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ABSTRACT 

In this paper, we propose an end-to-end neural network abbreviated as TCNN to solve the blind phase retrieval problem 

in multiple scattering imaging. TCNN is a kind of auto-encoder with a transform layer, which acts as a bridge between 

transforming domains. Compared to double phase retrieval method, TCNN can directly estimate the image from those 
phaseless measurements through the nonlinear network structure. During training, the parameters of TCNN are updated 

by the adaptive moment estimation algorithm Adam. Numerical experiments show that TCNN can recover images with 

comparable quality to that of state-of-the-art methods. Moreover, TCNN hugely reduces the time cost for recovering 

images once the training procedure is completed. 
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1. INTRODUCTION 

The light incident on the multiple scattering media suffers from multiple reflections. When observing the object through 
the multiple scattering media with coherent light in the focal plane, the speckle pattern displayed on the far side of the 

scatter bears no resemblance to the image of the object. This phenomenon is attributed to the wavefront interfering with 

itself destructively when passing through the multiple scattering media. It is sophisticated to recover the image from this 

speckle pattern. First, a large amount of beneficial structural information for reconstructing the image gets lost. For 

instance, detectors such as CMOS or CCD can only record the intensity of speckle pattern. It is well-known that 

recovering an object only from its intensity measurements called phase retrieval is an ill-posed inverse problem. Second, 

to estimate the transmission matrix of this imaging system is not easy. Suffering from various kinds of interferences, the 

transmission function of light cannot be modeled accurately. But this problem plays a major role in diversities of 

applications such as astronomy, crystallography, multiple scattering imaging, etc. With intensive requirements on the 

high resolution of recovered images, series of techniques are constantly sprung up to enrich this filed, such as TOF 

(Time of Flight) method1, multi-slice light-propagation method2, strong memory effect method3, holographic 

interferometry method4, temporally modulated phase method5 and double phase retrieval method6.  

Compared to other methods mentioned above, the double phase retrieval can relieve perturbations caused by the depth 

and complexities of the scatterer. On the other hand, once the transmission matrix has been estimated, this method is able 

to recover the image by means of capturing only one single speckle pattern. Mathematically, double phase retrieval for 1-

D signals can be described as  

2

Find

s.t. | | ,*

A, x

A x b
                                                                (1) 

where n mA  is the transmission matrix, nx  is the signal to recovered, b is the amplitude-only measurement, * 

denotes the conjugate and transpose, and | |denotes the element-wise absolute. The double phase retrieval method 

contains two main steps: First, estimating A from a series of measurements, then recovering x based on A. As its name 

suggested, the core of double phase retrieval is to solve several phase retrieval problems. 

Note that the double phase retrieval method may consume a large proportion of computational resources to solve a series 
of phase retrieval problems for evaluating the transmission matrix A from plenty of measurements b and signal of 
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interest x. Furthermore, it also seems a little redundant to segment the problem into two steps. As a result, time saved, 

explicit and efficient methods need to be designed. 

Deep learning has received widespread attention in recent years. Diversities of layer structures and optimization methods 

were come up to accelerate the development of deep neural network. By mining the information from data through 

networks, inverse problems such as MRI7, holography8, super-resolution9 and phase retrieval10 can be resolved easier. 
Specifically, for the phase retrieval problem, a neural network was designed to diminish the effect of twin images11, and 

a neural work was proposed to increase the resolution of an image in lensless coherent diffraction images10. The 

proximal gradient descent method was implemented to deal with phase retrieval problem12, where the RED priority13 is 

incorporated in the loss function. A neural network is used as the denoiser in RED priority. Compared to these works 

mentioned above, the property of transmission media in multiple scattering media imaging is worse, at the same time 

these speckle patterns bear no resemblance to the images. 

In this paper, we proposed a novel neural network method, which is called Transformation Convolution Neural Network 

(TCNN), to tackle the multiple scattering imaging problem. A special structure called the transforming layer is built, 

which can help TCNN bridge the relationship between the transforming and object domain. TCNN combines two steps 

in double phase retrieval together, and learns the relationship between those speckle patterns and images of objects 

directly. Universality theory is also established to demonstrate the relationship can be approximated by a network with 

high accuracy. Nonlinear loss function with penalty is built and ADAM14 is applied to update the parameters of TCNN 
by training data measured. When the training procedure is done, the image of an object can be recovered by making the 

speckle pattern as the input of TCNN. Tests on the multiple scattering media imaging data15 fully show that TCNN has a 

competitive performance in comparison with double phase retrieval methods. Moreover, the time cost to recover the 

image by TCNN is much less. Furthermore, if new training data is available, TCNN can be constantly refined based on 

these datasets. But double phase retrieval method has to evaluate the transmission matrix again from the whole data. 

The reminders of this paper are organized as below. Section 2 provides the details of the experiment setup and TCNN. 

Section 3 presents the numerical results of TCNN are given. Section 4 is the conclusion. 

2. NEURAL NETWORK METHOD TO SOLVE DOUBLE PHASE RETRIEVAL 

2.1 The feasibility of implementing neural network  

As is introduced in Section 1, the computational costs of double phase retrieval method is quite expensive for real-time 

imaging. We build a neural network with nonlinear structures to approximate operator :g b x  so that x can be 

estimated directly from b.  

In the following we discuss the existence of the operator g . Based on the inverse function theorem, the operator 

:f x bmust be injective or g cannot be existed. But in phase retrieval problem, f  is not a single valued operator 

usually. When 
nx , ( ) ( )f fx x , while 

nx , ( ) ( )f f cx x , | | 1c . As a result, x is defined up to a 

global phase factor. In this paper, we concern with the map : / { 1}n mf  when x is real, and 

: /n mf  when x is complex (where  is the complex unit circle). When training the network, it is necessary 

to sift the whole dataset so that every 
( ), 1,...,i i mb  is not equal. Then Theorem 2.2 and Theorem 3.316 guarantee 

the injective of f . 

In the multiple-scattering media imaging, media which may be frost glass or painted wall. Under this condition, rows of 

transmission matrix A in traditional analysis are often assumed to be the Gaussian or sub-Gaussian which generic 

vectors. Consequently, if m is large enough, f  is injective, the existence of g  can also be guaranteed. Furthermore, g  

can also be approximated by neural network g  : 

Theorem 2.1. If the inverse operator g  of : / { 1}n mf  (or  : /n mf ) in phase retrieval 

problem exists, then g can be approximated by neural network g  (where  is the parameters of the neural network)  

with any desired degree of accuracy. 
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2.2 Neural network training  

When the training set is in / { 1}n
or /n , we can train a neural network to approximate this inverse operator 

g . In this paper, a neural network called TCNN is built to train g  as an approximation of g . The mathematical model 

for neural network training is:  

2
( ) ( )min ( ) ( )

k
i i

i

L g b x                                                   (2) 

where g  is the neural network with hierarchical structures so that nonlinear information can be mined from the dataset. 

The encoding and decoding diagram of TCNN is shown in Figure 1, and all the blocks are shown in Figure 2. 

·Encoding part 

In the encoding part, the multiple flow structure is utilized in g  which can learn the features of input in different scales. 

The input of g  is decimated by the downsample Block which is constructed by one convolution layer with batch 

normalization, Relu activation function, and one maxpooling layer, which can be modeled as below: 

( )Maxpooling Relu(BN( )) , 1,...,i l i kb  

 

Figure 1. Encoding and decoding part. 

 

Figure 2. The details of blocks in TCNN. 

Proc. of SPIE Vol. 12506  125063V-3



where ∗ is the convolution, 
l

 is the convolutional kernel, l indicates the kernel is in the l-th path. The size of those 

kernels is 1×1×16. The maxpooling layer here decreases the dimension of the input. Specifically, 
( ), 1,...,i i kb  are 

downsampled by ×2, ×4, ×8 respectively. Then, the four different tensors are successively passed through five residue 

blocks, each block contains two convolution layers with batch normalization and a shortcut from the input to the output. 

The shortcut can accelerate the convergence of TCNN. After processed by the five residue blocks, the high-order 

features in different scales can be learned. 

·Decoding part 

In the decoding part, those features created above will generate four different tensors keeping the same width and length 

with the
( ), 1,...,i i kb . So there will be 3, 2, 1 upsampling blocks for each tensor respectively. In each upsample 

block, there will be one convolutional layer with batch normalization and one deconvolutional layer. The deconvolution 

in this paper adopts the way of upsampling11 for super-resolution. This method can alleviate the effect of zero padding by 

traditional deconvolution besides fully utilizing the information in the network. 

·Transforming block 

After being handled by those upsample blocks, tensors will be fused and passed through the transformation block 

instituted by one convolutional layer and transformation layer. The transformation layer is actually a full connection 

layer which acts as a linear transformation between the transform domain and object domain. In the test, to alleviate the 

influence of over-fit, the units in the transformation layer are randomly neglected.  

Because of large quantities of the dataset, mini-batch gradient descent method is implemented to update  in (2), which 

is actually a non-convex optimization, it is hard to guarantee the algorithm converges to the global optimum. But in 

practice, some efficient gradient based methods outperform when training neural network. In this paper, we utilized 

ADAM method14, which can accelerate the decreasing of the loss function besides it can also adaptively calibrate the 

first moment, second moment and the learning rate. The skeleton of parameter updating is shown in Algorithm 1. 

During the training procedure, the learning rate decays with a geometrical rate so that the evaluation cannot vibrate 

violently in the final stage of iteration. In the next section, the results of numerical tests will be given to demonstrate the 

efficiency of the TCNN. 

Algorithm 1: Parameters updating by ADAM. 

Input: 

( ), 1,...,i i kx : known images of object;  

( ), 1,...,i i kb : phaseless measurements of 
( )ix ;  

T : the maximum iteration steps;  

: the learning rate; 
1 2
, , : parameters. 

 For 1 :t T  do 

1
( )

t t
Lg  

1 1 1
(1 )

t t t
u u g   

2 1 1
(1 )

t t t
v v g   

1
ˆ / (1 )t
t t
u u   

2
ˆ / (1 )t
t t
v v   

1
ˆ / ( )

t t t t
u v

 

End
 

Output: ˆ : the parameters of neural network.  

Initialization:  

0
: random initialization of the parameters in the 

network; 

t
u : initialization of the first order moment;  

t
v : initialization of the second order moment. 
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3. TESTS BY THE EMPIRICAL DATASET 

3.1 Datasets of the numerical tests 

The experiment setup is made by Rice University15. Specifically, a laser beam that is spatially filtered and collimated (  

= 632.8nm) illuminates a spatial light modulator (SLM) from Holoeye. This reflective type display (LC2012), which is 

equipped with 1024×768 resolution and 36μm square pixels, modulates the phase of the laser beam. Then the lens L ( f  

= 150mm) focus the laser beam on the scattering medium. The experiment uses a microscope objective (Newport, X10, 

NA: 0.25) to image the SLM calibration pattern to the sensor (Point Grey Grasshopper 2 with pixel size 6.45μm). As the 

phase only SLM is 8 bit, it can modulate the wavefront by an element of 
1 255
256 256

2 20{ , ,..., }
j j

e e e . In the test, the phase 

modulation is restricted to {0, } , which means the value of the x is { 1,1} . For the amplitude-only SLM, the source 

pixel is set to be either completely 0 or completely 1. Then the value of x is {0,1} . By constantly modulate the SLM, 

values of SLM and their speckle patterns can be recorded to estimate transmission matrix. 

The dataset can be downloaded from https://rice.app.box.com/v/TransmissionMatrices. Two types of data are utilized in 

the experiment. For amplitude-only SLM, the size of the image is 16×16. For the phase-only SLM, the size of the image 

is 40×40. Experiments are implemented by a desktop with GPU NVIDIA 1080 and CUDA 9.0. 

3.2 Experimental results 

Some hyper parameters of in this test can be found in Table 1. TCNN is built on the framework of tensorflow. The 

learning rate µ is 10−3 at initial and decays after each epoch with the factor 0.85. The total number of the epoch in the 

training procedure is 100. To preprocess the data in this experiment, we firstly sift the data so that every image and 

corresponding speckle pattern is unique. Then we train TCNN by two different sizes of data.  

We compare TCNN with GS17, WF18, PhaseLift19, Prvamp15. TCNN can directly recover images from those speckle 

patterns without estimating the transmission matrix. For other methods, we utilize the transmission matrix A estimated 

by Prvamp to apply phase retrieval algorithm. For fair, those algorithms are all accelerated by the GPU. Several 

examples of recovered images are shown in Figure 3. 

Table 1. Some hyper parameters in TCNN. 

 16×16 40×40 64×64 

Training sets 3050 3050 35000 

Validation sets 22 20 200 

Test sets 5 5 6 

From Figure 3, we can observe that pictures recovered by TCNN are competitive with state-of-arts. In fact, it is quite 

challenging for all these methods recovering high quality images from speckle patterns, since multiple scattering media 
deteriorates the light besides the phase information get lost by CCD. Moreover, the noise and system error also exist in 

the practical experiment. But Table 2 shows the time cost by TCNN is far less than other methods. It can save the time 

10 to 100 folds. The advantage becomes clearer when 64×64 which demonstrates the possibility of TCNN to realize real 

time imaging. Moreover, TCNN only performs an end-to-end recovery but other methods must estimate the 

transformation matrix in advance then getting the evaluation by phase retrieval. Thus, the experiments fully illustrate the 

power of TCNN in recovering images from the intensity of the speckle pattern. 

During the training step, the curves of training error and validation error of amplitude only SLM 16 ×16 are depicted in 

Figure 4. Considering the large quantities of the training set, training error is the Mean Square Error (MSE) of one of the 

inputs in training set selected randomly, as a result, there are some oscillations in training error curve. The validation 

error is the mean MSE of the validation set. From Figure 4, we can find the solution quickly converges to the local 

optimum after 20 epochs, there is little fluctuation for both errors. Besides the validation error gets close to the training 

error which fully demonstrates network relieves from over-fit. 
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(a)                                                                                         (b) 

Figure 3. The reconstruction for amplitude-only SLM with image size (a) 16×16 and (b) 40×40. 

Table 2. Time cost per image by different methods (“—” means TCNN don’t need iterations). 

 16×16 40×40 64×64 

 Time(s) Iterations Time(s) Iterations Time(s) Iterations 

WF 4.11 100 19.49 100 289.03 100 

GS 3.86 100 18.86 100 43.48 100 

Phaselift 239.50 100 ---- 500 ---- 1000 

PRVAMP 3.41 100 17.40 100 44.52 100 

TCNN 0.103 ---- 0.117 ---- 0.121 ---- 

The core of TCNN is to utilize two sections 
1
g  and 

2
g  to approximate the inverse function g  which can simulate the 

imaging procedure in multiple scattering media, namely, 

2 1
( ) ( ) ( )g g g gb b b  

For 
1
g , features of intensity of speckle patterns b are learned from different scales which can be seen from Figure 5. 

We can see that the details from different scales of speckle pattern are learned (the features in Figure 5 are resized to 

keep the same shape). Then, deconvolution procedures decode those features into a new element 
1
( )g b  in the 

transform domain so that it can be approximated to x by transforming layer 
2
g . 
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Figure 4. The training and validation errors. Figure 5. The features learned in TCNN. 

4. CONCLUSION 

In this paper, we designed a deep neural network TCNN to directly transform the intensity of the speckle pattern via the 
multiple scattering media into the image of an object. Compared to the traditional double phase retrieval methods, this 

end-to-end network has no need to model this imaging procedure and calculate the transformation matrix. Instead, it 

needs a large amount of training data which includes images of objects and their corresponding intensity of speckle 

patterns to update the parameters of TCNN. 

In TCNN, two parts are built deliberately to approximate the inverse function. The nonlinear part encodes the 

information of the intensity of the speckle pattern besides decoding it into a new vector in the transform domain, then the 

linear part transforms this vector into the object domain. Compared to the popular methods, TCNN recovers images with 

competitive quality. Moreover, the time cost by TCNN is much less. Specifically, recovering per image needs no more 

than 1s. 

In the future, the work is to decrease the number of parameters in TCNN. Especially for the parameters in the 

transformation layer, they occupy large portions of the whole parameters. We consider fuse it implicitly into the 

convolutional layers where the parameters are comparatively less. 
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