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Abstract. We present a deep learning approach for restoring images degraded by atmospheric
optical turbulence. We consider the case of terrestrial imaging over long ranges with a wide field-
of-view. This produces an anisoplanatic imaging scenario where turbulence warping and blurring
vary spatially across the image. The proposed turbulence mitigation (TM) method assumes that a
sequence of short-exposure images is acquired. A block matching (BM) registration algorithm is
applied to the observed frames for dewarping, and the resulting images are averaged. A convolu-
tional neural network (CNN) is then employed to perform spatially adaptive restoration. We refer
to the proposed TM algorithm as the block matching and CNN (BM-CNN) method. Training the
CNN is accomplished using simulated data from a fast turbulence simulation tool capable of
producing a large amount of degraded imagery from declared truth images rapidly. Testing
is done using independent data simulated with a different well-validated numerical wave-propa-
gation simulator. Our proposed BM-CNN TM method is evaluated in a number of experiments
using quantitative metrics. The quantitative analysis is made possible by virtue of having truth
imagery from the simulations. A number of restored images are provided for subjective evalu-
ation. We demonstrate that the BM-CNN TMmethod outperforms the benchmark methods in the
scenarios tested. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.OE.60.3.033103]
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1 Introduction

The acquisition of long-range images is often affected by atmospheric optical turbulence.
The turbulence degradation is caused by changes in temperature and pressure along the optical
path that leads to variations in the index of refraction. The result is a quasi-periodic spatial and
temporal blur and warping.1–4 In the field of astronomy, this has been heavily investigated.3 For
astronomy, the field-of-view tends to be narrow, which causes the scene to be affected by the
atmosphere evenly across the entirety of the image. In this isoplanatic scenario, one can model
the degradation with a single linear shift-invariant (LSI) point spread function (PSF). In this
paper, we consider a terrestrial long-range imaging scenario with a relatively wide field-of-view.
This leads to anisoplanatic conditions where the degradation varies across the scene. This
requires a spatially varying PSF to successfully model the degradation.

There are many different approaches proposed in the literature to address the problem of
turbulence mitigation (TM) via post processing of degraded images. Most methods are based
on processing a sequence of short-exposure (SE) images.1,5 The reasoning is that SE images can
effectively freeze warping distortions temporally. This produces images with minimal motion
blur. However, the geometry of these individual frames varies temporally and is most likely
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incorrect.6,7 On the other hand, averaging the SE frames produces an image that is equivalent to a
long-exposure (LE) image. The LE image tends to have the correct geometry, but also has sig-
nificant amounts of motion blur.1 For these reasons, many TM algorithms follow the steps of
dewarping, fusion, and then blind deconvolution.1,8–15 Dewarping refers to motion compensation
of the SE frames so as to reduce the effects of motion blur when fused. The motion compensation
is typically followed by some sort of averaging to combine the frames and reduce noise. This
fusion also serves to average the spatially varying blur so that the resulting blur can be well
modeled by a simpler LSI PSF.1 Finally, the deconvolution step attempts to undo the blurring
from the LSI PSF.

The block matching and Wiener Filtering (BM-WF)1 method uses a parametric PSF model
and a fixed Wiener filter (WF) for the deconvolution. The parametric model for the PSF takes
into account diffraction from the optics, SE blurring, and residual motion blur from imperfect
image registration using BM. The parametric PSF used in BM-WF has only two unknown
parameters, making it much easier to optimize than traditional blind deconvolution methods.
Another popular TM method is bispectral speckle imaging (BSI).8–10,16–23 The BSI method
attempts to mitigate turbulence through the estimation of image magnitude and phase separately.
The name comes from “high-frequency intensity fluctuations that are referred to as speckles.”9

The BM-WF performed well in the studies reported by Hardie et al.1 and it is well suited to
adapting to machine learning. For these reasons, we have chosen to build on the framework
of BM-WF here.

Designing, optimizing, and evaluating TM algorithms are complicated by the difficulty in
obtaining ground truth imagery. Recently, there have been a number of turbulence simulators for
anisoplanatic imaging presented in the literature.2,19,24–27 Simulation has the advantage of being
able to produce a virtually unlimited amount of degraded images with corresponding ground
truth for nearly any scenario. These simulated data can be used for training machine learning
methods and for quantitative performance analysis of any TM methods. We believe accurate
simulation tools are essential to advance the field of TM. One well-validated turbulence sim-
ulator is the numerical wave-propagation anisoplanatic simulator developed by Hardie et al.2

This is the method we shall use for testing the TM algorithms presented in this paper. We
consider this type of numerical wave method the “gold standard” for anisoplanatic turbulence
simulation. However, it does have a relatively high computational complexity. Thus, we also
consider a fast simulation method based on that in Schwartzman et al.27 We have extended
Schwartzman’s warping-only simulator to add atmospheric blurring, and we use different tilt
correlation statistics as described in Sec. 2. Machine learning TM methods require a large
amount of training data. Thus, we believe our fast simulator is an effective choice for this
purpose. While we use the fast simulator for training, we shall validate all of our results by
generating testing data using the numerical wave-propagation simulator.

The WF used for deconvolution in the BM-WF method is known to be optimum in a mean
squared error sense for wide sense stationary (WSS) Gaussian images and noise along with an
LSI blur. However, in practice, we know that real images are not generally WSS and the statistics
are not necessarily Gaussian. Furthermore, while the fusion process does seek to make the
residual blur LSI, it may not be perfectly successful in this regard. For these reasons, we believe
that there is room for improvement in the BM-WF approach with respect to the WF. It is our
hypothesis that we can replace the WF with a convolutional neural network (CNN) and use deep
learning (DL) to obtain improved performance relative to the BM-WF method. We argue that the
non-linear CNN method is better equipped to address the non-stationary nature of most images
and also to address any spatially varying residual blur that may be present. The availability of the
new atmospheric turbulence simulators described above makes it possible to generate a virtually
unlimited amount of training data to support successful DL with a CNN in this application. We
refer to the new proposed algorithm as the BM and convolutional neural network (BM-CNN)
method.

Recently CNNs have been used heavily in image processing for a variety of tasks including
image restoration and image super resolution (SR). There have been many studies done
that show CNNs are successful in restoring images.28–32 While there are many different types
of networks that can do SR and restoration,33–37 here, we employ one recently proposed by
Elwarfalli and Hardie.38 The network is referred to as the Fusion of Interpolated Frames
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Network (FIFNet). This network has been chosen based on good demonstrated SR performance
and its lightweight architecture, i.e., it has relatively few convolution layers and can be trained
from scratch rather quickly. Large networks can take days or even weeks to train from scratch.
FIFNet can be trained in a matter of hours. The larger networks also often require transfer learn-
ing where pretrained networks are imported and refined with further training. Such transfer
learning is not necessary for FIFNet.

To the best of our knowledge, there is only one prior study in the literature that has been done
using CNNs to perform TM.39 In that work, they show that a CNN can restore images affected by
turbulence. However, their experimental study uses a simple simulator with images degraded
by only nine different PSFs. Furthermore, they do not employ any image registration in their
restoration method. In contrast, here, we use a full anisoplanatic simulator2 for validation, and a
modified version of the Schwartzman’s warping simulator for training.27 Our BM-CNN method
also gains improved performance by incorporating BM registration prior to CNN processing. We
study the performance of our BM-CNN method on four different turbulence levels at two noise
levels. We shall show there that the BM-CNN consistently outperforms the BM-WF method and
other benchmark methods in the scenarios tested here. We find the boost in performance most
pronounced in light to moderate turbulence and moderate to high noise levels.

The rest of the paper is organized as follows. Section 2 provides a description of turbulence
characterization statistics. It also explains the two turbulence simulation methods employed here.
Section 3 introduces the TM methods studied in this paper. Specifically, we introduce our pro-
posed BM-CNN method and compare and contrast it with the BM-WF benchmark method.
Details of the CNN architecture and training processes are also provided in Sec. 3. Section 4
presents the experimental results that includes a detailed quantitative analysis. Finally, conclu-
sions are articulated in Sec. 5.

2 Turbulence Simulation

2.1 Turbulence Characterization

Atmospheric optical turbulence impacts the imaging process by introducing random pockets of
air with varying indices of refraction along the optical path. Variations in the index of refraction
are often modeled with a refractive index structure function. This is given as

EQ-TARGET;temp:intralink-;e001;116;345DnðrÞ ¼ h½nðxþ rÞ − nðxÞ�2i ¼ C2
nr2∕3; (1)

where x and r are three-dimensional spatial coordinate vectors, r ¼ jrj, nð·Þ is the index of
refraction, and h·i represents an ensemble mean operator. The parameter C2

n is the refractive
index structure parameter and it has units of m−2∕3. Typical values of C2

n tend to range from
1 × 10−13 to 1 × 10−17 m−2∕3.40 When this quantity varies along the optical path, it may be
expressed as a function, C2

nðzÞ, and here we define z as the distance from the source.
Another key turbulence statistic that takes the full optical path into account is called the Fried

parameter and is denoted r0. The Fried parameter is also known as the atmospheric coherence
diameter.3,40 This parameter can be expressed in terms of the refractive index structure function
as

EQ-TARGET;temp:intralink-;e002;116;201r0 ¼
�
0.423

�
2π

λ

�
2
Z

z¼L

z¼0

C2
nðzÞ

�
z
L

�
5∕3

dz

�
−3∕5

; (2)

where λ is the wavelength and the path length is given by the variable L. The Fried parameter is
the key parameter that governs the atmospheric optical transfer function (OTF), the PSF, and
point source tilt variance.41 It is worth noting that a small r0 relative to the camera aperture
indicates a high level of atmospheric turbulence.

Warping from turbulence can be characterized by the point source angular tilt variance. The
two-axis Zernike tilt (Z-tilt) variance in units of radians squared is given by Tyson42 in terms of
r0 as
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where D is the aperture of the optics. As turbulence strength increases, we see a smaller r0 and
increased tilt variance. The increase in tilt variance corresponds into increased warping in the
observed imagery. There is also an increase in blurring as governed by the OTF.

Another relevant statistic is the isoplanatic angle.3 Point sources separated by less than this
angle will have similar PSFs and a mean wave function phase difference at the aperture of
<1 rad.40,43 The isoplanatic angle can also be expressed as a weighted integral of C2

nðzÞ,
yielding40,43

EQ-TARGET;temp:intralink-;e004;116;430θ0 ¼
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z
L

�
5∕3

dz

�
−3∕5

: (4)

Generally speaking, as the turbulence level increases, the isoplanatic patch size decreases. This
means the warping is less correlated spatially over a given separation distance. This tends to
make it harder to perform image registration.

The optical system parameters used for the analysis and results in this paper are listed in
Table 1. The specific turbulence statistics are listed in Table 2. All of the experimental results
presented in Sec. 4 are based on these values. We consider a visible system operating at relatively
long range (7 km) at four different turbulence levels. We further assume that the sensor is Nyquist
sampled relative to the diffraction-limited optical cutoff frequency. It is worth noting that some
prior work has been done addressing the problems of turbulence and undersampling jointly using
an approach based on the BM-WF method.41 We forgo that extra complication in this study, as
the emphasis here is on using machine learning for TM. The optical and turbulence parameters
have been selected to closely match those in the paper2 that describes the anisoplanatic simulator
employed here. The rationale for this choice is that the simulator is thoroughly validated using

Table 1 Optical parameters used in simulation results.

Parameter Value

Aperture D ¼ 0.2034 (m)

Focal length l ¼ 1.2000 (m)

F-number 5.8997

Wavelength λ ¼ 0.5250 (μm)

Object distance L ¼ 7000 (m)

Nyquist pixel spacing δ ¼ 1.5487 (μm)

Cutoff frequency ρc ¼ 322.8571 (cycles/mm)

Table 2 Turbulence parameters used in the simulation results.

Turbulence degradation

Parameter Level 1 Level 2 Level 3 Level 4

C2
n × 10−15 (m−2∕3) 0.0307 0.1227 0.4909 1.9638

Theoretical r 0 (m) 0.3863 0.1681 0.0732 0.0319

Theoretical D∕r 0 (unitless) 0.5265 1.2097 2.7789 6.3843

Isoplanatic angle (pixels) 13.4454 5.8516 2.5472 1.1087

RMS tilt (pixels) 0.5000 1 2 4
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those parameters.2 Thus, we have a high confidence that the data from the anisoplanatic sim-
ulator are realistic and consistent with key theoretical metrics.

The OTF for an imaging system in turbulence is well modeled as

EQ-TARGET;temp:intralink-;e005;116;699HðρÞ ¼ HatmðρÞHdifðρÞ; (5)

where ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
and u and v are the spatial frequencies in units of cycles per unit distance.

The average atmospheric OTF component is commonly expressed as3

EQ-TARGET;temp:intralink-;e006;116;642HatmðρÞ ¼ exp

�
−3.44

�
λlρ
r0

�
5∕3

�
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�
λlρ
D

�
1∕3

��
; (6)

where l is the camera focal length andD is the aperture diameter. The parameter α here serves as
a switch where the LE atmospheric OTF is generated by Eq. (6) when α ¼ 0. The ensemble-
average SE OTF is given by Eq. (6) when α ¼ 1. The SE OTF is effectively a shift corrected
OTF. When partial tilt correction is achieved by image registration, the parameter α ∈ ð0;1Þ can
be used as a tilt correction factor1 to produce an OTF that accounts for residual tilt variance
motion blurring.

For an imaging system with a circular aperture the diffraction-limited OTF is given as44

EQ-TARGET;temp:intralink-;e007;116;513HdifðρÞ ¼
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ρ
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2

r #
ρ ≤ ρc

0 otherwise

: (7)

Here, the variable ρc ¼ 1∕ðλfnÞ is the optical cutoff frequency with fn ¼ l∕D being the
f-number of the optics. It is worth noting that the theoretical LE PSF is the inverse Fourier
transform of Eq. (5) with α ¼ 0. Similarly, the theoretical average SE PSF is the inverse
Fourier transform of Eq. (5) with α ¼ 1.

Examples of OTFs for the optical parameters and turbulence levels in Tables 1 and 2 are
shown in Figs. 1 and 2. The LE OTFs are in Fig. 1 and the ensemble-average SE OTFs are in
Fig. 2. Note that as C2

n increases, the OTF becomes more low pass in nature and has more
blurring. Also, the LE OTFs have more blurring than the corresponding SE OTFs for the same
turbulence level. It is worth noting that additional OTF components could be added to the model.
These components could include defocus, optical aberrations, and atmospheric aerosol contri-
butions. In future work, the addition of aerosol OTFs45–47 may be a particularly interesting study
for terrestrial applications.
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Fig. 1 LE OTFs for the parameters in Tables 1 and 2.
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2.2 Anisoplanatic Numerical Wave-Propagation Simulation

The anisoplanatic simulator used here is a numerical wave-propagation method that produces
realistic anisoplanatic turbulence degradation. Extensive validation has been performed with this
simulator.2 Thus, we treat this type of numerical wave simulation method as the gold standard for
anisoplanatic data generation. All of the wave-propagation simulation parameters used in this
paper are the same as those reported in Hardie et al.2 The wave-propagation simulator takes as
input the optical parameters of the camera system and the C2

nðzÞ profile. It then produces and
applies a distinct PSF for every pixel in an input image to produce a degraded frame. It is worth
noting that this simulator does not assume an LSI PSF.

The PSFs are formed by propagating point sources from the object plane to the pupil plane
through a series of extended phase screens. The basic propagation geometry is shown in Fig. 3. It
is worth noting that the dimensions and number of phase screens shown are just for illustrative
purposes and are not necessarily the same as those used in Table 1. The left side of the figure

0 0.1 0.2 0.3 0.4 0.5
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0.2

0.4

0.6

0.8

1

Fig. 2 SE OTFs for the parameters in Tables 1 and 2.

Fig. 3 Anisoplanatic numerical wave-propagation simulation geometry. Point sources in the
object plane (z ¼ 0) are propagated using numerical wave propagation to the pupil plane of
the camera through a series of phase screens. A unique PSF is formed in the focal plane of the
simulated camera for each point source in the object plane.
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corresponds to the object plane at z ¼ 0. The smallest square on the right represents the pupil
plane, and the circle within represents the camera aperture. The red boxes represent extended
phase screens. We employ 10 screens in our simulations here.2 The statistics of the phase screens
are based on a modified von Kármán phase power spectral density (PSD).2,40 This includes the
Kolmogorov PSD as a special case. For each point source in the object plane, the portions of the
phase screens along the optical path are extracted and used for numerical wave propagation.
These cropped portions are shown as green rectangles for one point source, and blue for another.

Once the PSFs are generated, they are applied in a spatially varying convolution process to
produce a degraded image. The centroids of the PSFs will vary and this creates warping. The
width of PSFs themselves creates blurring. Because the PSFs vary spatially, the simulator pro-
duces anisoplantic warp and blur. Note that realistic spatial correlation is naturally created
because point sources will propagate through overlapping regions of the phase screens as shown
in Fig. 3. The closer the point sources, the more overlap the two propagating waves have within
the turbulent medium and the more correlation there will be between the resulting PSFs.

2.3 Fast Warping Simulation

The fast warping simulator used here is based on that presented by Schwartzman et al.27 This
simulator works by creating 2D arrays of white Gaussian random noise. The noise is filtered with
specially designed LSI filters to transform the white noise into random fields with realistic spatial
tilt correlation statistics. These shifts are applied to the truth image through interpolation creating
realistic geometric distortion.27

There are two important novel aspects of our fast warping simulator that differ from the one
proposed by Schwartzman et al.27 First, in addition to the warping we also introduce an LSI PSF
blurring using the average SE PSF from Eqs. (5) and (6) with α ¼ 1. The other difference is that
we employ the tilt statistics derived by Bose-Pillai.48 These statistics have been shown to provide
excellent agreement with the anisoplanatic simulator statistics.2

It should be noted that the warping generated by our fast simulator is anisoplanatic, but the
blurring is isoplanatic. Based on the small isoplanatic angles in Table 2, it is clear that this is not
as accurate as the anisoplanatic simulator with respect to individual frames. However, when
considering the average of many frames, the spatially varying PSFs will effectively combine
to be nearly LSI. Thus, after frame averaging, our fast simulator and the anisoplanatic simulator
will tend to be very comparable. We use this to our advantage to rapidly generate suitable train-
ing data for our proposed machine learning TM algorithm using the fast simulator. However, if
sufficient computational resources are available, one could use the full anisoplanatic simulator to
generate training data.

2.4 Simulator Comparison

While the numerical wave anisoplanatic simulator is considered to be very accurate, it does come
with a relatively high computational burden. The warping simulator on the other hand, with LSI
blurring, is much faster. This makes it much more practical for generating the vast quantities of
data necessary for DL training. To compare the speeds of the warping simulator and the
anisoplanatic simulator, 30 frames of size 256 × 256 were generated with both simulators using
MATLAB™ and the processing times on the same workstation were recorded. The anisoplanatic
wave-propagation simulator took 289 s, or nearly 5 min, to complete this task. The warping
simulator did the same in just over 3 s. This is ∼2 orders of magnitude speed enhancement.
This timing study has been conduced using a workstation with Intel(R) Core(TM) i9-
9980XE CPU @ 3 GHz with 128 GB of RAM and two NVIDIATitan RTX GPUs. Considering
that DL training requires thousands of images, some of which are much larger than 256 × 256,
one can clearly see the practical benefit of the fast simulator.

However, speed is not the only thing to consider. The fast simulator is only useful if it gen-
erates images that are statistically representative of the real image to be processed. In this paper,
we focus on TM methods that process an average of registered SE frames. Thus, the simple LSI
PSF used by the fast simulator is not problematic since the average of the anisoplanatic images
should be similar. This similarity allows use to train of the proposed BM-CNN TMmethod using
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the fast warping simulator. However, for thoroughness and rigor we test using both the fast
simulator and the anisoplanatic wave-propagation simulator. As will be seen in Sec. 4, the results
show that training with the fast simulator is highly effective.

An example simulated SE frame using both the wave-propagation simulation and the fast
warping simulator is shown in Fig. 4. The full ideal image is shown in Fig. 4(a). A 200 × 200

region of interest is shown in Fig. 4(b). The numerical wave-propagation simulation output for
level 3 turbulence is shown in Fig. 4(c). The same image with the optical flow arrows from
turbulence warping is shown in Fig. 4(d). Similar results using the fast warping simulator with
average SE PSF blur are shown in Figs. 4(e) and 4(f). One can see that the degraded images using
the two different simulation methods have a similar level of blur and warping.

3 Turbulence Mitigation

In this section, we define the TM methods studied here. For the reader’s convenience, all the
methods are listed along with their acronym in Table 3. The raw SE image from the simulator
plus noise is referred to simply as SE. The LE image formed as the average of the SE frames is
listed as LE in Table 3. The method of forming the average of images registered using BM is

Fig. 4 Turbulence simulator output comparison for level 3 turbulence and no noise. (a) Full size
ideal image; (b) 200 × 200 region of interest; (c) wave-propagation simulation output; (d) wave-
propagation output with optical flow; (e) fast warping simulator output; (f) fast warping simulator
output with optical flow.
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listed as BM-AVG. The next benchmark method listed in Table 3 is the LE followed by restora-
tion using a WF (LE-WF). The theoretical LE PSF is used for the WF and the noise-to-signal
(NSR) ratio parameter is optimized on the training data.1 The last two methods listed in Table 3
combine BM fusion with some type of image restoration. These two methods are described in
more detail in the following sections.

3.1 Block Matching and Wiener Filtering

The BM-WF method was proposed and described in detail by Hardie et al in Ref. 1. A block
diagram showing the key steps of this method is provided in Fig. 5. The SE frames are acquired
and then averaged to form a prototype image with approximately the correct geometry. BM is
then used to dewarp the SE images to the greatest extent possible. A B × B block size is used
with B ¼ 15 here. The search window is S × S, where S ¼ 7;9; 11 and 13 for the four turbulence
levels in Table 2, respectively. The partially dewarped SE images are then averaged. Finally, the
average image is processed with a WF. The WF has two parameters, the NSR and the parameter
α from Eq. (6) that represents the amount of tilt correction provided by the BM registration step.1

Here, we optimize these two parameters using the training data to make a fair comparison with
the DL method that has access to training data.

3.2 Block Matching and Convolutional Neural Network

In the proposed BM-CNN method, we use a CNN instead of the WF to perform restoration.
A block diagram detailing the process can be seen in Fig. 6. The CNN is non-linear in nature

Table 3 TM methods used and their acronyms.

TM method Acronym

Short exposure SE

Long exposure LE

Block matching and averaging BM-AVG

Long-exposure and Wiener filter LE-WF

Block matching and Wiener filter BM-WF

Block matching and convolutional neural network BM-CNN

Form
prototype
(Average)

Block
matching

registration

Fusion
(Average)

Wiener
filter

Model PSF

Fig. 5 BM-WF TM block diagram.1
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and we believe it is better equipped to address the non-stationary nature of the imagery that
results from the BM fusion step.

As previously stated in Sec. 1, our BM-CNN uses the FIFNet architecture. In particular, 10
convolution (Conv) + rectified linear unit (ReLU) activation layers are employed. The first five
convolution layers use a filter size of 3 × 3, and the last five use a filter size of 5 × 5. A diagram
of the network architecture is shown in Fig. 7. A listing and description of all of the layers is

Form
prototype
(Average)

Block
matching

registration

Fusion
(Average)

Regression
CNN

Library of
network
weights

Fig. 6 Proposed BM-CNN TM block diagram. It is worth noting that we have replaced the WF in
the BM-WF method with a CNN to improve performance.

Input
Input1

Input2

Conv1
ReLU1
Conv2
ReLU2
Conv3
ReLU3
Conv4
ReLU4
Conv5
ReLU5
Conv6
ReLU6
Conv7
ReLU7
Conv8
ReLU8

Crop1
Depthcat1Conv9
ReLU9

Crop2
Depthcat2Conv10
Regression

Fig. 7 FIFNet CNN network architecture used for the proposed BM-CNN TM method.
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provided in Table 4. As can be seen in Table 4, the total number of layers is 27. By current
standards, this represents a relatively small network. This allows the network to be trained from
scratch in a relatively short time. The network is implemented in MATLAB™ using the Deep
Learning Toolbox™.

Training and testing of the network are done here using the DIV2K database.49 This dataset
has become popular for testing image restoration and image SR methods. It contains 800 high-
resolution images for training and 100 for testing. The original images are 24-bit RGB images
with 2K resolution. All of the input images have been converted to grayscale with a floating point
dynamic range of 0 to 1. They have also been reduced in size by a scaling factor of 0.25.

The basic training process is shown in Fig. 8. The undegraded training data serve as the
“truth” images. These images are fed into the fast warping simulator to produce the degraded
images. BM is applied to these degraded images and then the registered images are then averaged
and fed into the CNN. During training iterations, image patches of size 61 × 61 are extracted
from random positions in each training image. The corresponding truth patches of size 31 × 31

are also extracted for regression. The convolutional layers of the CNN do not use zero padding,
so the processed image patches get smaller with each layer as shown in Table 4. This is why the
truth patch is smaller than the input patch. The advantage of this is that it allows for a smaller
network and avoids extrapolation errors on the patch borders.38

CNN updates during training are done using stochastic gradient descent with momentum
optimization. Sixty four different random patches are extracted from each training image.
We use a mini-batch size of 64 so that each iteration corresponds to one training image. All
training is done with a total of 100 epochs. We set the initial learning rate to 0.1 and reduced
this by a factor of 0.1 after every 10 epochs. Using the same workstation described in Sec. 2.4,
the total training time for this network is ∼100 min.

Table 4 Description of the FIFNet layers38 used for the proposed BM-CNN TM method. The
spatial dimensions of the activations are for training using 61 × 61 image patches.

Layers Type Spatial kernel Activations

1 Input — 61 × 61 × 1

2 Splitting — 61 × 61 × 1

3, 4 2D conv+ReLU 3 × 3 59 × 59 × 64

5, 6 2D conv+ReLU 3 × 3 57 × 57 × 64

7, 8 2D conv+ReLU 3 × 3 55 × 55 × 64

9, 10 2D conv+ReLU 3 × 3 53 × 53 × 64

11, 12 2D conv+ReLU 3 × 3 51 × 51 × 64

13, 14 2D Conv+ReLU 5 × 5 47 × 47 × 64

15, 16 2D conv+ReLU 5 × 5 43 × 43 × 64

17, 18 2D conv+ReLU 5 × 5 39 × 39 × 64

19, 20 2D crop+ReLU — 39 × 39 × 1

21 Concatenate — 39 × 39 × 65

22, 23 2D conv+ReLU 5 × 5 35 × 35 × 65

24 2D ccrop — 35 × 35 × 1

25 Concatenate — 35 × 35 × 66

26 2D conv 5 × 5 31 × 31 × 1

27 Regression — —
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4 Experimental Results

The experimental results have all been conducted using the optical parameters from Table 1 and
the turbulence degradation parameters from Table 2. The four different turbulence levels have all
been trained using the fast warping simulator for noise standard deviation of 10 and 30, relative
to an 8-bit grayscale image range. The results are all formed using image sequences of 30 SE
input frames for each turbulence and noise scenario generated from each of the original DIV2K
800 ideal truth images. For testing, the 100 DIV2K validation images are used. Here, we gen-
erate the 30 frame input sequences using both the fast warping simulator and the anisoplanatic
simulator.

4.1 Quantitative Results

To quantitatively compare results of the all TM methods, the metrics of peak signal-to-noise
ratio (PSNR) and structural similarity index measure of image quality (SSIM)50 are used.
In both metrics, the higher the number the better. For SSIM the numbers range from 0 to 1,
so getting numbers close to 1 is desired. The quantitative error metric values are averaged over
the 100 validation images with ignore border of 5 pixels on all sides to exclude any border
artifacts.

The PSNR results are provided in Tables 5–8 for the four turbulence levels in Table 2.
The corresponding SSIM results are in Tables 9–12. Data generated from the fast warping

Truth
image

database

Fast
warping

simulator

Block
matching

fusion

Regression
CNN

training

Fig. 8 BM-CNN training process block diagram.

Table 5 Average PSNR (dB) results for 100 validation sequences with
turbulence level 1 and 30 input frames.

Mitigation

Simulated data: training/testing

Noise std = 10 Noise std = 30

Warp/Warp Warp/Aniso Warp/Warp Warp/Aniso

SE 23.3489 23.2323 17.6345 17.6083

LE 26.1827 25.9293 25.3834 25.1803

BM-AVG 26.7063 26.4955 25.4702 25.3453

LE-WF 29.7577 29.7500 27.2442 27.1366

BM-WF 30.3766 30.3271 27.2241 27.2097

BM-CNN 31.8466 31.6640 28.8948 28.7915
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Table 6 Average PSNR (dB) results for 100 validation sequences with
turbulence level 2 and 30 input frames.

Mitigation

Simulated data: training/testing

Noise std = 10 Noise std = 30

Warp/Warp Warp/Aniso Warp/Warp Warp/Aniso

SE 21.6393 21.4881 17.0607 17.0140

LE 24.1923 23.8974 23.6663 23.4118

BM-AVG 25.6641 25.5496 24.4865 24.4400

LE-WF 27.1175 26.9127 25.5973 25.3992

BM-WF 29.2104 29.3532 26.3433 26.4179

BM-CNN 30.2577 30.3175 27.5861 27.6535

Table 7 Average PSNR (dB) results for 100 validation sequences with
turbulence level 3 and 30 input frames.

Mitigation

Simulated data: training/testing

Noise std = 10 Noise std = 30

Warp/Warp Warp/Aniso Warp/Warp Warp/Aniso

SE 19.7836 19.5549 16.2892 16.1915

LE 21.7032 21.3931 21.4016 21.1164

BM-AVG 23.2272 23.1571 22.3702 22.3104

LE-WF 23.8516 23.4875 23.2291 22.9434

BM-WF 26.2424 26.5105 24.1303 24.2210

BM-CNN 26.5992 26.8513 24.8633 24.9602

Table 8 Average PSNR (dB) results for 100 validation sequences with
turbulence level 4 and 30 input frames.

Mitigation

Simulated data: training/testing

Noise std = 10 Noise std = 30

Warp/Warp Warp/Aniso Warp/Warp Warp/Aniso

SE 18.2356 17.9519 15.5183 15.3691

LE 19.5227 19.2212 19.3411 19.0539

BM-AVG 20.2898 20.1493 19.8932 19.7544

LE-WF 21.2001 20.7712 20.9670 20.6208

BM-WF 22.4137 22.3624 21.4067 21.3097

BM-CNN 22.5889 22.5473 21.6959 21.6129
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Table 9 Average SSIM results for 100 validation sequences with turbu-
lence level 1 and 30 input frames.

Mitigation

Simulated data: training/testing

Noise std = 10 Noise std = 30

Warp/Warp Warp/Aniso Warp/Warp Warp/Aniso

SE 0.5435 0.5576 0.2482 0.2627

LE 0.8060 0.8055 0.7005 0.7064

BM-AVG 0.8230 0.8250 0.6856 0.6969

LE-WF 0.8572 0.8652 0.7607 0.7701

BM-WF 0.8630 0.8717 0.7444 0.7585

BM-CNN 0.9264 0.9299 0.8556 0.8613

Table 10 Average SSIM results for 100 validation sequences with turbu-
lence level 2 and 30 input frames.

Mitigation

Simulated data: training/testing

Noise Std = 10 Noise Std = 30

Warp/Warp Warp/Aniso Warp/Warp Warp/Aniso

SE 0.4589 0.4702 0.2071 0.2197

LE 0.7086 0.7042 0.6088 0.6108

BM-AVG 0.7817 0.7887 0.6350 0.6515

LE-WF 0.7960 0.8009 0.7065 0.7125

BM-WF 0.8395 0.8542 0.7181 0.7373

BM-CNN 0.9006 0.9104 0.8158 0.8287

Table 11 Average SSIM results for 100 validation sequences with turbu-
lence level 3 and 30 input frames.

Mitigation

Simulated data: training/testing

Noise std = 10 Noise std = 30

Warp/Warp Warp/Aniso Warp/Warp Warp/Aniso

SE 0.3647 0.3697 0.1622 0.1706

LE 0.5597 0.5489 0.4733 0.4687

BM-AVG 0.6534 0.6644 0.5160 0.5296

LE-WF 0.6712 0.6673 0.6077 0.6067

BM-WF 0.7482 0.7772 0.6277 0.6493

BM-CNN 0.7936 0.8180 0.7095 0.7275
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simulator are indicated with the designation “Warp” in the results tables. Data from the aniso-
planatic numerical wave-propagation simulator are designated “Aniso.” Bold entries in the tables
correspond to the best results. For the reader’s convenience, the quantitative PSNR values are
also plotted in Figs. 9 and 10 for noise standard deviations of 10 and 30, respectively. The cor-
responding SSIM values are plotted in Figs. 11 and 12. The plotted data are for testing on the
numerical wave-propagation anisoplanatic simulator.

One can see that the raw SE images score the lowest in the performance metrics. The LE
images perform better. This is due to the geometric correction provided by the frame averaging.
Averaging the frames after BM with the BM-AVG method provides further improvement. Here
we get the benefit of the LE geometric correction but with less turbulence motion blur. The LE-
WF gives the next best result as it includes restoration from the WF. Then we have the BM-WF
improving upon that, thanks to both the registration and restoration. Finally, we see that the BM-
CNN gives the highest quantitative performance values. The relative improvement is most pro-
nounced at lower turbulence levels and higher noise levels.

Table 12 Average SSIM results for 100 validation sequences with turbu-
lence level 4 and 30 input frames.

Mitigation

Simulated Data: training/testing

Noise std = 10 Noise std = 30

Warp/Warp Warp/Aniso Warp/Warp Warp/Aniso

SE 0.2963 0.2973 0.1324 0.1376

LE 0.4618 0.4458 0.3870 0.3771

BM-AVG 0.4903 0.4839 0.3992 0.3966

LE-WF 0.5417 0.5283 0.5186 0.5078

BM-WF 0.5788 0.5911 0.5228 0.5251

BM-CNN 0.6033 0.6168 0.5540 0.5584
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Fig. 9 PSNR (dB) results for the one hundred 30-frame validation sequences for the turbulence
levels in Table 2 and a noise standard deviation of 10.

Hoffmire et al.: Deep learning for anisoplanatic optical turbulence mitigation in long-range imaging

Optical Engineering 033103-15 March 2021 • Vol. 60(3)



4.2 Qualitative Image Results

Image results are shown in Figs. 13–16 for subjective evaluation. All of the images are 200 × 200

regions of interest with the same layout. Image (a) is the truth image and (b) is the raw SE image.
The LE and LE-WF are shown in (c) and (d), respectively. The BM-WF is shown in (e), and the
the BM-CNN is shown in (f).

Figure 13 shows the penguin image for level 2 turbulence noise standard deviation of 30. The
high noise level is evident in the raw SE image in Fig. 13(b). The LE image in Fig. 13(c) has
reduced noise from averaging 30 frames but is highly blurred. The sharpening effect of the WF in
Fig. 13(d) is clear in the LE-WF image. The BM-WF in Fig. 13(e) is sharper than the LE-WF
because the of the reduced turbulence motion blurring from the registration. Finally, note that the
BM-CNN image in Fig. 13(f) appears to have the same level of sharpness as the BM-WF, but
with superior noise suppression. The improved noise suppression is clearly visible in the white
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Fig. 11 SSIM results for the one hundred 30-frame validation sequences for the turbulence levels
in Table 2 and a noise standard deviation of 10.
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Fig. 10 PSNR (dB) results for the one hundred 30-frame validation sequences for the turbulence
levels in Table 2 and a noise standard deviation of 30.
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Fig. 12 SSIM results for the one hundred 30-frame validation sequences for the turbulence levels
in Table 2 and a noise standard deviation of 30.

Fig. 13 TM results using the anisoplanatic simulator data as testing data (Penguin). These results
are for turbulence level 2, 30 input frames, and noise standard deviation of 30. (a) Truth; (b) SE;
(c) LE; (d) LE-WF; (e) BM-WF; (f) BM-CNN.
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region of the penguin’s belly. We attribute this to the ability of the CNN to be non-linear and
spatially adaptive. In contrast, the fixed WF is limited to LSI processing. The same scenario is
shown in Fig. 14 for an image of a train. Similar relative performance of the methods is observed
here as well.

Level 3 turbulence results for the penguin image are shown in Fig. 15 with a lower noise
standard deviation of 10. The lower noise is evident by comparing Fig. 15(b) to Fig 13(b). The
increase in turbulence blurring is most pronounced when comparing Figs. 15(c) to Fig 13(c).
Here, both the BM-WF and BM-CNN provide good results, but again the BM-CNN provides the
same level of sharpness with noticeably more noise reduction. The same scenario for the image
of a train is shown in Fig. 16 with similar subjective results.

5 Conclusions

A DL approach to combating the image degradation from atmospheric turbulence is introduced
in this paper. In particular, we proposed the BM-CNN TMmethod that builds on earlier work by
some of the current authors with the BM-WF1 method. In our new approach, we have replaced
the WF with a CNN and employ DL to train the network. The CNN architecture we use here
is based on the FIFNet.38 The FIFNet has a lightweight architecture with relatively few layers.

Fig. 14 TM results using the anisoplanatic simulator data as testing data (Train). These results are
for turbulence level 2 and 30 input frames, and noise standard deviation of 30. (a) Truth; (b) SE;
(c) LE; (d) LE-WF; (e) BM-WF; (f) BM-CNN.
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This allows us to train the network from scratch, without the need for transfer learning, in
∼100 min. The BM-CNN method is one of the first in the literature to apply a CNN to the
problem of TM.

In addition to the important innovation of using a CNN for TM, we have also employed two
different turbulence simulation methods for the first time. Because of the high data requirements
for training, we employ a fast warping simulator for generating training images. The fast sim-
ulator extends the method introduced by Schwartzman et al.27 Our novel modifications include
the use of different tilt statistics and the introduction of LSI blurring using the average SE PSF,
as described in Sec. 2. While training is done exclusively with the fast simulator, testing is per-
formed here using both the fast simulator, and a numerical wave-propagation anisoplanatic
simulator.2 We believe numerical wave-propagation remains the gold standard for anisoplanatic
turbulence simulation. However, the fast simulator is ∼100 times faster. The BM-CNN trained
on the fast warping simulator gives almost identical performance results on testing data gener-
ated by both the warping simulator and the numerical wave-propagation anisoplanatic simulator.
We believe this shows that the computationally faster simulation method is well suited for train-
ing. We believe it is very significant that we have demonstrated that the fast simulator can be
effectively used for training in this application. The use of the fast simulator dramatically
increases the speed of training data generation and makes the DL process much more practical
in this application.

Fig. 15 TM results using the anisoplanatic simulator data as testing data (Penguin). These results
are for turbulence level 3, 30 input frames, and noise standard deviation of 10. (a) Truth; (b) SE;
(c) LE; (d) LE-WF; (e) BM-WF; (f) BM-CNN.
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The proposed BM-CNN is compared to several benchmark methods in Sec. 4. In all of the
quantitative performance experiments conducted, the BM-CNN was the best performing
method. The BM-WF was the next best performing method. In subjective evaluation of the
images, we have observed that the big advantage of the BM-CNN appears to be in how it handles
noise. The non-linear and spatially adaptive CNN method outperforms the WF and provides
noticeably more noise suppression in the flat areas while providing the same level of sharpness
in the dynamic areas. This gives very pleasing visual results that are supported by the favorable
performance metrics.
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Fig. 16 TM results using the anisoplanatic simulator data as testing data (Train). These results are
for turbulence level 3 and 30 input frames, and noise standard deviation of 10. (a) Truth; (b) SE;
(c) LE; (d) LE-WF; (e) BM-WF; (f) BM-CNN.
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