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ABSTRACT

In this paper, we constructed a one-dimensional convolutional neural network as a classifier model for spatial object
classification. Considering that there are few available training samples obtained from actual measurement, combining
with the characteristics of actual measurement data, we simulated a large amount of data for training and testing. The
simulation results show that our method has a high classification accuracy and can overcome the problems existing in
actual measurement, such as tracking mixed batches to a certain extent, and it can also effectively solve the problem that
it is difficult to directly train neural networks because of the small number of spatial target samples, which take advantage
of neural network autonomous learning and memory to reliably identify features.
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1. INTRODUCTION

Spatial targets mainly include normally working satellites, rocket body and space debris'. The typical attitudes of space
targets include three-axis stable attitude, spin-stabilized attitude and rolling attitude. Among them, the rollover attitude is
an abnormal attitude, which may occur on out-of-control satellites and abandoned rocket boosters. Such targets either do
not have an attitude adjustment system or exhaust the energy used for attitude balance. Under the action of external forces
such as the earth’s gravity, they will eventually roll over. Tumble is a way of rotation of space targets. The tumbling period
is related to the moment of the target. For example, the final stage rocket has a large difference in the length ratio of the
vertical and horizontal axes (or the size in one direction). Generally, the tumbling axis and the long axis of the target are
different. Orthogonal spin-stabilized space satellites have a relatively fast spin angular velocity, and the rotation period is
generally tens to more than one hundred revolutions per minute.

RCS (Radar Cross section) is an index that reflects the ability of a target to scatter radar signals®. Generally speaking, the
larger the target area in the direction of the radar line of sight, the larger the RCS. According to the average value of
multiple RCS measurements, the size of the target can be roughly determined. In general, the movement of the space target
along the orbit will cause the attitude to change relative to the radar line of sight, so that the data of the fluctuation of the
RCS with the attitude angle can be obtained.

We propose a method to classify and identify spatial targets based on a one-dimensional convolutional network using RCS
sequence values measured by radar as characteristic data, and output the three types of target recognition results of satellite
targets, rocket body targets and space debris targets in real-time. Simulation proves that this method has a high
classification accuracy.

2. NEURAL NETWORK CONSTRUCTION

2.1 Feature extraction

In order to extract the feature information of the RCS sequence for training, we found a total of 14 features for training,
forming an N*14 target set. These features include a time sequence, an amplitude sequence, 6 sequences of amplitude
statistics, and 6 sequence of window amplitude statistics. Defining the RCS amplitude sequence of a target relative to time
tas R ={r(t)},i=1,2,...,N, the extracted features are as follows®:

(1) RCS Amplitude Sequence
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(4) RCS Amplitude Maximum Sequence
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(8) RCS Amplitude Standard Deviation Sequence
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(12) RCS Window Amplitude Range Sequence
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(13) RCS Window Amplitude Range-Mean Sequence
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(14) RCS Window Amplitude Standard Deviation Sequence
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Figure 1. One-dimensional convolutional network structure.
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2.2 1D convolutional network

The input of one-dimensional convolution is vector and convolution kernel, and the output is also vector®. Usually, the
length of the input vector is much larger than the length of the convolution kernel. The length of the output vector depends
on the padding scheme of the convolution operation. The length of the output vector of a constant-width convolution is
equal to the length of the input vector. The length of the convolution kernel is usually odd, which is designed for symmetry.

In order to realize the classification of RCS sequences, thus realizing the classification of spatial objects, we designed an
end-to-end one-dimensional convolutional network. The real-time input of the network is 14 RCS feature sequences, and
the output is the RCS classification result. The network output and input has the same length. The classification and
identification results include three categories, which are satellites, rocket body and space debris’.

The one-dimensional convolutional network structure we designed is shown in Figure 1.

3. RESULTS
3.1 Dataset construction

Using the omnidirectional angular RCS data of the simulated satellite, rocket body and space debris target models,
according to the simulated ballistics and the motion characteristics of various targets, combined with the frequency
conversion characteristics of equipment measurement, the RCS amplitude sequence values of the three types of targets at
each moment are obtained. The radar band has a great influence on the RCS measurement data, so the recognition network
needs to be trained for different bands. This paper takes the recognition network trained by P-band RCS as an example for
analysis. In the simulation scenario, the radar coordinates are fixed, and the space targets move at different heights and
speeds. Assuming that the P-band radar observes the target well, the relevant parameters of the three types of targets are
shown in Table 1:

Table 1. Parameter table of three types of targets.

RCS magnitude Posture stability Number
Satellite 5~-5dB Yes 25000
Rocket body (10~-10dB No 20000
Space debris |-5~-20dB No 20000

We obtained a total of 65,000 simulation data, of which 25,000 were satellite targets, 20,000 were rocket targets, and
20,000 were space debris.

3.2 Analysis of experimental results

We trained the network on the Keras neural network framework. In the training and testing part, we used the 4fold method
to divide the three types of targets into four groups A, B, C, and D, and the groups do not overlap each other. We performed
training and testing four times, using three of them as training samples and the other as testing samples for each training.
The identification results are counted, and then the results of the four simulation experiments are summed and averaged,
and the accuracy of the final stable classification results is calculated.

By training the neural network, we can get the classification of three types of targets, as shown in Table 2:

We analyze from the table that after the 4fold classification test, the classification accuracy rate of satellite targets is more
than 90%, which shows that the algorithm proposed in this paper can give high-confidence recognition results. This is
because the satellite target has good attitude stability characteristics, and its mean RCS has a large degree of discrimination
with the other two types of targets most of the time. In addition, the rocket body target can also achieve an accuracy rate
of about 80%. Due to the large size of some models in the simulation and the lack of stable attitude characteristics, a
considerable number of samples were identified as rocket body targets.
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Table 2. Target classification accuracy.

Satellites classified [Rocket body classified| Space debris classified [Accuracy
Satellite 5721 318 211 91.54%
[Rocket body [320 4324 356 86.48%
Space debris 258 757 3985 79.70%

4. CONCLUSION

We propose a spatial target RCS sequence recognition method based on simulation data and one-dimensional convolutional
neural network. We first analyze the available features for spatial targets recognition, and then combine the characteristics
of actual data measurements to design a recognizer using one-dimensional convolutional neural network, and we train it
using a transfer learning approach. Simulation experiments show that the classifier obtained by this method has high
accuracy and can effectively use the RCS amplitude sequences values of space targets for identification and classification.
It has the advantages of machine learning and provides a new idea for the identification of space targets.
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