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Abstract. Aspheric lenses help meet the most demanding optical requirements while the pre-
cision injection molding technique hits the target for precision and cost. We developed a method
of analyzing aberration terms in the transmitted “wavefront measurement,” determined by
Shack–Hartmann wavefront sensing to estimate the fabrication errors of injection-molded
aspheric elements. Considering aspheric element fabrication using a small training data set and
F-measure fuzzy cluster analysis, an unsupervised learning method was applied to extract typical
aberration terms from the wavefront polynomial. The experimental results suggest that these
aberration terms, which are related to spherical (third-, fifth-, and seventh-order) and coma
(third-order) aberration terms in the transmitted wavefront polynomial expansion, can be
employed to estimate the surface error and decenter, respectively, of a lens from a specific mold
cavity. The sampling lenses evaluated in the proposed measuring process were collected from
different mold cavities according to their total working performance in the modulated transfer
function measurement for the whole camera module. The performances of the typical aberration
terms were discussed by comparing to the ones obtained from an interferometer and a profil-
ometer. The proposed method could provide high detection efficiency and can thus be applied for
the quality control of aspheric elements for mobile phones, where the existing errors are mainly
spherical, coma, and astigmatism aberrations. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.59.12.123102]
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1 Introduction

Injection-molded aspheric lenses have widespread applications in industrial and consumer elec-
tronics,1,2 among other fields. However, during injection molding, surface errors/deformations,
surface decentering and asymmetry, element internal stress birefringence, and nonuniform
refractive indices are almost inevitable. 3 Measurements are required to identify these errors,
optimize the injection-molding characteristics to compensate for them, and modify the prototype
molding parameters.4–7 Currently, aspheric element measurements are mainly achieved by either
contact or noncontact approaches to estimate the aspheric surface error.8 Due to the single-sided
physical geometry of the measured injection-molded lens, the imaging quality cannot be deter-
mined directly. Therefore, the transmitted wavefront measurement method, which provides
more comprehensive information for error estimation in injection molding, is used to adjust the
processes to achieve error compensation.
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Of all transmitted wavefront measurement methods, the most commonly employed
approaches focus on evaluating interference patterns and employing the Shack–Hartmann
(SH) method. Meanwhile, interferometry can provide extremely high accuracy, although it
requires either additional correction elements for compensation or stitching interferometry to
reduce the difficulty of interference fringe analysis.9 Moreover, these two interferometry tech-
niques have limited dynamic test ranges and protracted testing periods.10–13 Shack–Hartmann
wavefront sensing (SHWFS) can be utilized to reconstruct the wavefront directly from the
slope obtained in a single trial.14,15 Therefore, researchers have investigated SHWFS measure-
ments and the relationships between fabrication errors and SHWFS-measured transmitted
wavefronts.

In 2008, Lai et al.16 analyzed injection-molding conditions using numerical simulations.
They showed that the residual birefringence is generated in the mold-filling stage and that the
third-order spherical aberration (SA) is sensitive to the injection-molding process conditions.
Li et al. used finite element analysis to simulate the injection-molding process conditions.
The results obtained indicated that a predefined inhomogeneous refractive index and injection-
molding-induced warpage led to a distorted transmitted wavefront.17 Moreover, Huang et al.18

conducted numerical simulations of the residual birefringence of injection-molded lenses.
Combined with SHWFS experiments, these simulations showed that the transmitted wavefront
was affected by refractive index changes and residual birefringence errors in injection-molded
aspheric lenses. Overall, these studies clearly demonstrated that the transmitted wavefront can be
employed as a lens quality indicator. Thus, developing a method to extract typical aberration
terms from a complex wavefront and evaluate the lens quality has become a crucial problem in
wavefront measurement.

Learning-based methods19 have been used to solve inverse problems in quantifying optical
image distortions. The technique shows that it requires several hours or even days to collect tens
of thousands of labeled data experimentally for neural network training. This approach is not
readily feasible, particularly when applying error estimates of defective injection-molded
aspheric elements. To solve this problem, this report employs F-measure fuzzy cluster methods
(F-FCMs) to extract typical aberration terms. Accordingly, a small training data set (optical-
component structured error types for different molds under stable fabrication of an aspheric lens
in a mold cavity and stable measurement conditions and their corresponding lenses) can be
applied in practice. The unsupervised learning method used in FCMs is combined with the
physical fabrication procedure of precision injection molding. Moreover, following the extrac-
tion of typical aberration terms by F-FCM analysis, typical experimental results were evaluated
in comparison with interferometer and profilometer results. Thus, the simulation and experimen-
tal results verify the validity of the proposed error evaluation methods.

The remainder of this paper is structured as follows. Section 2 discusses the proposed meth-
ods, including those used for problem analysis, model building, and solution-finding. Section 3
describes the extraction of typical wavefront aberration terms. Section 4 presents an experimen-
tal analysis for the classification of mold cavities with different surface errors using a profilom-
eter, an interferometer, and SHWFS. Finally, Sec. 5 summarizes the primary conclusions of this
study and future research directions.

2 Methods

2.1 Transmitted Wavefront with Shack–Hartmann Wavefront-Sensing
Measurement

Figure 1 shows the experimental setup of the wavefront-sensing technique. The light wave prop-
agates through a fiber, a collimating lens, and a focusing lens, creating a fixed ideal point source
and transmitting through the effective aperture of the tested lens. Then the collimated light is
expanded to fully exploit the effective area of the wavefront sensor. The measured transmitted
wavefront,20 Wðρ; θÞ, can be expressed using a Zernike polynomial expansion (a detailed rep-
resentation is provided in Appendix A). The Zernike representation of the wavefront aberration
function is given by Eq. (1) with 36 terms.21
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EQ-TARGET;temp:intralink-;e001;116;537Wðρ; θÞ ¼
X36
k¼1

ZkCkðρ; θÞ; (1)

where ρi is the polar coordinate system radius, θi denotes the angle measured from the polar axis.
The wavefront measurement absolute accuracy root-mean-square (RMS) of the wavefront

testing system is 1∕20λ, and its wavefront-sensing validity and technical parameters are shown
in Appendix C.

2.2 Materials

The tested aspheric lens is shown in Fig. 2(a). Its two sides are denoted as A1 and A2 and the
effective aperture of the lens is 1 mm in diameter, which is used as the measuring area for evalu-
ation and comparison. This lens is used as the stop aperture in a mobile-phone camera lens,
which takes the layout similar to that of the patented lens in Fig. 2(b). The aspheric lens dis-
cussed was an optical element formed from a high-molecular polymer and fabricated by injection
molding.22 As a stable and precise large-scale fabrication process, its geometric fabrication

Fig. 1 Schematic diagram of experimental setup.

Fig. 2 (a) Aspherical surface of experimental sample lens (surfaces A1 and A2 are both rotation-
ally symmetric–aspherical, with an external diameter of 1.2 mm, effective optical aperture of 1 mm,
and lens thickness of 0.42 mm). (b) Mobile-phone camera module (US20160195698A1).
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accuracy was measured, and the fabrication parameters of the mold cavity were monitored and
adjusted to achieve superior optical performance.23 Figure 3 shows the measuring schemes:
measuring the working performance of the integrated camera module and measuring the single
optical element.

In Fig. 3, M-line is for the modulated transfer function (MTF) measurement for whole camera
module; in this way, the total working performance (TWP) of one mold cavity was evaluated as
follows: hundreds of tested lenses from one mold cavity were integrated into their whole camera
module [as shown in Fig. 2(b)], and then their lens performances could be evaluated in the whole
lens system; then, the system imaging quality, mainly indicated by their MTF values, can be
quantified according to the testing standard of the camera module; therefore, the TWP for differ-
ent mold cavities was evaluated. The TWP of a mold cavity was assigned the label no good (NG)
part when most tested lenses consistently failed to achieve a reliable quality upon integration.
The label trial group was assigned when the tested lenses could not achieve a stable performance,
and the fabrication parameters needed adjusted and optimized. In this way, the TWP describes
that the fabrication ability of the mold cavity system, whereas the percentage, e.g., 93%, of the
tested lenses revealed a reliable mold cavity possessing satisfactory system imaging quality.

In Fig. 3, I-line and P-line are employed for surface profile measurement of sides A1 and A2
of the lens element using the profilometer and the interferometer described in Appendix B,
respectively. These qualities are evaluated using peak-to-valley (PV) and RMS values for surface
errors, and using the deviation of the conic part for foci location error.

In our study, S-line is used to measure the transmitted wavefront of the lens element with
SHWS method, in which their typical aberration terms or the term combinations (as shown in
Fig. 3) are discussed and analyzed so that the evaluation of fabrication ability of the mold cavity
system could be realized. As we all know, the aberration functions for wavefront have been
investigated, e.g., Zernike polynomials, the polynomial representation of wavefront aberration
has been developed up to the fifth-order in the previous research work,24 and the polynomial has
a definite expression corresponding to the optical performance.25,26

These three measuring lines (M-line, I-line, and P-line) were employed, and their effective-
ness has been proved in the production line of the lens element; thus, their results are used
together to view the correlation analysis for selected typical aberration terms in transmitted

Fig. 3 Schematic diagram of lens measurements and evaluation procedure using the I-line, P-line,
M-line, and the proposed S-line in the production line.
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wavefront. First, in consideration of classification for small-scale datasets, the sampling lenses in
the proposed S-line were collected from different mold cavities according to their TWP in the
M-line; then it is ensured that the errors were distributed as diversely as possible (inter-cluster)
with different percentage reliability values or regarded as experimental trial or NG samples;
the overall repeatability of injection molding, generally <0.7% to assure the stable fabrication
of an aspheric lens in a mold cavity,27 ensures a stable consistency in the wavefront aberration
(intra-cluster). In this way, the typical wavefront aberration terms are selected using the fuzzy
clustering method analyzed in Sec. 2.3; further, these terms were characterized in the evaluation
experiments when analyzing their associations with the I-line and P-line measuring results.

2.3 Fuzzy Clustering Method

Clustering methods can be roughly divided into two groups, namely, hierarchical and partitional
methods.28 The results of hierarchical methods are represented as dendrograms, where each
branch represents a group of samples with similar characteristics; however, hierarchical methods
suffer from the non-uniqueness of the dendrogram.29 The objective of partitional methods is to
find the best partition of samples for clusters, in such a way that one criterion (e.g., the total
inertia of the clusters) is optimized.30 When the objective function assumes the smallest value,
each sample in the same group exhibits the smallest difference, and the differences among dis-
tinct groups became the largest. Meanwhile, because the classification only subdivided the data,
it did not necessarily have a physical meaning.31 Therefore, the FCM algorithm could be applied,
and the F-measure parameter (F, the weighted average of the F-measures of all the mold
cavities) was introduced to describe the validity of the classification. In this study, the sensitive
aberration terms with better cluster structures can also yield reliable data in geometric structures.
Based on the above choice, F-FCM can be applied more efficiently.

The fuzzy clustering algorithm links each lens to a cluster index via a real-valued
vector. The measured lenses were defined as the initial sample data set X, namely,
X ¼ fχ1; χ2 · · · χng ⊂ Rs, χk ¼ fχk1; χk2 · · · ; χkMgT ⊂ Rs, where χk corresponds to the
Zernike term of each lens. The index vector JðU;PÞ defines the lens membership with respect
to various clusters:

EQ-TARGET;temp:intralink-;e002;116;374JðU;PÞ ¼
Xc
k¼1

Xn
i¼1

umkid
2
ki; m ∈ ½1;∞� s:t U ∈ Mfc; (2)

EQ-TARGET;temp:intralink-;e003;116;313d2ki ¼ kχi − Pkk ¼ ðχi − PkÞTAkðχi − PkÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;290Mfc ¼
�
U ∈ Rcnjuki ∈ ½0; 1�∀ k

Xc
i¼1

uki ¼ 1; ∀ i0 <
Xc
i¼1

uki < n

�
; (4)

where 1 ≤ i ≤ n and 1 ≤ k ≤ c. In Eq. (2), c and n are the numbers of clusters and samples (or
lenses) in the data set, respectively; m is a real-valued number that controls the fuzziness of the
resulting clusters; uki is the degree of membership of lens xi in cluster k; and d2ki denotes the
square of the distance from lens χi to centroid Pk. Moreover,m is any real-valued number greater
than one (m ¼ 2 in the experiments). uki and Pkðk ¼ 1; 2 · · · cÞ can be obtained after minimiz-
ing the total inertia criterion.32 Meanwhile, the values of uki lie between 0 and 1 for the vector
components. For a given lens, an index close to one indicates a strong association with the
cluster. Conversely, index values close to zero indicate the absence of a strong association with
the corresponding cluster. In Eq. (3), Ak is a symmetric and positive definite matrix. When Ak is
the identity matrix, d2ki corresponds to the square of the Euclidian distance. Equation (4) indicates
that empty clusters are not allowed. Further, it shows that the parameters of interest are Pk and
uki. These parameters can be obtained in the four steps.33

1. Initialize: Fix c and m and calculate d2ki. Experimentally, c is equal to the number of
chosen cavities. Select c samples as initial centroids P0

k, and then form partitions of all
other samples around these centroids to obtain the initial partition matrix, U0 ¼ ½uki�,
k ¼ 1; : : : ; c and i ¼ 1; : : : ; n. At step l, perform the following procedure.
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2. Compute centroid Pl
k:

EQ-TARGET;temp:intralink-;e005;116;724Pl
k ¼

P
n
i¼1 u

ðl−1Þm
ki χiP

n
i¼1 u

ðl−1Þm
ki

: (5)

3. Compute membership values ulki:
EQ-TARGET;temp:intralink-;e006;116;659

ulki ¼

8>><
>>:

1P
c
j

�
dl
ki

dl
ki

� 2
m−1

; Ii ≠ ⊘;

0; ∀i ∈ Ĩi;
1
jIij ; ∀i ∈ Ii

Ii ¼ fkj1 ≤ k ≤ c; d2ki ¼ 0g;
Ĩi ¼ f1; 2; · · · cg − Ii:

(6)

4. Repeat procedures (b) and (c) until the objective function is minimized and stabilized,
i.e., kJl − Jl−1k ≤ ε, l > 1, where ε denotes the error between two consecutive values of
the constrained objective function.

After several rounds through Eqs. (5) and (6), the algorithm stops when the error between two
consecutive values of the constrained fuzzy partition matrix, U, is smaller than an a priori speci-
fied value. The typical Zernike terms are expected to exhibit a clustering effect, because the types
of lens fabrication errors from different mold cavities follow a specific distribution. For lenses
from the same mold cavity, the typical Zernike terms should be clustered closely together;
therefore, an evaluation function for the clustering effect was defined using the silhouette merit
function proposed by Rousseeuw.32 The silhouette sðχiÞ of the Zernike terms is given by the ratio
in Eq. (7):

EQ-TARGET;temp:intralink-;e007;116;448sðχiÞ ¼
bðχiÞ − aðχiÞ

maxfaðχiÞ; bðχiÞg
; (7)

where tr is the cluster to which χi belongs, aðχiÞ is defined as the average distance between χi
and all other points in tr. For any other cluster, ts ≠ tr, and let dðxi; tsÞ denote the average dis-
tance from xi to all points of ts. Furthermore, bðχiÞ is the smallest of dðχi; tsÞ, r ≠ s ¼ 1; : : : ; c.
The silhouette value lies between −1 and 1. When its value is below zero, its corresponding lens
has a poorly clustered structure. The classification does not necessarily have physical meaning as
a data subdivision.34

Another point to be addressed is the multilabel classification problem as a sample can belong
to more than one class.35 In this study, the performance measure is selected as the F-measure,
which combines precision and recall into a scalar,36 and is estimated from a multilabel data set as
follows:

EQ-TARGET;temp:intralink-;e008;116;283preðq; trÞ ¼
TPk

TPk þ FPk
¼ Nqtr

Nq
and recðq; trÞ ¼

TPk

TPk þ FNk
¼ Nqtr

Ntr

; (8)

respectively, where TPk (true positive) is the number of samples that are correctly labeled as
belonging to the k’th class, and false positive (FPk) and false negative (FNk) are defined analo-
gously; Nqtr is the number of lenses from original cavity q in cluster tr; Ntr denotes the total
number of lenses in cluster tr; and Nq represents the number of lenses from the mold cavity q.
The F-measure is weighted by a parameter β2 ∈ ð0;þ∞�. Then, the overall performance in
the N categories can be computed using the micro-averaged F-measure, which is defined as
follows:37,38

EQ-TARGET;temp:intralink-;e009;116;151Fq
β ¼

1þ β2

ð1þ β2Þ þ
P

N
k¼1

ðFPkþβ2FNkÞP
N
k¼1

TPk

: (9)

To obtain the clustering results, the F1-measure parameters for a single cavity β ¼ 1, then the
total F-measure F for the typical Zernike terms is obtained from the weighted average values of
each category, q, as follows:
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EQ-TARGET;temp:intralink-;e010;116;735F ¼
X
c

Nq × Fq
βP

q
Nq

: (10)

F lies between 0 and 1. In this way, it is expected that the typical Zernike terms have a typical
spatial distribution. Thus, the number of lenses from the original cavity q in cluster tr, which
possesses the typical Zernike term, must be the same as the number of lenses in the correspond-
ing mold cavity q. Further, it must be the same as those of the clusters in class tr, achieving
Nqtr ¼ Nq ¼ Ntr , F ¼ FðqÞ ¼ 1. When F is closer to 1, a typical term in the wavefront aber-
ration representation is selected, indicating that it is more sensitive to the errors of different mold
cavities. In contrast, a value of 0 indicates poor classification.

3 Extraction of Typical Wavefront Aberration Terms in the S-Line
Measurement

As discussed above, F-FCMs are introduced to extract typical aberration terms for small training
data sets (small molds and corresponding lenses). Seven different mold cavities were chosen for
the S-line experiments, labeled as 2BA, 3BA, 4BA, 6BA, 7BA, 8BA, and 9BA according to their
TWP in the M-line. Table 1 gives the label and the TWP of mold cavities and lenses used in
the experiments. For each mold cavity, 20 lenses were selected by uniform random sampling
and characterized for datasets; in total, 140 lenses were collected as samples to assess typical
aberrations in the S-line.

Each lens was measured in the SHWFS system to obtain the 36 Zernike polynomial coef-
ficients of the wavefront, namely, Zk. The measurement matrix MES140×36 was obtained from
these 140 lenses. Each row of the matrix represented 36 aberration coefficients of one lens. We
randomly selected r lenses as the initial centroids for one run of the algorithm in Eqs. (5) and (6).
Two stopping criteria were applied in the algorithm before convergence. As stated previously,
ε denotes the error between two consecutive values of the constrained objective function, and
lMx represents the prespecified maximum number of iterations.

About 10 runs of the FCM algorithm were performed. One run of the FCM algorithm led to
a local solution. Employing the local optimization method, the FCM algorithm was run with
different initializations to enable exploration of the entire data space and obtain an optimal
solution. The membership values and centroids that correspond to the lowest criterion value
were retained. The parameters used in the calculations are given in Table 2.

Table 1 Number of mold cavities and lenses used in experiments.

No Mold Input (Ni ) Total working performance

1 2BA 20 93%

2 3BA 20 92%

3 4BA 20 Trial group

4 6BA 20 87%

5 7BA 20 67%

6 8BA 20 NG part

7 9BA 20 Trial group

Table 2 Parameters of FCM algorithm.

Z i ðλÞ N r m ε lMx

140 7 2 10−7 500
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3.1 Selection of Zernike Terms Closely Associated with Clusters

For all Zernike terms, i.e., MES140×36, fuzzy cluster analysis was conducted for each column.
Accordingly, the F-measure parameters were obtained experimentally from all 140 samples.
The 36 terms, Zk (k ¼ 1; 2; : : : 36), were chosen as the x axis. The y axis was based on different
F-measures with a variation range of μThreshold (threshold of uki using 0.5, 0.7, and 0.9), resulting
in an F distribution of (0.5, 0.7, and 0.9), as shown in Fig. 4.

According to the results shown in Fig. 4, the typical Zernike terms, i.e., Z7, Z8, Z9, and Z16,
can achieve the ideal case of F ≈ 0.8, even when adopting different values of μThreshold.
Consequently, the typical terms are expected to classify lenses with different fabrication errors
from different mold cavities. Meanwhile, a smaller F value suggests a sensitive term, e.g., Z25,
and a scattered error distribution when it is applied.

3.2 Distributions of Membership and Silhouette Values

As deduced from Fig. 4, the wavefront data set can be divided into four categories: terms that are
not sensitive, such as Z4, Z5, and Z10; low-order terms (third-order) that are sensitive, such as
Z7, Z8, and Z9; high-order terms (fifth-order) that are sensitive, such as Z16; and terms that are
relatively sensitive, such as Z25. The scatterplots in Fig. 5 show the highest (horizontal axis) and
second-highest (vertical axis) μki values for Z4, Z7, Z16, and Z25. The above observations suggest
that it may be relevant to restrict the clustering algorithm to the typical Zernike terms that show
strong associations to a certain cluster.

For further investigation of a lens selection method that leads to clusters with better sepa-
ration, the silhouette values were calculated for each lens within each cluster. All lenses were
accounted for, i.e., the lenses with higher maximum μki values were included as well. Boxplots
of the silhouette values are shown for each cluster in Fig. 6. As expected, the sensitive terms, in
which the coefficient increases and approaches one, have significantly higher silhouette values
for the given cluster. In the case of Z4, the entire cluster, which contains numerous lenses with
negative silhouette values without lens selection, is a poorly clustered structure. Meanwhile, Z7,
a cluster that has no negative silhouette value for any selected lens, is one of the clusters with the
best separation [Fig. 6(b)]. In contrast, for the cases of Z16 and Z25, negative values start to
appear in one cluster (such as cluster 6 of Z16 and cluster 3 of Z25), indicating that the distribution
may be scattered under the current injection-molded lens error distribution.

As shown in Fig. 5, the distribution of the membership values varies markedly from one term
to another. For Z7 (similarly to Z8 and Z9), the behavior of each lens can be approximately
determined by its first and second membership values (maximum μki > 0.9) or the third-order
term, indicating that the current fabrication error mainly influences the third-order term. In con-
trast, in the case of Z4 (similarly to Z5 and other aberrations), the distribution of the μki values is
higher, and some lenses (≈8%) exhibit loose associations with any cluster (maximum μki < 0.5).
For Z16, the fraction of lenses with maximum μki values larger than 0.9 is markedly higher than

Fig. 4 F -distribution analysis for various Zernike terms with different membership functions.
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for the other terms (≈85%), and a fraction with maximum μki values below 0.5 does not exist.
For Z25, the fraction of the lenses with maximum μki values larger than 0.9 is ≈75%, and the
proportion with maximum μki values <0.5 is ≈1.5%.

In Fig. 6, it shows that the sensitivity to fabrication errors decreases as the term order
increases and the sensitive aberration terms have better cluster structures. Moreover, it implies
that the Zernike terms in the transmitted wavefront that are related to the SA, coma aberration,
and astigmatism are predominantly sensitive. The Zernike terms related to the third-order astig-
matism are Z5 and Z6, which are not predominantly sensitive. It is assumed that different errors
have a cross-effect on the correction of astigmatism aberrations, and that the coherent relation-
ship of the aberrations to the errors is not monotonic or more complicated.

4 Results and Discussions

4.1 Typical Wavefront Aberration Terms for Performance Evaluation of
Mold Cavities

Figure 7 shows the Z7 and Z8 distributions for sampling dataset from distinct mold cavities.
Figure 8 shows the Z9, Z16, and Z25 distributions, which indicates that Z9 and Z16 distributions
are more concentrated, and the distribution begins to disperse. Nevertheless, for different lenses
from a certain mold cavity, Z25 can still be distinguished. Z7, Z8, Z9, Z16, and Z25 are the terms
related to the third-order coma aberrations and third-, fifth-, and seventh-order SAs, respectively.

The error estimates of the lenses from different mold cavities are predominantly manifested
as the third-order coma aberrations and third-, fifth-, and seventh-order SAs, which nevertheless
show significant effects. In addition to the multi-order terms of the SA introduced by the

Fig. 5 Scatterplot of two highest membership values of all lenses in four categories of sets. The
vertical lines correspond to the median highest membership values: (a) Z 4; (b) Z 7; (c) Z 16; and
(d) Z 25 terms.

Cheng et al.: Fabrication-error analysis of injection-molded aspheric elements. . .

Optical Engineering 123102-9 December 2020 • Vol. 59(12)



injection-molding fabrication error, the system image quality is largely compromised by field-of-
view-related aberrations, specifically, coma aberrations. Figures 7(b), 8(a), and 8(b) indicate that,
by considering Z7 and Z8 or Z9 and Z16 together, the lenses from different mold cavities can be
separated; Fig. 8(d) shows that mold cavities labeled as 2BA and 3BAwith the highest value of
TWP, or 93% and 92%, respectively, have been separated distinctly from other mold cavities.

4.2 Performance Characterization with the I-Line and P-Line Measuring
Results

Further, these extracted typical terms were characterized in the evaluation experiments. Lenses
from another five different mold cavities were selected for a general applicability discussion, and
they are labeled as 4AB, 4AR, 5BA, 8AR, and 11AR. The extracted typical aberration terms in
the S-line would be used to allow a valid characterization among the comparison results of
the I-line and P-line.

Fig. 6 Boxplots of silhouette values of lenses in clusters. For each lens, a silhouette value was
computed with a threshold of 0.5 for the (a) Z 4; (b) Z 7; (c) Z 16; and (d) Z 25 terms.

Fig. 7 Distributions of Z 7 and Z 8 terms of wavefront polynomial for sampling dataset.
(a) Individual distributions with individual variations of Z 7 and Z 8. (b) Joint distribution of these
two coefficients, where the x axis is Z 7 and the y axis is Z 8.
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Tables 3 and 4 give the I-line and P-line measurement results, the surface profiles of two sides
of the element, respectively. Their TWP are also given, as defined in Sec. 2.2. First, as list in
Tables 3 and 4, lens fabrication errors for the two side surfaces [A1 and A2 in Fig. 1(a)] were
indicated with the PV and RMS values. Although the differences in the PV and RMS values for
the surface errors corresponding to the other four mold cavities are small, the differences are
large compared to those for 5BA. This finding suggests that, when fabricating the lenses, the
fabrication errors caused during the injection-molding procedure were significantly different
between 5BA (values typed in italic font) and the four other mold cavities. Meanwhile, the error
values of the other four lenses are closer to each other and larger.

Further, in this study, in consideration of the relationship between the wavefront SA and
the foci location, a model-fitting analysis of the aspheric coefficient R0 of surface profile
of the optical element was performed. For aspheric surfaces (ISO 10110, International
Organization for Standardization, Switzerland):

Fig. 8 Distribution analyses with individual variations of (a) Z 9; (b) Z 16; and (c) Z 25. (d) Joint
distribution analysis of Z 9 (λ), Z 16 (λ), and jZ 25j (λ).

Table 3 I-line measurement results (μm; L1_A1 and L1_A2 represent the two sides).

Mold

L1_A1 L1_A2

Total working
performance (%)

Vertical (x ) Horizontal (y ) Vertical (x ) Horizontal (y )

PV RMS PV RMS PV RMS PV RMS

4AB 0.278 0.050 0.257 0.049 0.465 0.119 0.551 0.129 78.9

4AR 0.299 0.074 0.361 0.081 0.654 0.153 0.807 0.168 76.4

5BA 0.036 0.009 0.137 0.019 0.186 0.066 0.152 0.063 95.1

8AR 0.246 0.048 0.274 0.052 0.517 0.139 0.626 0.148 80

11AR 0.213 0.049 0.288 0.059 0.658 0.187 0.818 0.203 83.5
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EQ-TARGET;temp:intralink-;e011;116;541x ¼ cy2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðK þ 1Þc2y2

p þ
X
j¼0

Ajy2jþ4; (11)

where c ¼ 1∕R0 is the vertex curvature, K denotes the conic constant, and Aj is the coefficient.
If this expression includes only the first term on the right, it indicates a strict conic surface. In
Eq. (11), when fitting rotational symmetric surfaces with nonorthogonal polynomials using the
least squares method, the values of the polynomial coefficients increase as the polynomial order
increases, such that massive coefficients may be derived in some cases. These coefficients are
usually randomly oriented26 with a tendency of alternating positive and negative values in the
higher orders. Thus, a suitable parameter should be used to describe the features of the surface
deviation, and this feature is employed for correlation with the SA terms. Furthermore, the lower-
order parameter has the largest influence on all higher-order terms; thus, the conic parameter was
chosen in this study. Let x be expressed in terms of y2. Then, the conic part in the polynomial
becomes an infinite series arranged in ascending powers of y2, and the polynomial can be
expressed as follows:

EQ-TARGET;temp:intralink-;e012;116;355x ¼ 1

2R0

y2 þ
�ð1 − e2Þ þ A0

8R3
0

�
y4 þ

�ð1 − e2Þ2 þ A1

16R5
0

�
y6þ · · ·¼

X
j¼1

Bjy2j: (12)

Here, R0 is the basic parameter and the higher orders are linear correction parameters on a
lower-order basis. Then, R0 is stable as the polynomial coefficient and could be used to analyze
the surface deviation characteristics and its imaging performance on the SA terms. In Eq. (12),
coefficient Bj; j ¼ 1 · · · 6 was fitted to the data obtained in the P-line measurement. We defined

Kj ¼ B
⌢

j − Bj, which indicates the deviation between the design value, Bj, and measured value,

B
⌢

j. Thus, the values of K1 for different mold cavities are calculated and the results in Fig. 9
reveal that the mold cavity 5BA is especially better and different from the others, which reach
the same conclusion as those in Tables 3 and 4.

The transmitted wavefront measurement results in the proposed S-line are shown in Fig. 10.
It shows that the lens wavefronts from the different mold cavities exhibit very similar patterns
with minimal differences in the RMS values for the overall wavefront. Moreover, the RMS
differences are below 0.01λ. Thus, in terms of the overall wavefront analysis, it is difficult
to characterize the optical performance using the PV parameter of the transmitted wavefront.
Nevertheless, it is convenient and effective to distinguish the optical performance by analyzing
the typical terms (the different order of SA Z9, Z16, and Z25), as shown in Fig. 10(f). The dis-
tribution of typical terms relative to the wavefront SA reveals that the 5BA is quite different from
those of the other cavities, i.e., 4AB, 4AR, 8AR, and 11AR, which appear more aggregated.
These results are consistent with those of the corresponding mold cavities measured in the

Table 4 P-line measurement results (μm; L1_A1 and L1_A2 represent the two sides).

Mold

L1_A1 L1_A2

Total working
performance (%)

Vertical (x ) Horizontal (y ) Vertical (x ) Horizontal (y )

PV RMS PV RMS PV RMS PV RMS

4AB 0.2593 0.0487 0.2481 0.0457 0.4463 0.0997 0.4996 0.1178 78.9

4AR 0.3099 0.0601 0.3338 0.0672 0.5545 0.1113 0.6114 0.1392 76.4

5BA 0.0816 0.0233 0.0948 0.0289 0.2028 0.0520 0.1321 0.0358 95.1

8AR 0.2019 0.0532 0.2390 0.0468 0.4946 0.1062 0.5627 0.1356 80

11AR 0.2015 0.0491 0.2592 0.0524 0.6041 0.1360 0.7046 0.176 83.5
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P-line and I-line. Therefore, the results show that, for S-line measurement, details such as the
error distribution form of the typical aberration terms could be properly used for error evaluation.

4.3 Relationship Between Decenter of Two Aspherical Surface and
Coma Aberration Term

In addition to surface errors, S-line measurement results are also used to analyze the decenter
error between the two surface sides of the element, which could exist in the fabrication process of
injection-molding. First, we check the decenter errors and their wavefront errors in the simu-
lation software (CODE V 11.2, Synopsys, Inc., Pasadena, California). In the numerical model,
the experimental system (Fig. 2) was simplified by removing the focusing and beam-expanding
assemblies. The effective aperture was set to 1 mm, and the results are shown in Fig. 11. The
influence of the lens thickness was not considered. The surface center deviation errors along

Fig. 9 Experimental results for K 1 from five mold cavities in P-line measurement [(a): A1 surface;
(b): A2 surface].

Fig. 10 SHWFS-measured lens wavefronts from different mold cavities: (a) 4AB; (b) 4AR; (c) 5BA;
(d) 8AR; and (e) 11AR. (f) Distribution analysis for SA terms Z 9, Z 16, and Z 25 from different mold
cavities.
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the x and y axes, caused by the mold overturning or lateral movement during the mold-clamping
process, were identified and simulated. In the injection-molding process, the actual decenter
error ranged from −30 to 30 μm. The resulting wavefront changes are shown in Fig. 11(b).
As shown in Fig. 12, the simulation results show that Z7 and Z8 are linearly changed as the
decenter increases, indicating a linear relationship between the coma aberration with decenter
and the corresponding lens.

These simulation results were found to be consistent with the experimental results of the
decenter detection test. The aspheric elements of samples from these seven mold cavities
(2BA, 3BA, 4BA, 6BA, 7BA, 8BA, and 9BA), were measured in the S-line and P-line.
Their Zernike terms relative to the coma and decenter along the x and y axes were evaluated.
A statistical model for the third-order coma aberrations (Z7, Z8) measured in S-line and the
decenter error measured in P-line was constructed by linear regression. The regression validity
was evaluated using the correlation coefficient R2, as expressed in Eq. (13). Then, linear regres-
sion analysis was performed, and the results in Eq. (14) were obtained, indicating a good linear
fit (Fig. 13).

Fig. 11 (a) Schematic diagram of simulated light path. The basic coordinate system of each
surface is a right-handed coordinate system, where the z axis is defined as the optical axis direc-
tion, and the aspherical surface is oriented in relation to the z axis. (b) Simulation analysis of the
decenter. The center in (b) is the standard wavefront, the upper left in (b) is the x axis 5 μm eccen-
tric wavefront, and the upper right in (b) is the x axis −5 μm eccentric wavefront. The lower left is
the y axis 5 μm eccentric wavefront, and the lower right is the y axis −5 μm eccentric wavefront.
(the boxes in the figure are squares of 1-mm side length.).

Fig. 12 Simulation results for the relationship between the decenter and third-order coma in the
optical element. (a) Simulated x axis decenter and third-order coma aberrationZ 7. (b) Simulated
y axis decenter and third-order coma aberrationZ 8.
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The relationship was further confirmed in a two-dimensional mapping of the results mea-
sured in the S-line and P-line, as shown in Fig. 14, which reveals that an approximately linear
correlation exists between the third-order coma and the decenter of the lens.

EQ-TARGET;temp:intralink-;e013;116;223R2 ¼ Sum squared residualðSSRÞ
Sum squared totalðSSTÞ ¼ 1 −

Sum squared errorðSSEÞ
Sum squared totalðSSTÞ ; (13)

EQ-TARGET;temp:intralink-;e014;116;166

yZ8 ¼ 0.0776596858483021Dy þ 0.0102023118878652R2 ¼ 0.9878;

yZ7 ¼ 0.0713977936741716Dx − 0.00197165997012183R2 ¼ 0.9567: (14)

5 Conclusions

Aspheric-lens fabrication errors were analyzed in transmission optical paths with a wavefront-
sensing technique to estimate the optical component errors, focusing on the errors caused during
injection molding. Accordingly, transmitted wavefront analysis and extraction of typical

Fig. 13 Eccentricity effects and corresponding fitting analysis. (a) Fitting analysis results for x axis
decenter and third-order coma aberrationZ 7. (b) Fitting analysis results for y axis decenter and
third-order coma aberrationZ 8.

Fig. 14 Two-dimensional mapping (indicated with the dotted lines) for measured coma aberration
terms Z7 and Z8 (a) using SHWFS and decenter of two aspherical surfaces (b) using the
profilometer.
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aberration terms were performed to evaluate injection-molded aspheric lenses. Mobile-phone
camera lenses, primarily exhibiting spherical and coma aberrations, were used as samples.
The typical Zernike terms in the transmitted wavefront aberration function were evaluated using
unsupervised-learning-based F-FCMs. This indicates that the fabrication errors caused during
the injection-molding procedure differ significantly, and the extracted typical aberration terms
thus allow a valid characterization by comparison of the results obtained with a profilometer,
interferometer, and the SHWFS. Mapping relationships between the measurement results reveal
the correlation between the third-order coma and the decenter of the lens.

The experimental results show that interferometers and profilometers could ensure high res-
olutions in the sub-nanometer range, however, it would take more than 5 min to complete the
measurements for each lens. Further, it is necessary to measure the two faces of each aspheric
lens separately when measuring the reflective wavefront of a surface. Currently, SHWFS method
could not achieve a measurement accuracy as high as that obtainable by interferometry.
However, using the transmitted wavefront measurement with SHWFS technique, combined with
the proposed aberration term-based fabrication-error analysis method in this study, has shown
that a lens can be measured in a single test trial to obtain the complete error state and the analysis
of the transmitted wavefront could serve as a relatively low-cost general-purpose method in the
production line.

The extracted typical Zernike terms that were identified in the SHWFS measurements
had shown their efficiency and accuracy when being employed as indicators for assessing
surface and decenter errors. These terms can be applied to efficiently adjust the injection-
molding process conditions. This capability is critical for developing guidelines for error com-
pensation during fabrication, especially for mass production of aspheric lenses via injection-
molding with multiple related factors. Based on the error distributions and principles of the
corresponding variations in actual production, the ranges of typical factors can be determined.
Subsequently, the expression can be used to make adjustments to fix specific fabrication errors
for optical performance improvement of certain optical properties. Moreover, preliminary lens
screening can be realized before performing higher-resolution examinations via interferometry
and profilometry, and accordingly, more timely feedback for processing improvements can be
provided.

In future studies, typical aberration terms in the SHWFS measurements will be discussed
further, which is expected to provide additional information about the transmitted wavefront
data, including surface defects, refractive indices, inhomogeneities, and other defects. Further,
the inspection for the off-axis aberrations and the light spectra influence will be discussed so
that a complete justification of the lens performance is realized.

6 Appendices

6.1 Appendix A: Zernike Representation of the Wavefront Aberration
Function

Zernike polynomials provide an excellent metric basis for describing and understanding errors
in optical surface geometry. In this study, coefficient indexing associated with the Zernike
polynomial fringe form was employed.23 The measured wavefront was circular, and it was
reconstructed by Zernike polynomial fitting. The first 36 terms of the fringe Zernike polynomial
were selected to fit the wavefront in polar coordinates, Wðρ; θÞ, as follows:

EQ-TARGET;temp:intralink-;e015;116;176Wðρ; θÞ ¼
X36
i¼1

ZiCiðρ; θÞ ¼ Z1C1ðρ; θÞ þ Z2C2ðρ; θÞþ · · · ; (15)

where Zi is the Zernike fitting coefficient; Ciðρ; θÞ is the Zernike orthogonal basis; and
ρ and θ are the two parameters of the polar coordinate system. These orthogonal bases satisfy
orthogonality inside the unit circle. Figure 15 shows the Zernike polynomial. Table 5 shows
the expressions for the fringe Zernike polynomial and descriptions of the corresponding
aberrations.
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6.2 Appendix B: Commercially Available Testing Equipment in Experiments

The commercially available testing devices used in the error detection experiments were the
Panasonic UA3P profilometer39 and Zygo Compass interferometer.40 The profilometer accuracy
was 0.1 μm. The interferometer measurement accuracy was in the sub-nanometer range.

6.3 Appendix C: Wavefront Measurement Data Reproducibility and Stability

The experimental system was established based on the structure of the wavefront-sensing device
from TriOptics, Germany.41 The detailed parameters of the components used in the testing
system are shown in Table 6.

Fig. 15 Graphical depictions of Zernike polynomials.

Table 5 Physical meanings and expressions of Zernike polynomials.

Order Term Aberration description Basis function

A[0][0] Z 1 Piston or base 1

A[1][–1] Z 2 Tilt y R cosðθÞ
A[1][1] Z 3 Tilt x R sinðθÞ
A[2][0] Z 4 Defocus 2R2 − 1

A[2][–2] Z 5 Astig 0° or 90° R2 cosð2θÞ
A[2][2] Z 6 Astig �45° R2 sinð2θÞ
A[3][ –1] Z 7 Coma y ð3R3 − 2RÞ cosðθÞ
A[3][1] Z 8 Coma x ð3R3 − 2RÞ sinðθÞ
A[4][0] Z 9 Primary spherical 6R4 − 6R2 þ 1

A[3][–3] Z 10 Trefoil y R3 cosð3θÞ
A[3][3] Z 11 Trefoil x R3 sinð3θÞ
A[4][–2] Z 12 Secondary astigmatism 0°/90° ð4R4 − 3R2Þ cosð2θÞ
A[4][2] Z 13 Secondary astigmatism �45° ð4R4 − 3R2Þ sinð2θÞ
A[5][–1] Z 14 Secondary coma y ð10R5 − 12R3 þ 3RÞ cosðθÞ
A[5][1] Z 15 Secondary coma x ð10R5 − 12R3 þ 3RÞ sinðθÞ
A[6][0] Z 16 Secondary spherical 20R6 − 30R4 þ 12R2 − 1

Table 6 Technical parameters of wavefront testing system.

Measurement
wavelength

Test
lens

Beam
expander

Number
of micro
lenslets

Aperture
dimension

Tilt
dynamic
range

Focus
dynamic
range

Wavefront
measurement

absolute
accuracy (RMS)

Repeatability
(RMS)

532 nm 1 mm 7.36× 150 × 150 15 × 15 mm2 1500λ 500λ λ∕20 λ∕200
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During the actual experimental process, errors caused by environmental factors were inevi-
table. Thus, it was necessary to determine the validity of the data. Sixty-five independent
repeated measurements were performed with one lens, and the statistical distribution histograms
of 36 Zernike terms were obtained. Figure 16 shows the Z16 distribution as an example, which is
similar to the others. Further, the measurement error follows a normal distribution. Table 7 gives
the statistical results for Z7, Z8, Z9, Z16, and Z25. According to the criterion based on the value of
3σ, no abnormal data exist in these measurements. Figure 17 shows the difference in the mean
wavefront between two adjacent measurements, which is <λ∕50. The maximum wavefront dif-
ference between two adjacent measurements is <λ∕5. The wavefront data are thus considered
stable for perfect imaging.42

Fig. 16 Frequency distribution histogram of Z 16 (λ).

Table 7 Statistical results for Z7, Z8, Z9, Z16, and Z25.

Term Z7 (λ) Z8 (λ) Z9 (λ) Z16 (λ) Z25 (λ)

Mean 0.090318 0.051920 0.492910 −0.792187 −0.165534

Standard deviation 0.003003 0.003429 0.001623 0.001438 0.001336

Fig. 17 Two adjacent wavefront measurements: (a) difference between means; (b) difference
between maximum values.
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