
ostoperatively. From this PCA, the first and third principal
omponent scores separated the two groups. A scatter plot of
hese principal components is shown in Fig. 5. The diagonal
ine illustrates how these principal component scores can de-
ect recurrence with a sensitivity of 73% �11 /15� and a speci-
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Fig. 5 Scatter plot of principal components 1 and 3 from the principal
component analysis of patient recurrence spectra.
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city of 74% �14 /19�, �positive predictive value 69% and
egative predictive value 78%�.

The tumor spectra were separated into two groups depend-
ng on whether the score from principal component 3 in the
ecurrence analysis was above or below its median. The over-
ll median follow-up was 17 months. Using the log-rank test,
here was no significant difference in survival between these
wo groups, although there was a strong trend �p=0.086�.

Discussion
e have shown that Raman microscopy of normal and malig-

ant tissue sections obtained from lung cancer resections can
istinguish malignant and normal bronchial tissue and predict
arly postoperative recurrence in this group of patients.

Rather than relying on the use of individual spectral peaks
o distinguish groups of tissue, multivariate data reduction
echniques have been employed to include information from
he whole spectrum to classify spectra. Principal component
nalysis �PCA� is a data reduction technique that summarizes
he variation between the spectra by reducing it into a small
umber of principal component scores, while retaining the
ajority of information contained within the spectra. These

omponents describe consistent differences between the spec-
ra, allowing separation of the spectra into groups based on
imilarities or disparities in the spectral characteristics. This
lassification can be tested using a leave-one-out cross-
alidation, where the software develops a model based on all
he spectra except one, and then tests the model on that spec-
rum, and repeats this process on all the spectra.

Principal component analysis of normal and malignant
pectra demonstrated that Raman microscopy can distinguish
ormal and malignant lung tissue with a sensitivity of 84%
nd a specificity of 61%. Although the use of a nonlinear
andom forest classification technique improved the accuracy,
he specificity was still suboptimal at 75%. This specificity,
hich is a function of the ability of a test procedure to classify
ormal samples, can be explained by the heterogeneous na-
ure of the normal bronchial epithelium that was examined.
lthough all the normal samples were confirmed as “normal”
y a pathologist, there were significant differences between
hese samples. It is likely that this morphological heterogene-
ty is also reflected in the cellular biochemistry and thus in the
aman spectra. The normal samples used in this study were

aken from the same lung as the resected tumor and have
ertainly undergone the same inhaled insults as the tumor.
hey may also have undergone, to a varying degree, malig-
ancy associated changes.19,20 It is also well established that
obacco smoking is a “field” effect, making the chemical
nalysis from this heterogeneous field challenging, although
linically relevant. As pointed out earlier, our classification
ccuracy is less than that reported in the two previous studies
f lung cancer using Raman spectroscopy in the absence of
he higher spatial resolution possible with a microscope.13,14

ome Raman scattering in the normal samples from these two
revious studies will certainly have originated from stromal
nd supporting tissues, which may have unduly influenced the
iscrimination in these two studies. In our present study, only
aman scattering from normal and malignant cells was used,
hich can make the discrimination more challenging. It

hould be noted that in one of the earlier studies referred to,
ournal of Biomedical Optics 026015-
only two Raman spectral peaks �1450 and 1662 cm−1� were
used to classify the samples. In our study, t-test analysis
showed that there was no significant difference between the
normal and tumor peak intensities at 1662 cm−1, and multi-
variate analysis was required to exploit the subtle differences
between the spectra, so as to classify the samples.

Two previous studies have shown that Raman spectros-
copy can identify and grade prostatic adenocarcinoma tissue
sections using the Gleason score as a gold standard, and iden-
tify chemoresistance in cell lines.9,21 However, this is the first
study to suggest that Raman spectroscopy can provide prog-
nostic information about lung cancer patients using clinical
samples. A number of other methods have been used to pre-
dict prognosis in lung cancer, and a vast array of prognostic
markers have been suggested, possibly reflecting the molecu-
lar heterogeneity of lung tumors.22 Recently, a number of
studies have used gene expression signatures to divide
patients undergoing surgical resection into a high- and low-
risk group, depending on survival, and predict postoperative

recurrence.23–27 Potti et al. applied a lung metagene model to
independent cohorts from two multicenter studies and pre-
dicted recurrence with an accuracy of 72 and 79%, respec-
tively. Larsen et al.28 described a 54-gene signature that pre-
dicted recurrence in two independent cohorts with an
accuracy of 72 and 67%. Our overall accuracy of 73% com-
pares favorably with these studies. More recently, two groups
have used a mass spectrometry proteomic approach to predict
response to targeted chemotherapy and postoperative
recurrence.29 Raman spectroscopy inherently has two main
advantages over other current technologies. Since many mo-
lecular and macromolecular species, including DNA, proteins
and lipids, contribute to the Raman spectrum, the technique
has the potential to tease out the molecular heterogeneity of
lung tumors. Also, because Raman spectroscopy can be car-
ried out under nondestructive conditions, there is the potential
to obtain Raman spectra from lung tumors in vivo via bron-
choscopy and thus obtain a diagnosis and prognosis simulta-
neously and noninvasively. Although this technology is still in
development, in vivo fiber optic probes have been studied in
lung cancer and other organ systems.6,7,30

The analysis of the loading from the first PCA suggested
that the main chemical difference between normal and malig-
nant lung tissue may be attributable to a contribution of por-
phyrin to the spectrum. Although cytochrome C was used as
the reference material, its Raman spectrum is virtually identi-
cal to that of the other cytochromes, because Raman scatter-
ing originates from the porphyrin ring structure of the heme
component of the molecule. There are a number of intracel-
lular cytochromes that this may represent, including cyto-
chrome C, which is a key component in apoptosis.31,32 Eva-
sion of this programmed cell death is characteristic of
carcinogenesis. The tentative conclusion reached earlier �Sec.
3�—that cytochrome C may be more abundant in the normal
bronchial epithelium than in the malignant lung cells—would
be consistent with this.33 A number of other cytochromes have
been found in higher levels in bronchial epithelial cells when
compared with lung cancer cells, including cytochrome oxi-
dase, cytochrome P450, and CYP1A1.34–37 However, if there
is indeed an excess of cytochrome �a cytoplasmic protein� in
the normal cells, this could simply represent an increase in the
March/April 2010 � Vol. 15�2�6



c
m
t

t
a
T
f
c
a

o
s
u
c
s

n
t
l
l

A
R
S
B
�
o
t
w

R

1

Magee et al.: Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer

J

ytoplasm:nucleus ratio seen in normal tissue compared to
alignant tissue. This is clearly an area that will require fur-

her investigation.
The analysis of the loading from principal component 2 in

he first PCA suggested that this may be attributable to DNA,
lthough some DNA peaks were absent in the loading trace.
he conclusion though tentative would be consistent with the

act that DNA is more abundant in malignant tissue when
ompared to normal tissue because of the more active mitosis
nd cellular turnover.10,14,22

There is clearly scope for further refinement of the meth-
dology in future studies, such as increasing the number of
pots for laser analysis in each sample map. Additionally, the
se of fresh or thawed samples might have improved the ac-
uracy of the discrimination, but this was logistically impos-
ible in this current study.

In conclusion, Raman microscopy can differentiate malig-
ant lung tissue from normal bronchial epithelium, and has
he potential to predict early recurrence in patients undergoing
ung cancer resection. However, this should be tested in a
arger independent test set.
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