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ABSTRACT 

The capability to navigate accurately is one of the features, that a mobile robot should have to be able to perform tasks 

autonomously. In a GPS/GNSS-denied environment, for example inside buildings, localization of a mobile platform is an 

especially challenging problem. In such cases, to provide a robot with the ability to determine its position and to analyze 

its surroundings, Simultaneous Localization and Mapping (SLAM) algorithms could be implemented. In the article, we 

present a SLAM system that uses a Kalman filter together with data gathered by a 2D LiDAR. Our approach applies the 

ICP algorithm to calculate the localization and employs clustering and shape recognition technics to build the map of the 

environment. The article contains a detailed description of the individual elements of the proposed SLAM solution. 

Furthermore, it presents the results of experiments during which the system was validated. 
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1. INTRODUCTION 

In the era of common access to devices that can determine their own location using satellite navigation receivers, there is 

an increasing demand for analogous capabilities in places where, for various reasons, an external signal providing data for 

localization algorithms is unavailable. The reason for the lack of availability is most often caused by interferences or 

a necessity of operating indoors. This issue is especially absorbing in terms of the analysis of mobile robots’ autonomy. 

One way to obtain information about the location of a platform operating inside buildings is to equip it with a subsystem 

capable of implementing the procedure of simultaneous localization and mapping (SLAM). SLAM algorithms use data 

from one or several sensors and fuse it, according to known motion and observation models, in order to create the most 

probable hypothesis of the environment state together with the location and orientation of the robot. Among various devices 

that can be used to perform the task of simultaneous localization and mapping, a LiDAR is chosen frequently1. This sensor 

is capable of measuring the distance to obstacles in its surroundings, as well as determining the angle at which a given 

object is observed. Further processing of registered data (cloud of points) makes it possible to obtain a map of the area in 

which the mobile robot operates. 

SLAM algorithms use a wide variety of probabilistic tools to synthesize information from sensors. The mathematical 

apparatus can be divided into three groups: parametric filters2 (Kalman filter, extended Kalman filter3, unscented Kalman 

filter), non-parametric filters (particle filter)4 and optimization methods5. The idea of using a LiDAR as a main sensor for 

systems performing SLAM algorithms has been present for over two decades6. Among solutions based on the laser scanner, 

one can distinguish those in which various variants of the Kalman filter7 are used to fuse the data, as well as those 

employing the particle filters8 and the optimization methods9. The least complex variant of a LiDAR scan is a two-

dimensional registration of the sensor's surroundings10. More complex systems, in which a three-dimensional point clouds 

are constructed to represent a map, could employ fully 3D scanners11, sets of 2D LiDARs surveying environment in 

different planes12 or a single 2D scanner that can change its orientation in space13. 

This article presents a SLAM system based on data recorded by a 2D LiDAR. To fuse information concerning the 

platform’s location and its surroundings, a variant of Kalman filter together with an Iterated Closest Points (ICP) algorithm 

were applied. The appropriate map form was obtained with the use of clustering and shape identification algorithms.  
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2. SLAM ALGORITHM IMPLEMENTATION 

The proposed solution to the problem of simultaneous localization and mapping consists of several interrelated modules. 

The following chapter describes each of them, as well as characterizes the way in which the entire SLAM system was 

organized. 

2.1 ICP algorithm 

A point cloud 𝐏𝑖 is a result of a single LiDAR scan. It contains a number of two-element vectors, which specify polar 

coordinates of points registered in the sensor’s surroundings at a given time moment 𝑖. To determine the change of 

LiDAR’s pose between two consecutive scans, the ICP algorithm was implemented14. Its task is to find an optimal linear 

transformation from 𝐏1 into 𝐏2 by minimizing the mean square error (MSE) of displacement between corresponding points 

in both point clouds.  

First, the implemented algorithm calculates the cross-covariance matrix of point clouds 𝐏1 and 𝐏2. Then, the Singular 

Value Decomposition (SVD) of the matrix is performed in accordance with to the following formula: 

 𝐶𝑜𝑣(𝐏1, 𝐏2) = 𝐔𝐖𝐕T. (1) 

where 𝐔 and 𝐕Tare orthogonal matrices and 𝐖 is a diagonal matrix. As the polar decomposition theorem15 states, the 

product of 𝐔 and 𝐕T can be interpreted as a rotation matrix 𝐑. 𝐑 determines the difference in the orientation between both 

point clouds: 

 𝐑 = 𝐔𝐕T (2) 

Knowing R and the geometrical centers 𝛍1 and 𝛍2 of each point cloud, one can determine the translation 𝑡 between two 

consecutive LiDAR positions: 

 𝐭 = 𝛍1 − 𝐑𝛍2. (3) 

The obtained t and R can be used to match both clouds and determine the change in position and orientation of the sensor 

between registrations. The result of 5 iterations of the implemented ICP algorithm is shown in Figure 1. 

 

Figure 1. Left: two registered point clouds registered in consecutive scans. Right: both point clouds after ICP matching.  

 

2.2 Clustering algorithm 

To construct a map, the SLAM implementation proposed in this paper uses shapes recognition. Simple structures (lines 

and L-shapes) are searched for in data recorded by the laser scanner. The procedure of identifying shapes in a point cloud 

is facilitated by points clustering. The idea behind the operation of clustering scans is to divide registered points into 

disjoint sets. The conditions of belonging to a given set are defined by means of metrics, i.e. functions determining the 

relative distance between elements of the set16. This operation is used to preprocess information. Separating disjoint 

subgroups (clusters) enables to perform an analysis of each of them individually. Given that an appropriate metric was 
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implemented, resulting sets of points represent real objects, such as fragments of walls, doors, windows, etc. Hence, further 

data processing and map creation could be faster and less complex16. 

The basic metric used to cluster points, which are defined using cartesian coordinates system, is the Euclidean distance. If 

a separation between two consecutive points is smaller than a given threshold, they are assigned to the same cluster. 

However, this criterion is not sufficient to reliably cluster a point cloud. Spatial density of consecutive registrations depends 

on the angle at which a laser beam is reflected from a given surface. The more it deviates from the right angle, the greater 

are the relative distances between successive points and the smaller are clusters. Moreover, the range from the sensor is 

affecting the spatial density of a cloud as well. The range at which a measurement is taken is directly proportional to the 

density of points. To optimize the clustering process, a straight-line criterion was employed. As the clustering algorithm 

is going to work on the data collected indoors, numerous flat surfaces are expected to be scanned, i.e. walls, doors, etc. 

Therefore, a metric was introduced that forces the algorithm to group three consecutive points if the angle between them 

is close to π. 

However, not all points identified as lying along a line should be grouped together. In some cases, the angle and range at 

which the elements of the environment are observed limits the capability to correctly identify the surfaces on which they 

are located. Therefore, a metric was implemented that prevents the addition of points to a given cluster if the range or angle 

of observation were different than the predefined accepted values. 

The result of the clustering algorithm is shown in Figure 2. Each point cluster is drawn using a different color and the 

location of the LiDAR is marked with a red circle. 

 

Figure 2. Left: The result of the clustering algorithm single run. Right: a plan view of a scanned corridor. 

 

The right side of the Figure 2 shows a plan view of the scanned corridor. The wall protrusions that are not visible when 

analyzing the point cloud due to the small incidence angle (and the resulting insufficient density of measuring points) are 

marked in red. 

2.3 Shape identification algorithm 

After properly performed point cloud clustering, the SLAM algorithm proceeds to identification of shapes among obtained 

clusters. The algorithm detects straight lines and corners (L-shapes). If a given cluster cannot be assigned to any of these 

two categories, it is left unprocessed for further analysis. During latter algorithm iterations, it is combined with newly 

recorded points. 

Shapes are identified in the following order. First, an analysis of the covariance matrix of coordinates of points in a cluster 

is performed. Provided that the value of one of the diagonal elements of the matrix is significantly larger than the value of 

the other element, the cluster is identified either as a horizontal line (variance in the 𝑥 direction is relatively large), or 

a vertical line (variance in the 𝑦 direction is relatively large). For clusters that do not meet the conditions described above, 
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principal component analysis (PCA) is performed. If one of the eigenvalues of the covariance matrix is significantly larger 

than the other, then the cluster is identified as a line as well. The operation of the algorithm described above is shown in 

Figure 3, where all the lines were correctly identified among the clusters in Figure 2. 

 

Figure 3. Identification of lines among point clusters. 

 

If a given cluster fails to meet the previously described conditions, the algorithm proceeds to a more complex procedure. 

It checks whether a group of points can be classified as a corner (L-shape). In the first step, the shape of a rectangle is 

fitted into the cluster according to the SBRF (Search Based Rectangle Fitting) algorithm17, which minimizes the 

expression: 

 min
0<𝜃<

𝜋

2
,𝑐1,𝑐2

∑ (𝑥𝑖 𝑐𝑜𝑠 𝜃 + 𝑦𝑖 𝑠𝑖𝑛 𝜃 − 𝑐1)2
𝑖∈𝐏 + ∑ (−𝑥𝑖 𝑠𝑖𝑛 𝜃 + 𝑦𝑖 𝑐𝑜𝑠 𝜃 − 𝑐2)2

𝑖∈𝐏  (4) 

where θ is the angle of rotation of the rectangle (for the value 0 one of the edges is parallel to the abscissa),  𝑥𝑖  and  𝑦𝑖 are 

the coordinates of subsequent points from the cluster, and 𝑐1, 𝑐2 are the coefficients that satisfy the equation of two 

perpendicular lines 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃 = 𝑐1 and −𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 𝑐𝑜𝑠 𝜃 = 𝑐2. These lines are sides of the rectangle. 

In the next step of the algorithm, three vertices of the rectangle, that describe the cluster most accurately, are selected. 

Then, four values are calculated: 

• the area of the potential rectangle, 

• the number of points in the analyzed cluster that lie within the triangle defined by the selected vertices of the 

rectangle, 

• mean square error of the distance of the cluster points from two-line segments defined by the vertices of the 

rectangle, 

• length of the shorter side of the rectangle. 

If all the calculated values are within the experimentally determined limits, the shape is classified as a corner. If only the 

last condition is not met, the cluster can be identified as a corner or as a straight line. The final decision is made by 

comparing MSE of distance between a point cloud fragment and a closest line and corner. 

If any of the first three values does not fall within the specified limits, the analyzed cluster cannot be identified as a line or 

L-shape. It is then further stored as a set of points. The results of operation of the above described algorithm are shown in 

Figure 4. 
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Figure 4. Identification of lines and L-shapes among point clusters 

 

2.4 Algorithm implementation 

A Kalman filter (KF) is an element of the implemented SLAM system that allows for indirect fusion of recorded data after 

each measurement. The first step of the KF is a prediction of the sensor state vector (position, orientation and speed). The 

adopted motion model assumes a constant velocity of the laser scanner between measurements. The relationships 

describing this process can be characterized by using the following formulas: 

 𝐱̂𝑘+1|𝑘 = 𝚽𝐱̂𝑘|𝑘 (5) 

 𝐏𝑘+1|𝑘 = 𝚽𝐏𝑘|𝑘𝚽𝑇 + 𝐐𝑘 (6) 

where 𝐱̂𝑘+1|𝑘 is the predicted state vector, containing estimates of the platform's kinematic parameters, 𝐱̂𝑘|𝑘 is the state 

vector estimated by the filter in the previous time step 𝑘, Φ is the transition matrix, while the notation 𝑘 + 1|𝑘 means that 

the prediction relates to the state at the moment 𝑘 + 1, based on the state from the moment 𝑘. The matrices 𝐏𝑘+1|𝑘 and 

𝐏𝑘|𝑘 represent the covariance matrix of prediction and filtration errors respectively, whereas 𝐐𝑘 is the covariance matrix 

of the process disturbances, modeling random effects acting on the robot’s motion. 

A predicted sensor displacement, calculated as a difference between the currently predicted and previously estimated state 

vectors 𝐱̂𝑘+1|𝑘 − 𝐱̂𝑘|𝑘, is used as the initial condition for the ICP algorithm. This is an important step as the ICP algorithm 

inherent property is to seek a local minimum of the displacement MSE. If the sensor position between consecutive 

registrations differs significantly, the algorithm may erroneously indicate the pose transformation, what could lead to an 

incorrect fusion of subsequent scans. 

The translation and rotation calculated by the ICP algorithm are treated as a measurement vector in the update step of the 

Kalman filter. Update equations are presented below: 

 𝐱̂𝑘+1|𝑘+1 = 𝐱̂𝑘+1|𝑘 + 𝐊𝑘+1[𝐳𝑘+1 − ℎ(𝐱̂𝑘+1|𝑘)] (7) 

 𝐏𝑘+1|𝑘+1 = 𝐏𝑘|𝑘 − 𝐊𝑘+1𝐒𝑘+1𝐊𝑘+1
𝑇  (8) 

where 𝐊𝑘+1 is the Kalman gain matrix, 𝐳𝑘+1 is the measurement vector, ℎ is the non-linear observation function, and 𝐒𝑘+1 

is the innovation covariance matrix. 

After estimating the state vector, the map is updated. Firstly, the algorithm determines which points in the cloud were 

registered close to the already identified shapes. If the distance is below the threshold value, points and shapes are merged. 

Then, the procedures of clustering and shape identification is conducted for the remaining points. The last step of a map 
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update is to check which of the shapes can be merged with each other. For example, if two straight line segments lay close 

enough and their directions are similar – they can be represented as a single line segment. 

3. RESULTS 

During tests, several experiments were carried out. All data registrations were made using a RPLidar A2M8 scanner. It 

scans its surroundings in the 360º sector at the maximum range of 12 m. An omni-directional scan is produced by rotating 

the ranging core, where the laser beam source is mounted. The resulting measurement consists of a set of two-dimensional 

vectors 𝐩𝑖 = [𝜃, 𝜌] (point cloud), where 𝜃 is the azimuth angle expressed in degrees and 𝜌 is the range. 

3.1 Trajectory tracking 

The first test was carried out to check the accuracy of a trajectory tracking. It was done by performing static, omni-

directional laser scans at specific locations in a corridor. The subsequent positions of the scanner during the measurements 

corresponded to a rectilinear motion at a speed of approximately 5 m/s, with a scanning frequency of 10 Hz. As a result, 

point clouds were registered about every 0,5 m. 

Figure 5 shows the result of the implemented algorithm without an active shape recognition module. The platform was 

moving in the positive direction of the X-axis. It can be seen that despite relatively large distances between subsequent 

registrations, the Kalman filter predicted the platform’s kinematic parameters accurately enough, so that the ICP algorithm 

was able to calculate proper approximations of displacements. The analysis of the resulting map and the motion of the 

sensor shows that shapes and dimensions inside the corridor are correctly reproduced and the trajectory has been correctly 

determined as well. 

 

Figure 5. Map fused from 25 consecutive scans. Trajectory is marked with red, and the subsequent poses are marked with 

blue stars. 

 

An appropriate adjustment of various parameters of different system components has a significant impact on the accuracy 

of the process of simultaneous location and mapping. For example, a forced reduction of cloud density is often desired to 

minimize the amount of registered data or limit the unevenness in the spatial distribution of points. Figure 6 illustrates how 

the modifications in scan data preprocessing scheme could affect the mapping accuracy. After changing the desired 

minimal distance between points form 0.01m to 0.02m, the algorithm was longer able to achieve expected accuracy. The 

analysis of the map and sensor trajectory shows, that with consecutive measurements errors increased. The last part of the 

trajectory does not indicate movement in a straight line, and the location of the walls becomes ambiguous. 
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Figure 6. The map after changes in scan data preprocessing scheme. 

 

Another experiment was aimed at verifying the importance of using the KF. The SLAM algorithm was run without the 

displacement prediction step. This way, the operation of ICP algorithm information about an initial guess was examined. 

The results of the experiment are illustrated in Figure 7. 

 

Figure 7. The resulting map without KF displacement prediction. 

 

It seems conspicuous that the lack of displacement prediction precludes correct operation of the SLAM algorithm and that 

using the KF is necessary. 

3.2 ICP and map fusion 

The next experiment was conducted to test the clustering and shapes identification algorithms as well as the efficiency of 

the map update process after subsequent registrations. In the figures below, various stages of a map synthesis are presented. 
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Figure 8 shows how adjacent points are grouped into clusters and then turned into simple shapes. To increase a flexibility 

of the system the maximum size of point clusters was limited. Hence, there are visible differences of the adjusted clustering 

algorithm when comparing to the way the point cloud was processed in Figure 2. 

 

Figure 8. Points clustering with limited cluster size. 

 

A potential merging into larger structures takes place after the shape identification step. In Figure 9, adjacent shapes are 

checked for collinearity and position on the plane. If conditions for the fusion are met, line segments are merged with line 

segments or L-shapes. 

 

Figure 9. Shapes merging into larger structures. 

 

In Figure 9, it can be noticed that not all of the small shapes were a part of the merging process. This is due to the fact, that 

the criteria which manage this process must minimize the risk of mismatching the shapes as it may result in erroneous 

decisions about navigation and mapping. 

The result of mapping of the entire corridor during the dynamic experiment, where the sensor was registering consecutive 

scans while moving, is shown in Figure 10. It can be seen that only the last stage, i.e. scanning the right part of the corridor, 

has visible errors in the data association. For most of the trajectory, the algorithm for simultaneous location and mapping 
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works correctly. The shape of the building interior and the distances between the walls correspond to the real dimensions 

of the building. 

 

Figure 10. Map of the corridor and the trajectory of the platform. 

4. CONCLUSIONS 

The article presents a system performing the procedure of simultaneous location and mapping. Despite some visible 

inaccuracies, the presented results indicate that the adopted concept of solving the SLAM problem is correct. The degree 

of complexity of the system is significant, and the analysis of every algorithm step proves that robust and accurate 

operations require the experimental adjustment of many factors and threshold values. 

The evaluation of the results and experience gained during the implementation of the adopted concept allow to enlist 

potential directions of the system development: 

• modification of the ICP algorithm, e.g. by using the elements of the constructed map, which would increase the 

accuracy of estimating position and orientation changes, 

• developing a concept for identifying and removing environmentally incorrectly added elements to the map, which 

would have a positive effect on the system's flexibility and increase its ability to operate without interruption, 

• using information about occlusions, which would improve the accuracy of data association from subsequent 

measurements. 
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