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ABSTRACT

Photon-counting computed tomography (PCCT) can simultaneously obtain multi-energy data with abundant
energy-dependent material-specific information of the scanned object. However, the photon counts in each
energy bin are decreased and the collected data suffers from photon starvation effects, which degrades the
quality of the reconstructed PCCT images. To solve it, many statistical iteration reconstruction (SIR) methods
have been proposed by constructing data-fidelity and prior information terms to suppress noise and remove
artifacts. However, most of the current SIR methods assume the noise in PCCT images follows a Gaussian
distribution, which deviates the real distribution of the noise in PCCT images. Therefore, we propose a new
statistical iteration reconstruction method by considering more complex noise distribution in reality. Specifically,
Gaussian mixture model (GMM), which is a universal approximator for any continuous density function, is
utilized to model the noise in PCCT images. Moreover, the multi-energy PCCT images are treated as a 3-
order tensor which is regularized by three dimensional total variation (3DTV) prior term. Finally, a statistical
iteration reconstruction model based on GMM and 3DTV is established for PCCT imaging. For shorten, we
call the presented reconstruction model as “GMM-3DTV”. We then develop an expectation-maximization (EM)
algorithm to solve the presented GMM-3DTV method. Numerical studies demonstrate the improvements of the
presented GMM-3DTV method over the competing methods.
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1. INTRODUCTION

Recently, photon-counting computed tomography (PCCT) has been developed in clinics. It utilizes the photon
counting detectors (PCDs) to simultaneously count photons in multi-energy bins. By obtaining abundant energy-
dependent material-specific information and high contrast-to-noise ratio (CNR) for soft materials, PCCT has
the advantages on material decomposition and lesion diagnostic.1,2

However, the narrow energy bin receives decreasing photons and the spectral data suffers from serious quan-
tum noise.3 This challenge significantly degrades the quality of the reconstructed PCCT images in multi-energy
bins and effects the imaging performance of PCCT imaging. To obtain high quality PCCT images, several statis-
tical iteration reconstruction (SIR) methods have been exploited. It incorporates the statistical property of X-ray
photons and prior information of the desired PCCT images to build reconstruction model with data fidelity and
regularization terms, respectively. For examples, Xu et al. introduced a statistical interior tomography method
with TV regularization to reconstruction PCCT images,4 Kim et al. stacked similar image patches at the same
position and utilized a low-rank regularization to suppress image noise.5 Zhang et al. utilized a nonlocal mean
regularization of the full-spectrum image to maintain the image details.6 Yao et al. proposed to improve the
reconstruction performance by utilizing a nonlocal spectral similarity of a weighted image.7 Liu et al. developed
a nonlocal total variation (TV) regularization term to construct the weights from the full-spectrum images.8

Tao et al. utilized the structural redundancy between the base materials and the spectral images to establish a
prior-knowledge-aware material decomposition method.9 Zeng et al. analyzed the intrinsic tensor properties of
the PCCT images and constructed a full-spectrum-knowledge-aware tensor model for PCCT imaging.10 These
methods have been shown great potential in preserving image structures and suppressing noise. Moreover, deep
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learning (DL) based methods have been utilized in spectral CT. For examples, Li et al. constructed a cascade
DNN to estimate the high-energy image from low-energy image,11 and Cong et al. estimated the PCCT images
from the data of energy-integrating detectors by using DNN based method.12

However, most of the current SIR methods assume the noise in PCCT images follows a Gaussian distribution,
which deviates the real distribution of the noise in PCCT images. Because the artifacts, which maybe induced by
beam hardening effect in lower energy bins or photon starvation effect of high density materials, would complicate
the noise distribution in the image and invalidate the performances of the aforementioned SIR methods. In
addition, the DL-based methods need a quantity of paired data to train a desired network, and the collection
of training data is time-consuming and the clinical PCCT data is hard to be obtained. To solve it, we propose
to utilize Gaussian Mixture Model (GMM),13 which is a universal approximator for any continuous density
function, to model the noise in the PCCT images. Moreover, we treat the PCCT images as a 3-order tensor and
serve the three dimensional total variation (3DTV)14 as image prior. Finally, we construct a statistical iteration
reconstruction method based on GMM and 3DTV. For shorten, we call the presented reconstruction method as
“GMM-3DTV”.

Gaussian 1 Gaussian 2 Gaussian 3

Figure 1. Illustration of the approximated results by the GMM for complex noise in multi-energy bin PCCT images. First
row (from left to right): Noisy PCCT images, noise and ground truth. Second row: three noise components of GMM in
Bin 1.

In summary, the main contributions of this work are:

• We present a statistical iteration reconstruction method, called GMM-3DTV, by modelling the complex
distribution of the noise with GMM and serving the 3DTV as the PCCT image prior.

• Considering the GMM parameters, we also employ an expectation-maximization (EM) algorithm to nu-
merically optimize the presented GMM-3DTV method.

• We evaluate the presented GMM-3DTV on simulated and synthesized clinical data and demonstrate its
effectiveness in terms of qualitative and quantitative metrics.

2. METHODS

PCCT receives spectral data among multi-energy bins. Considering the spatial and energy dimensions of the
measurements, the 3D PCCT imaging model can be expressed as follows:

Y = AX , (1)

where Y = {yn, n ≤ N} and X = {xn, n ≤ N} denote the measurements and reconstructed PCCT images among
multi-energy bins, respectively. N is the total number of the multi-energy bins. A is a linear projection operator.
It should be note that additional constraints are incorporated to stable the solution of the above model.
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Due to the variance of the material attenuations for X-ray along the whole spectrum, the feature of the
noise is different among multi-energy bins. Specifically, the reconstructed images in lower bins suffer from strip
artifacts due to the beam hardening, and the ones in higher bins are corrupted by the photon starvation induced
noise. Therefore, a single Gaussian is no sufficient to approximate the complex noise distribution in the PCCT
images.

Fig. 1 shows the noisy PCCT images, noise and ground truth. It can be seen that the PCCT images have
multiple modalities of noise, as illustrated by the three Gaussian components in Bin 1, and a simple Gaussian
noise model may deviate the real cases. In order to solve the complex noise distribution, we model the noise in
the PCCT images as a parametric probability distribution by GMM for more flexibly adapting different cases.
Specifically, the noise term εn in the nth energy bin is expressed as follows:

εn ∼
K∑

k=1

πnkN
(
εn|µnk, σ

2
nk

)
, (2)

where πnk, µnk and σ2
nk denote the mixture rate, mean and variance values of the kth Gaussian compound in

nth energy bin, respectively. In this work, the mean values are set to be zero. K is the total number of Gaussian
compounds, and

∑K
k=1 πnk = 1.

Considering the sparsity structures and low rank property of the PCCT images, a general 3D total variation
(3DTV) term is utilized as the prior, as follows:

R3DTV (X ) =

3∑
m=1

∥∇mX∥1, (3)

where ∇m is different operations along spatial height, width and spectrum modes of X , ∥ · ∥1 is the L1 norm.
Therefore, coupling the GMM approximation for noise and sparse regularization for PCCT images, we can
formulate a robust penalized weighted least squares method for PCCT imaging as follows:

min
X

1

2
∥Y − AX∥22 + αR3DTV (X ) ,

s.t. εn ∼
K∑

k=1

πnkN
(
εn|µnk, σ

2
nk

)
, n = 1, ..., N,

(4)

where α is a hyper-parameter of the image prior term. Simply, we call the above method as “GMM-3DTV”
method. Finally, by imposing the negative form of likelihood function of the GMM, Eq. (4) is rewritten as
follows:

min
X ,Π,Σ

1

2
∥Y − AX∥22 + αR3DTV (X )

− β

N∑
n=1

log

K∑
k=1

πnkN
(
εn|0, σ2

nk

)
,

(5)

where β is the hyper-parameters of GMM likelihood term. Π = {πnk, n ≤ N, k ≤ K} and Σ = {σ2
nk, n ≤ N, k ≤

K} are the sets of mixture coefficients and variance values, respectively. Moreover, we adopt an Expectation
Maximization (EM) algorithm 15 to iteratively optimize the presented GMM-3DTV method.

The whole EM algorithm for optimizing Eq. (5) can be summarized in Algorithm 1.

3. RESULTS

3.1 Implementation Details

In this work, we compare the presented GMM-3DTV method with the filtered back projection (FBP) method
using a ramp filter and a tensor-based dictionary learning regularization (TDL) method. In addition, two more
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Algorithm 1: Algorithm for Solving Eq. (5)

Input : The PCCT multi-energy measurements Y, regularized parameters α and β, and stopping
criteria ϑ.

Output: Reconstructed PCCT multi-energy images X .
1 Initialization: Π,Σ, GMM number K;
2 while not satisfy stopping criteria ϑ do
3 E step: calculate the expectation of posterior probability of GMM parameters;
4 M step: maximum the augmented Lagrangian function.

5 end

methods are implemented to investigate different parts of the presented GMM-3DTV method. The one is GMM-
based reconstruction model, and the other is 3DTV-based reconstruction model. The images at normal dose
serve as the ground truth. Two numerical phantoms are utilized to validate the performance of the presented
method. Specifically, XCAT phantom16 contains alcohol, water, bone and gadolinium, and the synthesized
clinical phantom includes water, bone and iodine. The phantoms are scanned under the simulated 120 kVp
X-ray spectrum with 1.6 mm Al filtration by SPEKTR toolbox.17 Five energy bins with equal photon counts
are determined by the thresholds: 25, 50, 60, 70 and 85 keV. The PCCT imaging parameters are set as follows:
(1) source-to-detector and source-to-center distances are 1040.0 and 570.0 mm, respectively. (2) 1160 projection
views are evenly scanned the objections over 360o. (3) 816 detector channels are placed along the parallel X-ray
beam. To generate the noisy projections, Poisson noise is applied into the simulated noise-free projections.
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Figure 2. Reconstructed images of the presented and compared methods on XCAT phantom. The display windows from
Bin 1 to 5 are [0.00, 0.02], [0.00, 0.010], [0.00, 0.017], [0.00, 0.015] and [0.00, 0.010] mm−1, respectively. Zoomed ROIs
indicated by the red boxes are displayed for better visualization.
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3.2 Qualitative Analysis

Fig. 2 shows visual comparisons of the presented and compared methods on XCAT phantom. It can be observed
that: 1) the FBP method suffers from noise-induced artifacts, and the other methods outperform the FBP
method in terms of improving the image quality; 2) the 3DTV-based method suffers from blocky artifacts and
the GMM-based method remains producing noisy images; 3) the TDL method smooths the images and enhances
the texture of the noise-induced artifacts; 4) the presented GMM-3DTV method better handles the noise-induced
artifacts and preserves the image details. Moreover, zoomed in regions-of-interest (ROIs) indicated by the red
boxes in each image are illustrated. It can be observed that the presented GMM-3DTV maintains the details of
the anatomic structures.

Fig. 3 illustrates the results of different methods on synthesized clinical phantom. Similar with the results
on XCAT phantom, the TDL method fails to denoise among the multi-energy bins, the 3DTV induces addi-
tional block artifacts for the denoising results, and the GMM-based method hardly removes the noise. On the
contrary, the presented GMM-3DTV method can effectively remove the noise-induced artifacts and recover the
images details. For better visual inspection, zoomed in ROIs indicated by the blue boxes are shown, which also
demonstrates the same conclusion.

line

Figure 3. Reconstructed images of the presented and compared methods on synthesized clinical phantom. The display
windows from Bin 1 to 5 are [0.007, 0.0105], [0.0032, 0.0072], [0.003, 0.004], [0.0022, 0.0035] and [0.0018, 0.0027] mm−1,
respectively. Zoomed ROIs indicated by the blue boxes are displayed for better visualization.

Fig. 4 shows the profiles of different methods on synthesized clinical phantom indicated by the green line in
Fig 3. From the results, we can seen that the TDL and 3DTV-based methods produce blurry results, and the
GMM-based method fails to suppress the noise. In contrast, the results of the presented GMM-3DTV method
are the closest to the ground truth.
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Figure 4. Profiles of the results from different methods on synthesized clinical phantom. The location of the profiles is
indicated by the green line in Fig. 3 for each reconstructed images in Bin 1.

3.3 Quantitative Analysis

In this work, root-mean-square-error (RMSE) is calculated to quantify the errors between the ground truth and
the results reconstructed by different methods. As shown in Tab. 1 and Tab. 2, the presented GMM-3DTV
method achieves consistently better metrics with smallest RMSE on both phantoms. In addition, it can be
observed that the reconstruction performance of the presented GMM-3DTV method is significantly heightened
by fusing the GMM and 3DTV terms.

Table 1. Quantitative measurements on the reconstruction results on XCAT phantom from the different methods.

RMSE (×10−4)

FBP 14.066

3DTV 14.534

GMM 8.957

TDL 5.244

GMM-3DTV 5.233

Table 2. Quantitative measurements on the reconstruction results on synthesized clinical phantom from the different
methods.

RMSE (×10−5)

FBP 11.528

3DTV 4.719

GMM 10.530

TDL 4.076

GMM-3DTV 3.928

4. DISCUSSION AND CONCLUSION

Due to the beam-hardening and photon starvation effects, the reconstructed PCCT images suffer from noise-
induced artifacts with complex noise distribution in image domain. Most of the SIR methods hardly handle the
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artifacts and produce suboptimal results. To address this issue, in this work, we presented a novel SIR PCCT
reconstruction method. Specifically, we utilized GMM to approximate the complex noise distribution in the
PCCT image domain. Moreover, a 3DTV term, which served as the image prior, was also incorporated into
the reconstruction model to encourage structural similarity of the PCCT images along the multi-energy bins.
Experiments were conducted to demonstrate the effectiveness of the presented GMM-3DTV method. In the
future, clinical and more scene studies would be included to further demonstrate the reconstruction performance
of the presented GMM-3DTV method.
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