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Segmentation and classification of burn images by color
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Abstract. In this paper, a burn color image segmentation and classi-
fication system is proposed. The aim of the system is to separate burn
wounds from healthy skin, and to distinguish among the different
types of burns (burn depths). Digital color photographs are used as
inputs to the system. The system is based on color and texture infor-
mation, since these are the characteristics observed by physicians in
order to form a diagnosis. A perceptually uniform color space
(L* u* v* ) was used, since Euclidean distances calculated in this
space correspond to perceptual color differences. After the burn is
segmented, a set of color and texture features is calculated that serves
as the input to a Fuzzy-ARTMAP neural network. The neural network
classifies burns into three types of burn depths: superficial dermal,
deep dermal, and full thickness. Clinical effectiveness of the method
was demonstrated on 62 clinical burn wound images, yielding an
average classification success rate of 82%. © 2005 Society of Photo-Optical

Instrumentation Engineers. [DOI: 10.1117/1.1921227]
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1 Introduction
For a successful evolution of a burn injury it is essential to
initiate the correct first treatment.1 To choose an adequate one,
it is necessary to know the depth of the burn, and a correc
visual assessment of burn depth highly relies on specialize
dermatological expertise. As the cost of maintaining a burn
unit is very high, it would be desirable to have an automatic
system to give a first assessment in all the local medical cen
ters, where there is a lack of specialists.2,3 The World Health
Organization demands that, at least, there must be one bed
a burn unit for each 500 000 inhabitants. So, normally, one
burn unit covers a large geographic extension. If a burn pa
tient appears in a medical center without burn unit, a tele
phone communication is established between the local med
cal center and the closest hospital with burn unit, where the
nonexpert doctor describes subjectively the color, shape, an
other aspects considered important for burn characterization
The result in many cases is the application of an incorrect firs
treatment ~very important for a correct evolution of the
wound!, or unnecessary displacements of the patient, involv
ing high sanitary cost and psychological trauma for the patien
and family.

With the fast advances in technology, computer aided di
agnosis~CAD! systems are gaining widespread acceptance
However, nowadays, the research in the field of skin colo
images is developing slowly due to the difficulty of translat-
ing human color perception into objective rules, analyzable by
a computer. Generally speaking, one can find two main appli
cations about skin color image processing in the literature:4
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the assessment of the healing of skin wounds or ulcers,5–9 and
the diagnosis of pigmented skin lesions such
melanomas.10–15 The analysis of lesions involves more trad
tional image processing techniques such as edge detection
object identification, as well as an analysis of the color,
regularity, and shape of the segmented lesion. In wou
analysis, the analysis of the colors within the wound site
often more important than the detection of the wound bor
or the calculation of its area. Particularly, in the case of bu
depth determination, focusing on the shape of the burn
irrelevant for predicting its depth. The main characteristics
this purpose are color and texture information, as they are
features observed by physicians in order to give a diagno

Automatic burn wound diagnosis is still a largely une
plored field. In the related bibliography, one can find th
there is a tendency to investigate objective methods for de
mining the depth of the burn in order to reduce the subjec
ity and the high experience requirement that visual inspec
demands. Some research into the relationship between d
and superficial temperature16 has been developed. There a
also other works trying to evaluate burn depth by using th
mographic images,17 infrared and ultraviolet images,18 radio-
active isotopes19 and laser Doppler flux measurements20

On the other hand, there is hardly bibliography about b
depth determination by visual image analysis and process
Although some research groups apply segmentation a
rithms to burn images,5,7,8,21,22they try to give an assessmen
of the healing of the burn, so they focused on calculat
differences among several aspects such as area, shape
appearance in order to give a prediction of the healing evo
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Acha et al.: Segmentation and classification . . .
Fig. 1 Different appearances that could present a burn: (a) superficial dermal (blisters), (b) superficial dermal (red), (c) deep dermal, (d) full thickness
(beige), (e) full thickness (brown).

Fig. 4 Examples of the different 49349 burn images used to train the classifier: (a) superficial dermal (blisters), (b) superficial dermal (red), (c) deep
dermal, (d) full thickness (beige), (e) full thickness (brown).
034014-2Journal of Biomedical Optics May/June 2005 d Vol. 10(3)
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Acha et al.: Segmentation and classification . . .
tion of the wound. To our knowledge, only the group of Afro-
mowitz et al.21,22 tries to give a diagnosis of the burn depth.
From this assessment, they estimate the number of days th
the wound will take to heal. They measure the optic reflectiv-
ity in the red, green, and infrared bands, hypothesizing that i
is highly correlated with burn healing time, and they form a
false color image that indicates the time of healing, or equiva
lently, the depth of the burn. The main disadvantage of the
method is the complexity and cost of the image acquisition
system~video camera, filter wheel, motor driver, etc.!.

The main contribution of this work is the design of a clini-
cally feasible system for automatic burn wound classification
based on visual digital images. First, a protocol for the stan
dardization of the burn image acquisition was designed. Thi
first step was required due to the novelty of the application
Second, a new segmentation algorithm is proposed, which ha
been proven effective in segmenting burn wound images
Third, once the burnt part is segmented, representative colo
and texture descriptors are extracted from it. Finally, a neura
network classifier processes these descriptors to give an es
mation of the burn depth.

2 Materials and Methods
2.1 Burn Characterization
There are three main types of burn wounds.1 ~1! Superficial
dermal burn: when the epidermis and part of the dermis are
destroyed. The presence of blisters~usually brown color!
and/or a bright red color characterize it. It is painful.~2! Deep
dermal burn: it is characterized by its pink-whitish color.~3!
Full-thickness burn: all the skin thickness is destroyed and
skin grafts are needed. A beige-yellow or a dark brown color
characterizes it. It is not painful.

Although a burn wound is classified in three classes, it can
present five different appearances.~A! Blisters: they are su-
perficial dermal burns with a bright texture and a rose-brown
color. ~B! Bright red: they are superficial dermal burns with
bright red colors and wet appearance.~C! Pink-white: they are
deep dermal burns with a dotted appearance.~D! Yellow-
beige: first appearance of full-thickness burns.~E! Brown:
second appearance of full-thickness burns. Examples of eac
appearance are shown in Fig. 1.

2.2 Image Acquisition and Calibration
The image acquisition was carried out by means of a digita
photographic camera, the Canon EOS 300D~Canon Inc., To-
kyo, Japan!. Any nonspecialized person should be able to ac-
quire data from the patient, because it is not possible to hav
an expert in each center. A digital photographic camera is eas
to utilize and people are used to them.

The problems we found that had to be solved when using
digital photographic camera for this application are explained
in the following subsections.

2.2.1 Illumination influence
The most important source of information for our system in
order to classify burn depths is color, which is extremely in-
fluenced by the illumination. In hospitals the lighting condi-
tions can change depending on the room where the patient i
Then, measured pixel values depend on the illuminants an
with multiple illuminants the measured values cannot be ac
034014Journal of Biomedical Optics
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curately converted to a known color space without some
ditional information. Therefore, a study about the influence
the different sources of illumination is needed. To perfo
this study, we photographed the Macbeth ColorChecker
chart ~Gretag-Macbeth GmbH, Martinsried, Germany! under
three different illuminations: in a darkroom with the built-i
flash ~guide number513 m at ISO 100!, in a darkroom with
fluorescent light, and in a room under diffused sunlight. Und
these three different situations, we fixed the ISO speed to 1
the f stop(Av) to 20 and we varied the exposure time(Tv).
We define that the exposure time is optimum under a part
lar illuminant when it is the maximum time without saturatin
any channel. The ratio between the exposure times will g
us the influences of the different sources of light. The op
mum exposure times were 1/200, 0.6, and 1.6 s for the fla
sunlight, and fluorescent light, respectively. That means
the flash is 320 times stronger than the fluorescent and
times stronger than the sunlight. In other words, if we choo
Tv51/200 and 8 bits per color component, the fluoresce
light will not influence even the least significant bit and th
sunlight will influence the two least significant bits. In fac
we took a photograph under both fluorescent and sunl
illuminations with this parameter(Tv51/200) and only these
two least significant bits had values different to 0.

We can conclude that the xenon flash illumination is s
ficiently strong to dominate illumination. That is an importa
result because in this way we only have to calibrate the
ages once for each camera, and not for each room w
patients are treated.

2.2.2 Calibration
An additional problem we encountered is that manufactur
normally do not publish either the red~R!, green~G!, blue~B!
primaries of the camera or the color temperature of the fla
Therefore we need to determine in some way a transforma
matrix to convert from measuredRGB coordinates to a
device-independent color representation system.

For this purpose, we find the matrix transformation b
tween RGB and CIE ~Commission Internationale de
l’EclairageXYZ ~device-independent color space!. In the lit-
erature there are many transformation matrices fromRGB to
XYZcolor space, but they are defined for specific illumina
~D65, D50, etc.! and specificRGBprimaries~CCIR Rec. 709,
FCC-NTSC, etc!.23 We have developed a calibration metho
based on the Macbeth ColorChecker DC chart, which is s
cifically designed for calibration of digital cameras. The Ma
beth ColorChecker DC chart has 240 color chips and it
supplied with data giving the CIEXYZ chromaticity coordi-
nates of each chip under D50 illuminant. The 240 chips
cupy an area of 12 cm320 cm. Our method finds the trans
formation matrix fromRGB under unknown illuminant to
XYZ under D50, and corrects the nonuniformity of the ill
mination as well as the spatial nonuniformity of the came
sensitivity. This algorithm iteratively performs the followin
steps:

1. Without correcting the illumination profile and usin
only three color patches, we calculate the initial mat
M1 that converts fromRGB under an unknown illumi-
nant toXYZ under D50.

2. In thei’th step, using the 240 color patches in the ch
-3 May/June 2005 d Vol. 10(3)
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Acha et al.: Segmentation and classification . . .
and the matrix Mi 21 , we calculate the profiles,
PR,i(x,y), PG,i(x,y), and PB,i(x,y), so that, for each
patch, theR, G, B corrected with the profiles and mul-
tiplied by Mi 21 are theX, Y, Z values specified by the
manufacturer of the color chart. That is, for each patch
k in the position(xk ,yk) the following equation is per-
formed:

FPR,i

PG,i

PB,i

G5F1/R~xk ,yk!
1/G~xk ,yk!
1/B~xk ,yk!

G ~Mi 21!21FXk

Yk

Zk

G . ~1!

3. We calculate the three fourth order surfaces,PR,i8 (x,y),
PG,i8 (x,y), and PB,i8 (x,y), that match best the profiles
PR,i(x,y), PG,i(x,y), andPB,i(x,y) calculated in step
2. Previously, we have experimentally determined that a
fourth order surface adequately approximates the sens
tivity of the camera and the nonuniformity of the flash
illumination altogether.

4. Using this profile, we calculate the matrixMi that best
maps theR, G, B values into theX, Y, Z values specified
for all the patches in the color chart. To determine this
optimum Mi the following mean square error is mini-
mized:

«25
1

240(k51

240

~Xtk
2Xk!

21~Ytk
2Yk!

21~Ztk
2Zk!

2,

~2!
whereXtk

, Ytk
, andZtk

are theX, Y, andZ values of the
k’th color patch, in the position(xk ,yk), specified by
the manufacturer.

5. Repeat from step 2 until the mean square error« begins
to grow.

It must be emphasized that the matrixM is the product of
two matrices: the transformation fromRGB to XYZunder an
unknown illuminant and the linear transformation to perform
the chromatic adaptation from an unknown illuminant to D50.
The matrix obtained with the proposed method is

M5F 45 60 219

24 93 223

3 37 39
G

when theR, G, B values are normalized to one. It should be
noted that this matrixM is specific for each camera, so cali-
bration should be performed for every camera used.

2.2.3 Acquisition protocol
The third problem consists of fixing the acquisition protocol
so that the photographs are useful for diagnosis. After fixing i
we have validated its suitability.

The acquisition protocol was developed by an interdisci-
plinary group formed by burn specialized physicians and
technicians.24 The main points of the acquisition protocol
were the following: distance between camera and patien
should be about 40–50 cm~to fix this parameter, physicians
carried out a careful analysis of photographs taken of differen
burn wounds from different distances; in the end, they chos
40–50 cm because they could distinguish texture from this
distance and, at the same time, they usually had a global v
034014Journal of Biomedical Optics
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sion of the burn!, healthy skin should appear in the imag
when possible, the background should be a green/blue s
~the ones used in hospitals, because as the blue/green co
so different from the skin colors, the background can be ea
rejected by the segmentation algorithm!, the flash must be on
and the camera should be placed parallel to the burn.
parameters of the camera were set to: ISO speed 100, e
sure time 1/200 s and aperture~f stop! 20.

In order to validate the acquisition protocol, a survey w
done.24,25 For this survey, 38 photographs of all etiologie
locations, and characteristics of the most frequent lesi
were taken following the specified protocol. They were p
sented to a panel of 12 experts in burn diagnosis. The exp
had to answer about the certainty in diagnosis~1–5!:
15minimal, 35moderate, 55maximum, certainty. A mean o
4.26 in sureness in diagnosis and 84.6% of diagnostic ac
racy was answered, whereas diagnostic accuracy of a tra
plastic surgeon when looking live at the same 38 burn wou
was 84.3%.

2.3 Burn Wound Segmentation
The segmentation approach used here is a supervised p
based algorithm based on measures in the CIEL* u* v* color
coordinate space.L* u* v* andL* a* b* color representation
systems are called uniform systems because Euclidean
tances between colors measured in these spaces are
much correlated with color differences according to hum
perception. They are particularly useful in color image se
mentation of natural scenes using histogram-based te
niques, in which our method is included. They are sligh
different because of the different approaches to their formu
tion. Nevertheless, both spaces are equally good in percep
uniformity and provide very good estimates of color diffe
ence ~distance! between two color vectors.23 Therefore, we
could have chosen any of these two spaces, but we prefe
the L* u* v* one, because the color componentsa* and b*
do not depend on the luminance, and it is known that co
perception is strongly influenced by the luminance.26

The following steps show the scheme proposed:

2.3.1 Selection of a small region in the burn wound
by the user and preprocessing of the image
For a nonexpert physician~in fact, for most of the people! it is
easy to differentiate burnt skin from normal one. Therefo
the burn wound will be segmented using the color informat
of a 535 pixel area around the point that the user selects w
the mouse.

Before segmenting the image, it is convenient to prep
cess it in order to get more homogeneous regions elimina
noise and small structures. To perform this task, an an
tropic diffusion is applied to the color image.27,28 The aim of
the diffusion is to make the regions more homogeneous
preserving the edge information. In order to perform the
isotropic diffusion, the approach of separating the diffusion
the chromatic and achromatic information was followed28 as
is shown in Fig. 2. First, the image is converted intoL* u* v*
color coordinate system according to23
-4 May/June 2005 d Vol. 10(3)
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Fig. 2 Diffusion filtering separating chromatic and achromatic infor-
mation.
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L* 5H 116S Y

Y0
D 1/3

216, if
Y

Y0
.0.008 856

903.3S Y

Y0
D , otherwise

. ~3!

Computation ofu* andv* involves intermediateu8, v8,
u08 , andv08 quantities defined as

u85
4X

X115Y13Z
,

~4!

v85
9Y

X115Y13Z
.

Finally,

u* 513L* ~u82u08!,
~5!

v* 513L* ~v82v08!.

Y0 , u0 , and v0 correspond to the white reference point,
which depends on the illuminant~D50 after the calibration!.

From these coordinates, the hue and chroma componen
are calculated asH5arctan(v* /u* ) andC5A(u* )21(v* )2,
respectively. A complex quantity is calculated that relates the
hue and the chroma asP5C exp(jH).

The achromatic anisotropic diffusion, applied toL* , is
carried out by means of the discrete formulation27 of the par-
tial differential equation

]

]t
L* ~x,y,t !5div@a~x,y,t !¹L* ~x,y,t !#, ~6!

where div and¹ denote the divergence and the gradient op-
erators, respectively, anda(x,y,t) is a monotonically de-
creasing function of the image gradient magnitude called th
conductance coefficientand is given by
034014Journal of Biomedical Optics
s

a~x,y,t !5
1

11S u¹L* ~x,y,t !u
gp

D 2 . ~7!

The diffusion constantgp was selected as the 5% of th
maximum value ofu¹L* (x,y,t)u at eacht, an artificial time
parameter that denotes the number of diffusion iteratio
which was fixed to 20.

The chromatic anisotropic diffusion is performed by app
ing Eq. ~6! to the complex quantityP

]

]t
P~x,y,t !5div@a~x,y,t !¹P~x,y,t !#, ~8!

where¹P(x,y,t) is28

¹P~x,y,t !5@¹C~x,y,t !1 jC¹H~x,y,t !#exp@ jH ~x,y,t !#
~9!

and separating real and imaginary parts of Eq.~8! it follows
that

]

]t
C5div~a¹C!2aCu¹Hu2,

~10!
]

]t
H5div~a¹H !12

a

C
¹C•¹H,

where the spatial and temporal dependencies have been
ted for convenience.

To obtain the coefficienta for the complex quantityP we
need to calculateu¹P(x,y,t)u, which is

u¹P~x,y,t !u5Au¹C~x,y,t !u21C2~x,y,t !u¹H~x,y,t !u2.
~11!

2.3.2 Conversion to single channel image
In this step a gray scale image is obtained from the diffus
color image. In this gray scale image, differences between
burnt skin selected by the user and other parts of the im
are emphasized. Based on the observation that doctors
ment burn wounds by measuring differences among col
the selection box selected by the user is slid as a mask of
535 pixels along the image and, for each pixel in the ima
under the center of the sliding mask, the following operat
is performed:29

f ~n,m!5
1

MAX (
i 5n2D

n1D

(
j 5m2D

m1D

dE@p~ i , j !,w~ i , j !#,

~12!

where MAX is max
n,m

((i5n2D
n1D (j5m2D

m1D dE„p( i , j ),w( i , j )…), D

5(L21)/2 with L55, p( i , j ) represents a pixel in the dif
fused image to be segmented inL* u* v* color space,w( i , j )
is a pixel of the mask selected by the user, anddE(•), the
Euclidean distance between pixelsp( i , j ) and w( i , j ), is de-
fined as
-5 May/June 2005 d Vol. 10(3)
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Fig. 3 Process of detecting the main peaks in the histogram. (a) De-
tection of the peaks in the histograms: peaks are marked with circles.
(b) Finding the peaks in the histogram of the peaks: peaks from the
original histogram are marked with dots and new peaks with circles.
(c) Rejection of nonsignificant peaks: peaks from Fig. (b) are marked
with dots and peaks selected in this step are marked with circles. (d)
Final peaks in the original histogram after the rejection of peaks with-
out a significant valley between them. In this case the three peaks in
the former step are accepted.
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dE~p~ i , j !,w~ i , j !!5$@Lp* ~ i , j !2Lw* ~ i , j !#21@up* ~ i , j !

2uw* ~ i , j !#21@vp* ~ i , j !

2vw* ~ i , j !#2%1/2. ~13!

2.3.3 Thresholding operation and postprocessing
The result of the above step is a gray-scale image where pix
els with lowest values are those in the region to be segmente
This image has been carefully designed to emphasize th
burnt regions, and a thresholding operation should suffice t
get a good segmentation. The histogram of this distance im
age is multimodal so a method to find a threshold to select th
mode in the left of the histogram should be found. This task is
carried out in two steps:~1! the peaks~maximum values! of
the different modes present in the histogram are found, an
~2! the threshold which separates the two modes closest to th
left of the histogram is calculated applying Otsu’s thesholding
method.30

To perform the first step, the following algorithm is ap-
plied to the histogram of the gray-scale image:~1! find all
peaks in the histogram, that is, all the values in the histogram
which are higher than their two neighbors;~2! form a new
curve with the peaks found in the previous step and then
select again the peaks in the new curve;~3! remove nonsig-
nificant peaks, i.e., those peaks whose values are less than 1
of the maximum peak value are rejected;~4! remove nonsig-
nificant valleys, that is, if two peaks have not a significant
valley between them we maintain only the highest of the two
peaks. To check if a valley is significant or not, the minimum
value between two peaks is found. If this minimum value is
greater than 75% of the lowest peak out of the two peaks, the
034014Journal of Biomedical Optics
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the valley is considered nonsignificant. These four steps
illustrated in Fig. 3.

Once we have localized the main modes in the histogr
we have to find the threshold which separates the two mo
closest to the left part of the histogram. This task is carried
by applying Otsu’s method,30 which is an adaptive threshold
ing technique to split a histogram into two classes,c1 with
gray levels@1,...,k#, andc2 with gray levels@k11,...,K#. Let
mi(k) andmT be the mean intensities for the classci and for
the whole image, respectively. The between-class varia
was defined by Otsu as

sb
2~k!5v1~k!~m1~k!2mT!21v2~k!~m2~k!2mT!2,

~14!

wherev1(k) andv2(k) are cumulative sums of the probabil
ties in each class, that is,v1(k)5( j 51

k pj , v2(k)
5( j 5k11

K pj , and pj5xj /Npixels, wherexj is the number of
pixels with gray levelj in an image andNpixels is the number
of pixels with gray levels from 1 toK in the whole image, that
is, the total number of pixels in the image. The optimal thre
old k̂ is chosen so that the between-class variancesb

2 is maxi-
mized.

The election of Otsu’s method, among many existi
thresholding methods, is due to its simplicity
computation.31 In fact, many modern segmentation algorithm
are based in Otsu’s method or use it for comparison.32–34

Finally, by the application of a 333 median filter, the seg-
mentation result is improved by removing spurious poin
~1–4 pixel sized!, that is, points that have been segmented a
do not actually belong to the burn.

2.4 Classification
Once the burn is segmented, its depth must be estimated
classification purposes. It has been proven that physicians
termine the depth of a burn based on color perception, as
as on some texture aspects. As it has been previously s
L* u* v* space is a perceptually uniform color representat
system. Also, the hue and the chroma coordinates are
mately related to the way human beings perceive chroma
ity. That is why, in this study, a set of descriptors formed
statistical moments of the histograms obtained for each c
dinate of theL* u* v* color space, as well as for the hue an
chroma image planes derived from them, have been u
More specifically, the descriptors chosen are: mean of lig
ness(L* ), mean of hue~H!, mean of chroma~C!, standard
deviation of lightness(sL), standard deviation of hue(sH),
standard deviation of chroma(sC), mean ofu* , mean ofv* ,
standard deviation ofu* (su), standard deviation ofv* (sv),
skewness of lightness(sL), kurtosis of lightness(kL), skew-
ness ofu* (su), kurtosis ofu* (ku), skewness ofv* (sv) and
kurtosis ofv* (kv).

Afterwards it has been necessary to apply a descriptor
lection method to obtain the optimum set for the subsequ
classification.

2.4.1 Feature selection
The discrimination power of these 16 features is analyz
using the sequential forward selection~SFS! method and the
-6 May/June 2005 d Vol. 10(3)
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Fig. 5 Evolution of the classification error for SFS method (d) and SBS
method (s).
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sequential backward selection~SBS! method35,36 via the
Fuzzy-ARTMAP neural network which is detailed in the fol-
lowing subsection.

SFS is a bottom-up search procedure where one feature
a time is added to the current feature set. At each stage, th
feature to be included in the feature set is selected among th
remaining available features which have not been added to th
feature set. So the new enlarged feature set yields a minimu
classification error comparing to adding any single feature
The algorithm stops when adding a new feature yields an
increase of the classification error. The SBS is the top-down
counterpart of the SFS method. It starts from the complete se
of features and, at each stage, the feature which shows th
least discriminatory power is discarded. The algorithm stops
when removing another feature implies an increase of th
classification error.

To apply these two methods, 50 49349 pixel images for
each burn appearance have been used~see Fig. 4!. As there
are five appearances, in all we have 250 49349 pixel
images.* One photograph has been taken per burn wound. In
general, we selected only one 49349 pixel image per photo-
graph, unless there were different appearances in the sam
wound. In this case, one 49349 image per appearance was
selected.

The selection performance is evaluated by fivefold cross
validation~XVAL !.15 In this sense, the disadvantage of sensi-
tivity to the order of presentation of the training set, that the
SBS and SFS methods present,35 is diminished. To perform
the XVAL method the 50 images per burn appearance are spl
into five disjoint subsets. Four of these subsets~that is, 40
images per appearance! serve as a training set for the neural
network, while the other one~ten images! is used as valida-
tion set. Then, the procedure is repeated interchanging th
validation subset with one of the training subsets, and so o

*The 250 49349 pixel images are small images showing each one only
one burn appearance~no healthy skin or background!. Each 49349 pixel
image has been validated by two physicians as belonging to a particula
depth. Therefore, these 250 images form a database used only for th
feature selection step.
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till the five subsets have been used as validation sets. The
classification error is calculated as the mean of the errors
each XVAL run.

In Fig. 5 the evolution of the classification error is pr
sented for both selection methods. It can be observed
both curves coincide at the beginning and at the end, but t
they separate obtaining a minimum classification error w
seven or eight descriptors~2% error! for the SFS method, and
six descriptors~1.6% error! for the SBS method. In fact, this
minimum error is again reached with 12 descriptors, althou
it is reasonable to choose the set of six, because it will im
less complexity in the neural network and shorter process
time. The six descriptors provided by SBS method were c
sen as the best feature set: lightness, hue, standard dev
of the hue component,u* chrominance component, standa
deviation of thev* component, and skewness of lightness

2.4.2 Fuzzy-ARTMAP neural network
The classifier used is a Fuzzy-ARTMAP neural network. This
type of network is based on the Adaptive Resonance The
developed by Grossberg and Carpenter. Fuzzy-ARTMAP is a
supervised learning classification architecture for anal
value input pairs of patterns.37 The reasons for this choice ar
that Fuzzy-ARTMAP offers the advantages of well-understoo
theoretical properties, an efficient implementation, cluster
properties that are consistent with human perception, an
very fast convergence. It has also a track record of succes
use in industrial and medical applications.38 Other strong-
points of this type of neural network are the small number
design parameters~the vigilance parameter,raP@0,1#, and
the selection parameter,a.0!, and that the architecture an
initial values are always the same, independent of the ap
cation.

When the input parameters are the features selected by
SBS method above, the network classifies the burn dept
the segmented region into five types: the first and the sec
belonging to superficial dermal depth, the third to deep d
mal, and the fourth and fifth to full thickness. So, the netwo
has six neurons in the input layer and five neurons in
output layer. In the Fuzzy-ARTMAP neural network the archi-
tecture is dynamic, so the number of neurons in the hid
layer is fixed during the training and according with the vig
lance parameter.

3 Experimental Results
The images used to test the burn CAD tool were 62 dig
photographs taken by physicians following the acquisiti
protocol. All the images were diagnosed by a group of plas
surgeons, affiliated with the burn unit of the Virgen del Roc´o
Hospital, from Seville~Spain!. The assessments were va
dated one week later, as is the common practice when h
dling burnt patients. The images were 153631024 pixels and
they were stored as JPEG~high quality! files.

The computer used was a Pentium IV, 1.7 GHz and 2
MB of random access memory. The average run time wa
min for an image and the programming tool wasMATLAB 6.1
~The Mathworks Inc., Natick, Massachusetts!.
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Acha et al.: Segmentation and classification . . .
3.1 Segmentation Results
The segmentation algorithm proposed in this paper was teste
with 35 out of the 62 images of the database. These 35 image
were manually segmented by five physicians.

The reason of using 35 photographs instead of 62 is tha
although the protocol says that it should appear as healthy an
burnt skin, very often the extension of the burn wound is so
large that there is only burnt skin in the image. Therefore, in
these cases it is not meaningful to compare the segmentatio
results performed by the physicians and by the algorithm.

The segmentation gold standard was obtained by applyin
the voting method to the regions segmented by the five spe
cialists. In other words, one pixel was considered to belong to
the segmented region in the gold standard if most of the phy
sicians had considered it in this way.

Once a gold standard was obtained, two parameters we
calculated to measure the performances of the segmentatio
algorithm. The first parameter was thepositive predictive
value~PPV!, which measures the ratio between the number o
pixels segmented by the algorithm which fit the segmentation
gold standard and the total amount of pixels segmented. Th
second parameter is calledsensitivity~S!, and it is the ratio
between the number of pixels segmented by the algorithm
which fit the segmentation gold standard and the total amoun
of pixels in the segmentation gold standard. Intuitively it can

Table 1 Quantification of segmentation results (PPV: positive predic-
tive value; S: sensitivity).

Image PPV S Image PPV S

Image 1 0,9309 0,8093 Image 19 0,8303 0,9280

Image 2 0,9314 0,6969 Image 20 0,9627 0,9005

Image 3 0,9391 0,8684 Image 21 0,9196 0,7418

Image 4 0,9302 0,8324 Image 22 0,8752 0,7789

Image 5 0,9614 0,9015 Image 23 0,9559 0,9725

Image 6 0,9741 0,8853 Image 24 0,8622 0,9107

Image 7 0,8807 0,7297 Image 25 0,9082 0,9069

Image 8 0,8984 0,8108 Image 26 0,9646 0,7989

Image 9 0,9618 0,7772 Image 27 0,9320 0,9364

Image 10 0,9737 0,8206 Image 28 0,8711 0,8457

Image 11 0,7928 0,8190 Image 29 0,9569 0,9482

Image 12 0,9624 0,7452 Image 30 0,9571 0,8814

Image 13 0,9806 0,7248 Image 31 0,9134 0,8318

Image 14 0,9424 0,7820 Image 32 0,9327 0,8698

Image 15 0,9384 0,8457 Image 33 0,6990 0,7588

Image 16 0,8327 0,8066 Image 34 0,9192 0,5174

Image 17 0,6420 0,8539 Image 35 0,7701 0,8530

Image 18 0,8788 0,9646 Average 0,9023 0,8301
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be seen that the first parameter measures the over segm
tion, which would be null if PPV were 1. Likewise,S mea-
sures the under segmentation. In Table 1 the results for th
images are presented. As is shown in this table, almost all
photographs are properly segmented. It must be emphas
that, although the sensitivity tends to be only around 0.8,
is because doctors tend to over segment the burnt reg
Therefore, this should not be interpreted as a poor per
mance of the algorithm.

Figures 6–8 show the segmentation results for some
ages of the three types of depth. Figures~a! represent original
images and Figs.~b! represent the segmented ones. In t
segmented images we have marked with yellow color the s
mented region. In all the cases, the burn wound was s
mented correctly from the normal skin.

3.2 Classification Results
To test the classification part we employed the 62 images
the database used for validation~different from the one used
for training!. The neural network was trained with the 25
49349 pixel images previously cited. The training was pe
formed with ra51 and a50.001. At the end of the training
the weights were fixed for the subsequent classification t
For this test the six features were extracted from the s
mented part of the 62 images. Classification results are s
marized in Table 2. We have used 22 images with superfi
dermal burns, 18 with deep dermal burns, and 22 with fu
thickness burns. The average success percentage was 82
All superficial dermal burns misclassified were classified
the network as deep dermal ones. All deep dermal burns w
misclassified as superficial dermal ones. And, in the case
misclassified full-thickness burns, 80% of them were clas
fied as superficial dermal and 20% as deep dermal.

4 Discussion and Conclusions
The classification of burn depths based on visual inspectio
a difficult task, which needs a lot of training. That is why
burn related literature there is a constant search for objec
methods to determine the depth of a burn. A prototype of o
invasive technique is the acquisition of biopsies and their h
tological study for the burn depth diagnosis.39 This technique,
although it can be considered as ‘‘gold standard,’’ is not e
empt from problems related to loss of dermis in the burn,
the existence of considerable variability depending on wh
the biopsy was acquired, and to the fact that this techniqu
a snapshot view of the lesion, apart from the residual sc
provoked by the biopsy acquisition. These inconvenien
have directed efforts towards the design of noninvasive p
cedures. Some noninvasive techniques analyze the perfu
of the burn wound based on the fact that tissue damag
inversely proportional to the vascularization after t
lesion.40–42Nevertheless, in these procedures it is necessar
supply a vital colorant to the patient by intravenous meth
and it is essential to have an emergency system. Other ex
mental techniques analyze the changes in optical propertie
the skin related to the changes of its vascularization,43 al-
though their application environment is, for the moment, e
clusively experimental. In another type of approximation
the problem being studied, the remission-optical measurem
exploits the different spectral backscattering effects of bur
-8 May/June 2005 d Vol. 10(3)
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Fig. 6 Segmentation result for a superficial dermal burn. (a) Original image where the selection made by the user is shown with an arrow. (b)
Segmented image.

Fig. 7 Segmentation result for a deep dermal burn. (a) Original image where the selection made by the user is shown with an arrow. (b) Segmented
image.

Fig. 8 Segmentation result for a full thickness burn. (a) Original image, which has both superficial dermal burn (the red part) and full-thickness burn
(the creamy part). (b) Segmented image. In this case the user has made the selection in the creamy part in order that the algorithm segments all the
full-thickness part of the burn. It segments correctly all the full-thickness parts of the image regarding what physicians said.
034014-9Journal of Biomedical Optics May/June 2005 d Vol. 10(3)
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Acha et al.: Segmentation and classification . . .
skin at different burn degrees,44 although again having an ac-
quisition method and an image processing system are nece
sary and the majority of the emergency unities do not have
them.

In this paper, we present an objective way of determining
burn depth without the problems of invasive techniques and
without the requirement of specialized acquisition equip-
ments. The great advantage of this system is its facility o
implementation in any local medical center, where there is a
lack of experts and sophisticated equipments. The only re
sources that it needs are a digital photographic camera and
computer. Furthermore, this system does not demand use
trained in this technique or in burn diagnosis, achieving a
success rate of 82.26% in classifying the depths of the burn
which is comparable with experts’ assessment. Since there a
no experts in burn treatment, but general practitioners, in a
emergency unit, this rate will diminish unnecessary displace
ments and mistreatments.

The system starts with a segmentation step, where the ai
is to isolate the burn wound from the rest of the scene~healthy
skin and background!. It is important to note, that the user has
to select with the mouse a small selection box of the region
~color! to be segmented. It is not possible to solve the problem
without the help of the user due to the overlapping existing
among different healthy skin colors and different burn depth
colors. Although it is difficult for a nonexpert to assess the
depth of the burn, it is not difficult to know which part of the
skin is burnt or not.

Once the burn is isolated, we extract from it six color and
texture descriptors that will be the inputs to the classifier. The
six descriptors are the inputs to a Fuzzy-ARTMAP artificial
neural network which classified them as one of the possibl
depths a burn can present. We tested 62 photographs, yieldin
a classification average success percentage of 82.26%. T
55% of the total number of misclassifications were considere
as superficial dermal types while they actually were deep der
mal ones, or vice versa. In general, this is also common
among physicians; actually some burns are diagnosed as ‘‘in
termediate depth,’’ when they are neither clearly superficia
dermal nor deep dermal.

As this work is in a research stage, the programming ha
been done inMATLAB . In order to reduce the computational
time, it will be implemented in C programming language. As
with MATLAB the computational time has been short, it is ex-
pected to have a negligible computational cost when using C
language.

Table 2 Classification results.

Burn depth
Success

percentage

Superficial dermal 86.36%

Deep dermal 83.33%

Full thickness 77.27%

Average 82.26%
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