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Abstract. An extension of the fusion of interpolated frames superresolution (FIF SR) method to perform SR in
the presence of atmospheric optical turbulence is presented. The goal of such processing is to improve the
performance of imaging systems impacted by turbulence. We provide an optical transfer function analysis that
illustrates regimes where significant degradation from both aliasing and turbulence may be present in imaging
systems. This analysis demonstrates the potential need for simultaneous SR and turbulence mitigation (TM).
While the FIF SR method was not originally proposed to address this joint restoration problem, we believe it is
well suited for this task. We propose a variation of the FIF SR method that has a fusion parameter that allows it to
transition from traditional diffraction-limited SR to pure TM with no SR as well as a continuum in between. This
fusion parameter balances subpixel resolution, needed for SR, with the amount of temporal averaging, needed
for TM and noise reduction. In addition, we develop a model of the interpolation blurring that results from the
fusion process, as a function of this tuning parameter. The blurring model is then incorporated into the overall
degradation model that is addressed in the restoration step of the FIF SR method. This innovation benefits the
FIF SR method in all applications. We present a number of experimental results to demonstrate the efficacy of
the FIF SR method in different levels of turbulence. Simulated imagery with known ground truth is used for a
detailed quantitative analysis. Three real infrared image sequences are also used. Two of these include bar
targets that allow for a quantitative resolution enhancement assessment. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.OE.58.8.083103]
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1 Introduction
Designing imaging systems involves a complex trade space.
The focal plane array detector pitch determines the spatial
sampling frequency, and the f-number of the optics and
wavelength determine the diffraction-limited optical cutoff
frequency. The Nyquist sampling criterion dictates that the
sampling frequency must exceed twice the cutoff frequency
in order to guarantee that there will be no aliasing in the
acquired imagery. The desire for a wide field of view and
high optical resolution calls for a low f-number and high
optical cut-off frequency. However, practical limitations
associated with a small detector size often lead to employing
focal plane arrays that do not meet the Nyquist criterion
under diffraction-limited imaging conditions.1 Such under-
sampling may prevent the imaging system from achieving
the full resolution afforded by the optics. A wide variety
of superresolution (SR) algorithms have been proposed to
successfully address such undersampling using multiple
unique frames with relative motion between the scene and
camera.2,3

Another potential source of image degradation, especially
for long-range imaging, is atmospheric optical turbulence.
Random fluctuations in the index of refraction along the

optical path result in spatially and temporally varying image
blur and warping.4–6 A variety of turbulence mitigation (TM)
methods have been developed to address this issue by
processing multiple short exposure images.7–9 There is an
important connection between optical turbulence and the
undersampling problem. With heavy turbulence, the blurring
acts as an anti-aliasing low-pass filter that lowers the effective
cut-off frequency of the optical system and limits or prevents
aliasing. However, in light to moderate turbulence, significant
aliasing artifacts may be present simultaneously with the
turbulence degradation. In Sec. 3 of this paper, we provide
an optical transfer function (OTF) analysis to illustrate this
point and demonstrate the potential need for simultaneous
SR and TM. This joint restoration problem has received more
limited attention in the literature than SR and TM alone.10–15

It is interesting to compare and contrast how SR and TM
methods exploit multiple frames for restoration. In the case of
SR, spatial sampling diversity is provided by the multiple
input frames. For a static scene, video provides “excess” tem-
poral resolution that can be traded for increased single-frame
spatial resolution to combat the system’s native undersam-
pling. In the case of spatial-domain TM, the use of multiple
frames is important for two main reasons. The first is that
averaging multiple globally registered frames can help to
reveal the correct scene geometry that is otherwise distorted
in each frame by the quasiperiodic and spatially-varying
warping from turbulence. The second benefit of using
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multiple frames for TM is that temporal averaging of regis-
tered input frames tends to produce a prototype image with a
more spatially invariant residual blur than the individual
frames.9,16 A spatially invariant point spread function (PSF)
blur can be addressed with a relatively simple restoration
method, such as a Wiener filter. Thus, one can see that aver-
aging in some form is key for spatial-domain TM. However,
this averaging is at odds with how SR exploits the unique
information in each frame for sampling diversity. Thus, any
method that seeks to accomplish both SR and TM jointly
needs to balance temporal averaging with preservation of
spatial sampling diversity.

A framework that is well suited to balance the factors
described above is the fusion of interpolated frames (FIF)
SR method, recently proposed by two of the current
authors.17 The FIF SR method is a multiframe SR algorithm
that fuses interpolated versions of each low resolution (LR)
input frame. The fusion weights are based on the subpixel
alignment for each interpolated pixel, any color information
that may be available, and estimated local scene motion
activity. A Wiener filter is then applied to the fused image
to address the modeled OTF blurring. Here, we extend the
FIF SR approach in two important ways to allow it to effec-
tively treat SR and TM simultaneously. First, we incorporate
an atmospheric OTF model to the overall degradation model
used for the restoration step. Specifically, we use the
approach that incorporates an estimate of the level of image
registration, or atmospheric tilt reduction, as described by
Hardie et al.9 The second key aspect of our extended FIF
SR method is that we employ a tunable subpixel fusion
weighting parameter that may be set according to the level
of turbulence. Under light turbulence, the parameter may set
so as to provide a large weight only to pixels that lie very
close to the high resolution (HR) grid. This provides maxi-
mum SR and minimum interpolation blurring. However, it
also effectively reduces the amount of temporal averaging.
When the turbulence is stronger, the parameter may be set
to be less selective in the weighting to increase the effective
averaging of the frames. While this is beneficial for TM,
there tends to be more interpolation blurring in the fused
image in this case. To help address this, we introduce and
model an interpolation blurring OTF component. Thus, the

overall OTF model used here in the restoration step smartly
incorporates knowledge of key aspects of the algorithm
processing steps that precede the OTF restoration. In particu-
lar, it incorporates the level of registration that impacts
the residual atmospheric blurring and the level of subpixel
weighting that impacts the interpolation blur. We believe this
smart OTF model allows theWiener filter to better restore the
fused image and provide improved performance.

We would like to note that this paper represents a greatly
expanded version of recent conference papers by the same
authors.18,19 Major additions include the development of the
interpolation OTF, all new and expanded simulation results,
and new results with real image sequences. The remainder
of this paper is organized as follows. In Sec. 2, we describe
the FIF SR method and present the development that models
the PSF and OTF of the interpolation and fusion steps. In
Sec. 3, we introduce the overall OTF model used by the
FIF SR method that incorporates diffraction, turbulence, and
interpolation blurring. This section also includes an analysis
of the impact of turbulence on undersampling and aliasing.
Experimental results are presented in Sec. 4. These results
include both simulated and real imagery. The simulated data
are generated with a numerical wave propagation method
and allow for a detailed quantitative analysis with ground
truth.20 This analysis shows that the FIF SR method can
effectively perform TM and SR simultaneously for a range
of scenarios. Furthermore, one particularly interesting result
we show is that the tilt variance from turbulence can actually
improve SR results, compared with no turbulence, when no
camera platform motion is present. In this case, the random
wavefront tilts provide the critical relative motion between
the scene and camera for SR sampling diversity, as described
by Fishbain et al.10 and Yaroslavsky et al.11 We believe our
simulation study is the first quantitative error analysis of its
kind to demonstrate this phenomenon in the literature.
Finally, we offer conclusions in Sec. 5.

2 Fusion of Interpolated Frames Superresolution

2.1 Algorithm Description

Figure 1 shows a block diagram summarizing the FIF SR
method, originally from Karch and Hardie,17 and adapted

Fig. 1 Block diagram of the FIF SR method. Observed frames are registered, interpolated individually,
and then fused based on a subpixel weighting. A Wiener filter provides restoration based on an OTF
model that incorporates registration accuracy and subpixel weighting.
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here for joint SR and TM. In our implementation, short-
exposure LR observed frames are registered using one of
a variety of registration methods appropriate to the applica-
tion. Next, single-frame interpolation is used to upsample the
individual input images by a factor ofM to the Nyquist sam-
pling grid, based on the diffraction-limited optical cut-off
frequency. The interpolated images are formed in alignment
to a common reference frame or frame average.9,16 We shall
consider different interpolation kernels here in our analysis.
The next block is where the multiframe fusion takes place.
Each interpolated pixel in each frame gets a weight based on
subpixel alignment for each interpolated pixel. Finally, a
Wiener filter is applied to the fused image to produce a single
restored image. The Wiener filter makes use of a PSF model
that incorporates atmospheric parameters, optical system
parameters, level of tilt reduction in the registration step, and
the interpolation blurring.

Note that the FIF SR algorithm may be viewed as a type
of nonuniform interpolation SR method.2 The FIF SR
method and other nonuniform interpolation SR methods
simplify the SR problem by separating it into registration and
nonuniform interpolation followed by OTF restoration.
Applying the Wiener filter for OTF restoration after the non-
uniform interpolation is justified by the assumption that the
warping and burring operators commute in the degradation
observation model. In the case of translational motion, the
assumption is fully valid.2 For some other types of motion,
such as affine, the warping and burring operators have been
shown by Hardie et al.21 to approximately commute.

Let us now consider the heart of the FIF SR method,
which is the fusion step. Assume there are K input frames
and one fused output frame. We define the interpolated input
pixel i in the frame k as fkðiÞ, and this corresponds to a sam-
ple of fkðx; yÞ in Fig. 1. Let the fused pixel i on the Nyquist
grid be denoted as gðiÞ. This represents a sample of gðx; yÞ in
Fig. 1. With this notation, the fused image pixels are given by

EQ-TARGET;temp:intralink-;e001;63;356gðiÞ ¼
P

K
k¼1 wi;kðβÞfkðiÞP

K
k¼1 wi;kðβÞ

; (1)

where

EQ-TARGET;temp:intralink-;e002;63;301wi;kðβÞ ¼ e−ðdxði;kÞ2þdyði;kÞ2Þ∕β2 (2)

is the subpixel interpolation weighting function with param-
eter β. The weight for frame k at HR output position i is
based on the distance from that output position and the near-
est noninterpolated pixel from frame k. The horizontal

distance is denoted dxði; kÞ and the vertical distance is
dyði; kÞ. These distances are illustrated in Fig. 2.

Note that Eq. (2) gives a Gaussian weighting, with more
weight given to frames that have a lower distance to an
observed pixel. This is because larger distances tend to give
larger interpolation errors.22 The weighting function is plot-
ted in Figs. 3(a) and 3(b) for β ¼ 0.25 and 0.10, respectively.
One can see that increasing β makes the fusion less selective,
giving increased weight to frames with larger interpolation
distances. In the limiting case of β ¼ ∞, equal weight is
given to all frames and the fusion becomes a simple temporal
average. Using a larger β provides more temporal averaging
in the fusion process that can help to reveal the proper scene
geometry in moderate to heavy turbulence, and make the
atmospheric blurring more spatially invariant in the fused
image.9,16 This also helps to attenuate temporal noise. On the
other hand, a small β gives a high level of selectivity, where
significant weight is only given to interpolated pixels that
are close to observed samples in that frame. A small β would
be expected to give the best SR results with minimal inter-
polation error, provided a sufficient diversity of samples is
available with a high signal-to-noise ratio.17

The tunability provided by the parameter β sets it apart
from most other nonuniform interpolation SR methods2 and
makes it well suited to perform SR in the presence of turbu-
lence. For example, it is interesting to compare the FIF SR
approach of fusing interpolated frames with methods that use
binning. Binning methods register the input LR frames and
populate an HR grid by putting the LR pixels into discrete
bins on the HR grid.2,21 LR pixels are assigned to the nearest
HR bin in a simple quantization process or by interpolation
to the nearest HR bin. With such binning methods, care must
be taken to address the very common scenario of empty
bins.21 By fusing interpolated frames and using Gaussian
weighting, the FIF SR method does not have this issue and
will never have any empty output pixels. Using a different
weighting function, however, it is possible for the FIF SR
framework to perform fusion that is equivalent to binning.
Specifically, this binning operation is achieved with the
weighting function,

EQ-TARGET;temp:intralink-;e003;326;312wi;k ¼
�
1 jdxði; kÞj < 1

2M and jdyði; kÞj < 1
2M

0 otherwise
; (3)

depicted in Fig. 3(c) forM ¼ 4. While we do not recommend
this weighting function for joint SR and TM because of lack
of tunability, we believe it is insightful to see the relationship
between binning and Gaussian weighting of interpolated
frames in Fig. 3.

Further insight may be gained with regard to the param-
eter β by considering what we term the “averaging power” of
the fusion. By this, we mean the variance reduction factor for
independent and identically distributed (i.i.d.) temporal sam-
ples, relative to a standard average. Consider the fusion of K
i.i.d. temporal samples with variance σ2. The output variance
would depend on the fusion weights and is given by

EQ-TARGET;temp:intralink-;e004;326;135σ2i ðβÞ ¼ PiðβÞ
σ2

K
; (4)

where PiðβÞ is the averaging power, and σ2∕K is the output
variance for a standard average. The averaging power factor

Fig. 2 Nyquist interpolation grid (red squares) and the noninterpo-
lated pixel positions from a single LR frame (blue circles). A larger
distance implies a larger interpolation error for that frame at that pixel,
and consequently, a lower weight using Eq. (2).
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can range from 0 to 1, with 1 providing the same variance
reduction as a standard average, and 0 providing none. As a
weighted sum, the averaging power for the FIF SR fusion is
given by

EQ-TARGET;temp:intralink-;e005;63;302PiðβÞ ¼
ðPK

k¼1 wi;kðβÞÞ2P
K
k¼1 w

2
i;kðβÞ

: (5)

If we assume uniform subpixel distances, a large number of
input frames (i.e., a uniform continuum of subpixel shifts),
and weights given by Eq. (2), the averaging power factor
approaches the following for all pixels:

EQ-TARGET;temp:intralink-;e006;63;211PðβÞ ¼ ðR 0.5
x¼−0.5

R
0.5
y¼−0.5 e

−ðx2þy2Þ∕β2dydxÞ2
ðR 0.5

x¼−0.5
R
0.5
y¼−0.5ðe−ðx

2þy2Þ∕β2Þ2dydxÞ : (6)

The averaging power in Eq. (6) is plotted in Fig. 4 as a func-
tion of β. Note that smaller values of β produce a smaller
averaging power. This is a result of the greater spatial selec-
tivity. Interestingly, we have observed good algorithm per-
formance in many cases near the inflection point of the
curve in Fig. 4 near β ¼ 0.25. For comparison, the averaging
power for binning method given by Eq. (3) and shown in
Fig. 3(c), is simply P ¼ 1∕M2 for all pixels. This result is

based on the fraction of frames expected to fall into each bin
under a uniform subpixel displacement assumption.

It should be noted that the original FIF SR paper17 con-
siders other weighting components, in addition to that in
Eq. (2). One additional weighting term is designed to exploit
color correlation. Another term is included to address in-
scene motion to minimize motion blur and distortion.17

However, since our focus here is on the simultaneous SR and

Fig. 3 Interpolation weighting from Eq. (2) for (a) β ¼ 0.25 and (b) β ¼ 0.10. Binning weighting from
Eq. (3) is shown in (c) for M ¼ 4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4 Averaging power factor from Eq. (6) as a function of β.
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TM, we limit the scenarios under consideration to single-
band imagery (i.e., no color), and no in-scene motion.
Treating color and in-scene motion are certainly important
problems that we hope to address in future work, in the
context of joint TM and SR.

2.2 Interpolation Impulse Response

In this subsection, we derive an OTF model for the fused
interpolation blur. First, note that each sample in gðx; yÞ
in Fig. 1 may be expressed as a weighted sum of observed
pixels. The specific weighting will depend on the exact
motion and interpolation kernel used as well as the weighting
from Eq. (2). For anything other than rigid translational
motion, the weights will vary spatially.21,23 However, if we
assume a large number of frames with motion significantly
greater than one LR pixel, we believe it is reasonable to
assume a uniform subpixel distribution of motion. This
allows us to model the interpolation blur with a spatially
invariant impulse response. This is very similar to how the
turbulence blur can be treated as spatially invariant after
fusing a large number of frames.9,16 Computing a spatially
invariant interpolation impulse response for the fused image
gðx; yÞ is powerful in that it can be incorporated into the
overall degradation model, as shown in Fig. 1. This allows
us to mitigate some of the nonideal aspects of the interpo-
lation step. It also adds to our overall understanding of the
FIF SR method and further informs the selection of β.

The choice of interpolation kernel impacts the resulting
interpolation blur model. Consider three common 1-D inter-
polation kernels24 that are illustrated in Fig. 5. The zero-order
hold (ZOH), or nearest neighbor, interpolation kernel is
given by

EQ-TARGET;temp:intralink-;e007;63;395FzohðxÞ ¼ rectðxÞ ¼
�
1 jxj < 1∕2
0 otherwise

; (7)

where x is position in LR pixel spacings. A linear interpo-
lation kernel is given by

EQ-TARGET;temp:intralink-;e008;63;328FlinðxÞ ¼
�
1 − jxj jxj < 1

0 otherwise
: (8)

The last interpolation kernel we consider here is cubic
given by

EQ-TARGET;temp:intralink-;e009;63;262FcubðxÞ ¼
8<
:

1.5jxj3 − 2.5jxj2 þ 1 jxj ≤ 1

−0.5jxj3 þ 2.5jxj2 − 4jxj þ 2 1 < jxj < j2j
0 otherwise

:

(9)

All of these kernels may be used in multiple dimensions as
separable functions. Thus, our analysis is done in 1-D, and
then extended to 2-D.

Next, let the LR sampling function (i.e., integers corre-
sponding to LR sample positions) be expressed as

EQ-TARGET;temp:intralink-;e010;63;134sampðxÞ ¼
X∞
k¼−∞

δðx − kÞ; (10)

where δð·Þ is a Dirac delta function. The interpolation
weights, for a shift of s between the LR and interpolated

grids, are obtained by sampling the interpolation kernel FðxÞ
giving
EQ-TARGET;temp:intralink-;e011;326;536

FsðxÞ ¼ FðxÞsampðx− sÞ ¼FðxÞ
� X∞

k¼−∞
δðx− k− sÞ

�

¼
X∞
k¼−∞

Fðkþ sÞδðx− k− sÞ: (11)

The interpolation kernel, FðxÞ, may be one of those presented
in Eqs. (7)–(9) or any other. Integrating over a uniform sub-
pixel shift (assuming temporal frames provide a uniform dis-
tribution of subpixel shifts) with distance weighting wðsÞ, the
1-D frame-averaged interpolation impulse response is given by

EQ-TARGET;temp:intralink-;e012;326;402

hðxÞ ¼
Z

0.5

s¼−0.5
wðsÞFsðxÞds

¼
Z

0.5

s¼−0.5
wðsÞ

� X∞
k¼−∞

Fðkþ sÞδðx − k − sÞ
�
ds

¼
X∞
k¼−∞

Z
0.5

s¼−0.5
wðsÞFðkþ sÞδðx − k − sÞds: (12)

The integral in Eq. (12) is solved using the sifting property,
yielding
EQ-TARGET;temp:intralink-;e013;326;274 Z

0.5

s¼−0.5
wðsÞFðkþ sÞδðx − k − sÞds

¼
�
wðx − kÞFðxÞ jx − kj < 0.5

0 otherwise

¼ FðxÞwðx − kÞrectðx − kÞ: (13)

Combining the result in Eq. (13) with the summation in
Eq. (12), we get

EQ-TARGET;temp:intralink-;e014;326;165

hðxÞ ¼
X∞
k¼−∞

FðxÞwðx − kÞrectðx − kÞ

¼ FðxÞ
X∞
k¼−∞

wðx − kÞrectðx − kÞ: (14)

Using a 1-D version of the weighting function from Eq. (2),
we have wðsÞ ¼ e−s

2∕β2 . Putting this into Eq. (14) gives

–2 –1 0 1 2
–0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5 Continuous interpolation functions as a function of LR pixel
spacings for ZOH, linear, and cubic interpolation.
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EQ-TARGET;temp:intralink-;e015;63;741hβðxÞ ¼ FðxÞ
X∞
k¼−∞

e−ðx−kÞ2∕β2 rectðx − kÞ: (15)

It is interesting to note that if we employ uniform fusion
weights, with β ¼ ∞ and wðsÞ ¼ 1, the resulting fusion is
a simple frame average and the interpolation impulse response
in Eq. (14) reduces to the interpolation kernel itself:

EQ-TARGET;temp:intralink-;e016;63;672h∞ðxÞ ¼ FðxÞ
X∞
k¼−∞

rectðx − kÞ ¼ FðxÞ: (16)

Using separability, we can get the 2-D PSF as

EQ-TARGET;temp:intralink-;e017;63;614hβðx; yÞ ¼ hβðxÞhβðyÞ: (17)

The corresponding transfer function is

EQ-TARGET;temp:intralink-;e018;63;572Hβðu; vÞ ¼ FTfhβðx; yÞg; (18)

where FTf·g represents the 2-D Fourier transform. A discrete
equivalent model can be found by sampling a band-limited
version of Eq. (15) by virtue of impulse invariance.25

Examples of the frame-averaged interpolation impulse
response from Eq. (15) are plotted in Fig. 6 for ZOH, linear,
and cubic interpolation kernels. One can see that with β ¼ ∞,
the impulse response is simply the interpolation kernel, as
shown in Eq. (16). As β gets smaller, the width of the impulse
response also gets smaller. The interpolation OTFs are shown
in Fig. 7 for the same kernels and values of β as those in Fig. 6.
Note that in these plots, the folding frequency for SR with
upsampling by a factor of M is 0.5M cycles/(LR spacing).
From Fig. 7, it is clear that the interpolation blur for all but
very small β can be quite significant. The good news is that
much of the frequency content, while attenuated, is available
for restoration, provided that the interpolation OTF is included
in overall degradation model. To allow for SR restoration of
the higher frequencies, it is important to use the smallest β
possible, while meeting the other algorithm requirements.

3 Atmospheric Optical Transfer Function and
Aliasing

3.1 Overall OTF Model

In this subsection, we present the overall OTF model used for
the FIF SR restoration. The model is spatially invariant and is

(a) (b)

(c)
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Fig. 6 Frame-averaged interpolation impulse response from Eq. (15) with multiple β for (a) ZOH
interpolation, (b) linear interpolation, and (c) cubic interpolation.
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meant to capture the degradation as seen in the fusion image
gðx; yÞ in Fig. 1. The spatial invariance is justified because
gðx; yÞ represents a weighted sum of many short-exposure
images.9,16 The overall model and its components are
expressed as

EQ-TARGET;temp:intralink-;e019;63;308Hα;βðu;vÞ¼Hdifðu;vÞHdetðu;vÞHatm;αðu;vÞHβðu;vÞ: (19)

The diffraction-limited optics component is given by
Hdifðu; vÞ, the detector OTF is Hdetðu; vÞ, the atmospheric
OTF is Hatm;αðu; vÞ, and finally, Hβðu; vÞ is the interpolation
OTF from Sec. 2.2. For an optical system with circular exit
pupil, the diffraction-limited OTF is given by26

EQ-TARGET;temp:intralink-;e020;63;213HdifðρÞ ¼
(

2
π

h
cos−1

�
ρ
2ρc

�
− ρ

2ρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ
2ρc

�
2

r i
ρ ≤ ρc

0 otherwise

;

(20)

where ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, ρc ¼ 1∕ðλNÞ is the spatial cut-off

frequency, λ is the wavelength, and N is the f-number of
the optics. Note that N ¼ l∕D, where l is the focal length and
D is the aperture diameter. The detector OTF is the Fourier
transform of the detector active area shape.1 Finally, the
atmospheric turbulence model is based on that originally
derived by Fried:5

EQ-TARGET;temp:intralink-;e021;326;352Hatm;αðρÞ¼ exp

�
−3.44

�
λlρ
r0

�
5∕3

�
1−α

�
λlρ
D

�
1∕3

	

; (21)

where r0 is the atmospheric coherence diameter or Fried
parameter.

In Fried’s derivation, α ¼ 0 in Eq. (21) gives the long
exposure OTF. The average tilt-corrected short-exposure
OTF under near field conditions is given by Eq. (21) when
α ¼ 1. The near field condition is defined by Fried to be
D ≫

ffiffiffiffiffiffi
Lλ

p
, where L is the optical path length. As shown

by Tofsted’s analysis,27,28 most sensors operate in regimes,
where Fried’s near field condition should be invoked for the
short exposure case (even for a far-field optical condition).
Since we are applying this OTF to partially tilt-corrected
imagery resulting from the potentially imperfect registration
step in Fig. 1, we follow the approach in Hardie et al.9 and
treat the parameter α as a continuous tilt reduction factor.
At the extremes, a value of α ¼ 0 is used for no registration
(i.e., the long exposure OTF), and a value of α ¼ 1 would be
used for ideal registration (i.e., the short-exposure OTF).
This parameter may be estimated based on the type of regis-
tration used.9

Referring to the block diagram in Fig. 1, the ideal image,
zðx; yÞ, relates to the fusion image as

EQ-TARGET;temp:intralink-;e022;326;98gðx; yÞ ¼ zðx; yÞ � hα;βðx; yÞ; (22)
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Fig. 7 Frame-averaged interpolation frequency response cross-section from Eq. (18) with multiple β for
(a) ZOH interpolation, (b) linear interpolation, and (c) cubic interpolation.
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where

EQ-TARGET;temp:intralink-;e023;63;742hα;βðx; yÞ ¼ FT−1fHα;βðu; vÞg: (23)

As illustrated in Fig. 1, a Wiener filter29 is employed in an
effort to provide deconvolution of the overall blurring im-
pulse response in Eq. (23). The Wiener frequency response
is given by

EQ-TARGET;temp:intralink-;e024;63;666HWðu; vÞ ¼
Hα;βðu; vÞ�

jHα;βðu; vÞj2 þ Γ
; (24)

where Γ represents a constant noise-to-signal power spectral
density ratio. One of the unique aspects of our approach is
that the Wiener filter is designed not only to mitigate the
degradation of the camera system and turbulence but also
to account for the level of registration efficiency (using the
parameter α), and the level of interpolation blurring (using
the parameter β). By accounting for the impact of these pre-
ceding steps in the algorithm itself, we believe improved
restoration may be achieved.

An example OTF from Eq. (19), showing the various
components, is provided in Fig. 8 for α ¼ 0.5 and β ¼ 0.3
using cubic interpolation. The optical parameters for this fig-
ure are listed in Table 1. The parameters in Table 1 are also
used for the simulated data presented in Sec. 4.1. Also shown
in Fig. 8 is the native sensor folding frequency for this
particular example. Note that any signal energy above the
folding frequency will be aliased during sampling. It is inter-
esting to note from Fig. 8 that the frame-averaged interpo-
lation OTF, jHβðu; 0Þj (shown in red), is comparable to the
isolated atmospheric OTF from Eq. (21) (shown in green).
Thus, it is clear that with β values on this order, mitigating
the impact of the interpolation is important for restoration,
especially for SR, where frequency content out to the diffrac-
tion-limited cutoff frequency is sought.

As can be seen in Eqs. (19)–(21), the parametric form of
the OTF used for FIF SR restoration has several parameters.
In practice, it is generally reasonable to assume that the opti-
cal parameters, λ, D, and l, would be known a priori. The
remaining parameters are α, β, and r0. We have observed
generally good results with β ¼ 0.25 for a wide range of
datasets. The tilt reduction parameter, α, typically ranges

from 0 for no registration to about 0.5 for optical flow regis-
tration. Imperfect values of α can usually be reasonably well
compensated for by altering the employed value of r0. Thus,
the bottom line is that OTF estimation and resulting restora-
tion performance are mainly sensitive to r0. Fixing the other
parameters and searching over the r0 space can often lead to
very useful results. Subjective evaluation or other no-refer-
ence metrics30 can be used for selection. Other scene-based
methods for estimating r0 can be found in the literature.31,32

3.2 Aliasing and Turbulence

As noted earlier, the Nyquist criterion dictates that the sam-
pling frequency be greater than two times the highest spatial
frequency in the image to guarantee no aliasing. The sam-
pling frequency is given by ρs ¼ 1∕p, where p is the detector
pitch, and the highest spatial frequency is limited by the dif-
fraction-limited optical cutoff frequency ρc from Eq. (20).
Thus, the diffraction-limited sampling status of an imaging
system can be characterized by the diffraction-limited sam-
pling factor parameter,33

EQ-TARGET;temp:intralink-;e025;326;222Q ¼ λN
p

¼ λl
Dp

¼ ρs
ρc

: (25)

Note that whenQ > 2 the system is guaranteed to be Nyquist
sampled (i.e., ρs > 2ρc). One may also consider the quantity
M ¼ 2∕Q as the undersampling factor, while Q∕2 is the
oversampling factor.

While the metric in Eq. (25) is very useful, it does not take
atmospheric turbulence into account. As can be seen from
Eq. (21), the atmospheric optical turbulence acts like a
nonideal low pass filter with no absolute cutoff frequency.
Nevertheless, the OTF signal energy above the folding fre-
quency diminishes in Eq. (21) as r0 goes down, reducing the
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Fig. 8 Example OTF from Eq. (19) showing the various components
for α ¼ 0.5 and β ¼ 0.3. The optical parameters for this figure are
listed in Table 1.

Table 1 Optical parameters used for the OTF plot in Fig. 8 and for
the simulation results in Sec. 4.1.

Parameter Value

Aperture D ¼ 0.0908 m

Focal length l ¼ 0.500 m

F -number f∕# ¼ 5.506

Wavelength λ ¼ 0.787 μm

Object distance L ¼ 5 km

Optical cut-off frequency 230.78 cycles/mm

Sampling frequency 153.85 cycles/mm

Folding frequency 76.92 cycles/mm

Nyquist pixel spacing (focal plane) δf ¼ 2.167 μm

Nyquist pixel spacing (object plane) δo ¼ 0.02167 m

Pixel pitch (focal plane) δ̄f ¼ 6.501 μm

Pixel pitch (object plane) δ̄o ¼ 0.06501 m

Undersampling factor M ¼ 3 (Q ¼ 2∕3)
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potential aliasing for a given sampling frequency. In order to
capture this effect, we propose a modified Q parameter,
where we substitute r0 for the aperture, D. This gives rise
to what we term the turbulence-limited sampling factor,

EQ-TARGET;temp:intralink-;e026;63;708Q̃ ¼ λl
r0p

¼ ρs
ρ0

; (26)

where ρ0 ¼ r0∕ðλlÞ may be viewed as a pseudo cut-off fre-
quency for the long exposure turbulence OTF. From Eq. (21),
we see that Hatm;0ðρ0Þ ¼ expð−3.44Þ ¼ 0.0321. We see
from Eq. (26) that a larger Q̃ indicates a lower pseudo
cut-off frequency from the turbulence, relative to the sam-
pling frequency, and reduced level of potential aliasing.
Note that longer focal lengths and smaller r0 values increase
Q̃ for a fixed sampling frequency. Finally, it may be helpful
to consider that the maximum of Q and ~Q indicates the
dominant factor in limiting potential aliasing.

Several overall OTFs are shown in Fig. 9 to illustrate the
relationship between the focal length and r0 for a fixed dif-
fraction-limited sampling factor parameter of Q ¼ 2∕3. For
these plots, the optical parameters in Table 1 are used along
with α ¼ 0.5 and β ¼ 0.3. Focal lengths of l ¼ 0.20,
l ¼ 0.50, and l ¼ 1.00 are shown in Figs. 9(a)–9(c), respec-
tively. Note that with the short focal length (wide field of
view), the overall OTF is less sensitive to the atmospheric
effects represented by r0. Each of the OTF curves in

Fig. 9(a) has a significant amount of the OTF above the fold-
ing frequency. Furthermore, we see in this plot that the level
of aliasing is more often limited by diffraction than turbu-
lence (i.e., Q > ~Q). However, with increased focal length
(reduced field of view), the effects of turbulence are magni-
fied, as can be seen in Fig. 9(c). For the higher levels of tur-
bulence in Fig. 9(c), the atmosphere acts as an anti-aliasing
low-pass filter, essentially eliminating the possibility of ali-
asing. Most of the curves in this figure show that aliasing is
limited more by turbulence than diffraction (i.e., ~Q > Q).

The plots in Fig. 9 also illustrate that many scenarios exist
where both turbulence and aliasing may be present. With
short focal lengths, light to moderate turbulence is less prob-
lematic and traditional SR may be appropriate. For long
focal length systems, all but light turbulence tends to effec-
tively eliminate aliasing, making traditional TM appropriate.
However, both aliasing and turbulence degradations are sig-
nificant factors in heavy turbulence with short focal lengths,
light turbulence with long focal lengths, and moderate focal
lengths with a wide range of turbulence. This demonstrates
the importance and relevance of developing algorithms cap-
able of performing SR in the presence of turbulence, such as
the one presented here.

4 Experimental Results
In this section, we present a number of experimental results
to demonstrate the efficacy of the FIF SR method with both
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Fig. 9 Overall OTFs for a system with optical parameters listed in Table 1, α ¼ 0.5, β ¼ 0.3, and
(a) a focal length of l ¼ 0.20 m, (b) l ¼ 0.50 m, and (c) l ¼ 1.00 m.
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undersampling and turbulence. The results in Sec. 4.1 use
simulated data that allow for a quantitative performance
analysis. The results in Sec. 4.2 use real data from three
different sensors.

4.1 Simulated Data

The simulated data have been generated using the anisoplan-
atic optical turbulence simulation tool recently developed
by Hardie et al.20 The simulation tool uses numerical wave
propagation and has performed well reproducing key image
statistics in validation studies.20 The specific simulation
presented here is novel in that we are emulating an under-
sampled imaging system. The turbulence degraded images
are first simulated at the Nyquist rate for the diffraction-
limited optical system.20 Next, however, we simulate detec-
tor integration and follow this with downsampling by a
factor ofM ¼ 3. After downsampling, we introduce additive
Gaussian noise with a standard deviation of two digital units
to imagery having a 0-255 original dynamic range. The opti-
cal system parameters used in the simulation are listed in
Table 1, and the simulation parameters are listed in Table 2.
We have simulated seven levels of turbulence, each with
K ¼ 200 temporally independent frames.

Quantitative results for two different truth images are pro-
vided in Tables 3 and 4 for several algorithm variations.
Table 3 is for the Kodak lighthouse image,17 and Table 4
is for the stream and bridge image.9 The metric we use to
evaluate the simulated data results is peak signal-to-noise-
ratio (PSNR). The PSNRs for the lighthouse image are also
plotted in Fig. 10. For the results with parameter optimiza-
tion, the parameters are found by a search to maximize the
PSNR and these parameters are listed in Table 5. Note that

Table 2 Simulation parameters used for the simulated imagery in
Sec. 4.1.

Parameter Value

Object distance L ¼ 5 km

Propagation step Δz ¼ 500 m

Cropped screen samples N ¼ 256

Propagation screen width X ¼ 1.00 m

Pupil plane point spread D̃ ¼ 1.00 m

Propagation sample spacing Δx ¼ 0.0039 m

Number of phase screens n ¼ 10 (9 nonzero)

Phase screen type Modified von Kármán with
subharmonics

Inner scale l0 ¼ 0.01 m

Outer scale L0 ¼ 300m

Image size (pixels) 301 × 301 pixels

Number of frames K ¼ 200

Image size (object plane) 2.3218 × 2.3218 m

Downsampling factor M ¼ 3 (3 × undersamping)

Dynamic range 0-255 digital units

Noise standard deviation σn ¼ 2 digital units

Table 3 Lighthouse image PSNR (dB) results using simulated K ¼ 200 frames with ση ¼ 2.0 and M ¼ 3.

Method (camera Jitter on)

C2
n × 10−15 (m−2∕3)

0.00 0.20 0.50 1.00 2.00 5.00 10.0

Single-frame bicubic 22.67 22.22 22.09 22.25 21.11 21.11 20.33

Average + bicubic 22.43 22.41 22.31 22.13 21.89 21.28 20.69

Affine + bicubic + average 22.74 22.72 22.62 22.46 22.18 21.61 21.01

FIF SR (α ¼ 0.50, β ¼ 0.25) 28.46 28.03 27.40 26.75 25.44 23.87 22.69

FIF SR (α ¼ 0.50, β ¼ 0.25, no β rest.) 27.41 27.22 26.65 26.15 25.18 23.83 22.73

FIF SR (α ¼ 0.50, optimum β) 28.57 28.07 27.41 26.77 25.44 23.90 22.76

Method (camera jitter off)

Single-frame bicubic 22.67 22.60 22.47 22.25 21.89 21.19 20.54

Average + bicubic 22.70 22.68 22.56 22.37 22.04 21.37 20.75

Affine + bicubic + average 22.70 22.71 22.62 22.47 22.20 21.61 21.02

FIF SR (α ¼ 0.50, β ¼ 0.25) 23.46 24.06 24.71 25.15 25.10 23.87 22.74

FIF SR (α ¼ 0.50, β ¼ 0.25, no β rest.) 23.42 24.11 24.72 25.05 24.91 23.80 22.77

FIF SR (α ¼ 0.50, optimum β) 23.46 25.07 25.68 25.63 25.17 23.89 22.79
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results are shown with and without camera jitter. When cam-
era jitter is on, we simulate camera platform motion by pro-
viding additional uniform random subpixel shifts between
frames with no motion blur. The FIF SR results include the
full OTF model, except where no β restoration is indicated.
The true lighthouse image and three levels of degradation are
shown in Fig. 11. Various restored images are shown in
Fig. 12 using the optimum parameters in Table 5. Global
affine registration to the average frame is used for all of the
FIF SR results reported on the simulated data.

The quantitative results show that the FIF SR method pro-
vides a significant boost over simple methods, such as sin-
gle-frame interpolation and simple averages. The boost is
seen over a wide range of turbulence levels. Another very
interesting phenomenon can be seen in Fig. 10. Note that
when platform jitter is turned off, increasing the C2

n turbu-
lence level from zero actually increases the PSNR of the
SR output. This may seem counterintuitive, as turbulence
is generally considered to be a degradation, and not a benefit.
However, what we see is that the wavefront tilt variance

Table 4 Stream bridge image PSNR (dB) results using 200 simulated frames with ση ¼ 2.0 and M ¼ 3.

Method (camera Jitter on)

C2
n × 10−15 (m−2∕3)

0.00 0.20 0.50 1.00 2.00 5.00 10.0

Single-frame bicubic 23.56 22.74 22.67 22.71 20.91 20.85 19.62

Average + bicubic 23.17 23.15 22.99 22.69 22.32 21.36 20.47

Affine + bicubic + average 23.68 23.68 23.51 23.26 22.81 21.89 20.96

FIF SR (α ¼ 0.50, β ¼ 0.25) 29.64 29.15 28.67 27.94 26.98 25.58 23.99

FIF SR (α ¼ 0.50, β ¼ 0.25, no β rest) 28.66 28.45 28.02 27.46 26.70 25.48 24.05

FIF SR (α ¼ 0.50, optimum β) 29.74 29.16 28.67 27.94 26.98 25.59 24.06

Method (camera jitter off)

Single-frame bicubic 23.56 23.44 23.14 22.71 22.08 20.96 20.06

Average + bicubic 23.60 23.57 23.37 23.07 22.55 21.50 20.57

Affine + bicubic + average 23.60 23.62 23.48 23.25 22.83 21.89 20.97

FIF SR (α ¼ 0.50, β ¼ 0.25) 24.87 25.47 26.03 26.54 26.71 25.52 24.06

FIF SR (α ¼ 0.50, β ¼ 0.25, no β rest) 24.75 25.37 25.94 26.38 26.47 25.44 24.11

FIF SR (α ¼ 0.50, optimum β) 24.98 26.17 26.80 26.98 26.76 25.52 24.12
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Fig. 10 Plot of lighthouse image PSNR (dB) results from Table 3
using 200 simulated frames with ση ¼ 2.0 and M ¼ 3.

Table 5 Optimum FIF SR parameters for lighthouse image results.

Parameter

C2
n × 10−15 (m−2∕3)

0.00 0.20 0.50 1.00 2.00 5.00 10.0

β (jitter on) 0.091 0.282 0.270 0.308 0.244 0.231 0.346

β (jitter off) 0.321 0.091 0.091 0.116 0.180 0.244 0.270

Γ (jitter on) 7.01 × 10−4 2.07 × 10−4 2.81 × 10−4 2.07 × 10−4 3.87 × 10−4 4.21 × 10−4 2.07 × 10−4

Γ (jitter off) 2.43 × 10−2 7.16 × 10−3 6.00 × 10−3 3.52 × 10−3 1.26 × 10−3 3.87 × 10−4 2.81 × 10−4
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provided by light turbulence acts to shift the image relative to
the camera, allowing for the necessary sampling diversity for
SR. This phenomenon was first described by Fishbain et al.10

and Yaroslavsky et al.11 As the turbulence level gets higher,
we see in Fig. 10 that the degrading impact of the turbulence
outweighs this sampling benefit, and the PSNR drops. Also,
note that this effect is not seen when there is camera platform
jitter. This is because the platform jitter provides sampling
diversity more effectively than the turbulence and without
the turbulence blurring. Platform jitter outperforms the
corresponding no jitter scenario, and turbulence is never a
benefit when platform jitter is present. As turbulence levels
increase, we do see the benefit of jitter diminish as SR be-
comes increasingly difficult. At high turbulence levels, very
little signal energy is available above the folding frequency
to be recovered. Another point of interest in Tables 3 and 4,
as well as Fig. 10, is that including the interpolation OTF into
the Wiener filter is a clear benefit. When the optimum β for
restoration is used, this always outperforms the “no β resto-
ration” case. To the best of our knowledge, no simulation
study and quantitative error analysis of this kind for joint TM
and SR has been reported in the literature previously.

Subjective analysis of the images in Figs. 11 and 12
appears in line with the quantitative results. Figures 12(a)
and 12(b) show the FIF SR output with no turbulence.
Figure 12(a) has no camera jitter and Fig. 12(b) includes
camera jitter. With no jitter and no turbulence in Fig. 12(a),
there is a lack of sampling diversity and little is achieved in
the way of true SR. Moiré patterns on the fence and jagged
edges on the roof line are still quite visible here. On the other
hand, Fig. 12(b) shows significant SR enhancement on the

fence and roof edges. This result represents traditional multi-
frame SR without turbulence and is well understood.2

Perhaps, the most interesting result is that in Fig. 12(c).
Here, we have light turbulence and no camera jitter. This
result appears to be far better than the no-turbulence no-jitter
case in Fig. 12(a). A significant amount of aliasing reduction
is exhibited here, as a result of entirely turbulence-induced
motion. This result is nearly as good as that with additional
camera jitter in Fig. 12(d). Finally, at high turbulence levels,
platform jitter makes little difference, as seen by comparing
Figs. 12(e) and 12(f). It is also clear, at this high level of
turbulence, that details in the fence and elsewhere are lost,
but not aliased, as a result of the low-pass filtering from the
turbulence.

4.2 Real Data

In this subsection, we present results for real data using three
different sensors. A summary of the data and processing
parameters for each of the datasets is provided in Table 6.
The Fried parameters and noise-to-signal ratios (NSRs) have

Fig. 11 Lighthouse image: (a) truth, (b) single-frame bicubic interpo-
lation of a degraded image with no turbulence, (c) C2

n ¼ 1 ×
10−15 m−2∕3, and (d) C2

n ¼ 1 × 10−14 m−2∕3. Degraded images have
additive Gaussian noise with ση ¼ 2 digital units and downsampling
of M ¼ 3.

Fig. 12 FIF SR restoration results with lighthouse image. (a) No
turbulence and no jitter, (b) no turbulence with jitter, (c) C2

n ¼ 1 ×
10−15 m−2∕3 and no jitter, (d)C2

n ¼ 1 × 10−15 m−2∕3 with jitter, (e)C2
n ¼

1 × 10−14 m−2∕3 and no jitter, (f) C2
n ¼ 1 × 10−14 m−2∕3 with jitter.
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been selected based on subjective evaluation of the results.
In the case of the truck sequence, an edge target is used to
estimate r0.

The first dataset (coaster) is shown in Fig. 13. These data
are from a midwave infrared (MWIR) sensor and show a por-
tion of a wooden roller coaster with a significant amount of
turbulence and aliasing (Q ¼ 0.40 and Q̃ ¼ 1.20). Single-
frame bicubic interpolation images of two regions of interest
(ROIs) are shown in Figs. 13(a) and 13(c). The correspond-
ing FIF SR outputs are shown in Figs. 13(b) and 13(d), using
the parameters listed in Table 6. The impact of turbulence is
quite evident in the inputs frames, such as the warped
handrail visible in Fig. 13(a) near the power line pole. At
the same time, aliasing artifacts are also clearly visible in
the form of Moiré patterns on the groups of suspended wires.
In contrast, the handrail appears to have corrected geometry
in Figs. 13(b) and 13(d), as a result of the FIF SR processing.
Furthermore, the individual suspended wires are clearly dis-
tinguishable and free from aliasing artifacts in the FIF SR
output. We believe these data provide an excellent demon-
stration of successful joint TM and SR.

The next dataset (truck) shows a truck and bar target in
heavy turbulence imaged with a near IR sensor. In contrast

Table 6 Real image data parameters for the results in Sec. 4.2.

Data Coaster Truck Airborne

Parameter

Diffraction-limited sampling (Q) 0.40 1.95 0.47

Turbulence-limited sampling (Q̃) 1.20 3.44 0.20

F -number 2.5 16.19 2.3

Wavelength (λ) 4 μm 0.787 μm 4 μm

Fried (r 0) 0.080 m 0.0325 m 0.050 m

Registration Affine Affine (BMA) Perspective

Tilt reduction (α) 0.25 0.25 (0.50) 0.25

FIF interpolation (β) 0.25 ∞ 0.25

NSR (Γ) 0.001 0.0004 0.002

Number of frames (K ) 200 500 100

Upsampling (M) 3 2 3

Fig. 13 Roller coaster infrared image sequence results. (a) ROI 1 single frame bicubic interpolation,
(b) ROI 1 FIF SR output, (c) ROI 2 single-frame interpolation, and (d) ROI 2 FIF SR output. Sensor and
algorithm parameters are listed in Table 5.
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with the previous example, this sensor is nearly Nyquist
sampled under diffraction-limited conditions (Q ¼ 1.95).
With turbulence added, no significant aliasing is expected
( ~Q ¼ 3.44). However, we still apply upsampling of M ¼ 2
for our restoration. Single-frame bicubic interpolation is
shown in Fig. 14(a), the FIF SR output is shown with affine
registration in Fig. 14(b). The result using block matching
algorithm (BMA) optical flow registration9 is shown in
Fig. 14(c). Both restorations appear to be significantly better
than the single-frame interpolation, but the bar target with
BMA does appear noticeably better because of the high level
of local warping. This finding is consistent with previous
studies using these data.9 One noticeable artifact is the
ringing on the truck cab. This is a result of the Wiener filter
operating on solar glint. Ringing is also present, to a lesser
degree, in the restored images near strong edges. We are
currently exploring methods for reducing these artifacts.
One possibility is to employ an adaptive Wiener filter with
spatially varying NSR.34,35

The final dataset (airborne) is a MWIR dataset of a bar
target acquired from an airborne platform.36 These data have

been used for SR studies in prior work,17,21 but without
considering turbulence. The bar target is a series of four bar
patterns. The scaling factor between bar groups is designed
to be 21∕6. In contrast to the truck sequence, aliasing is a
much more significant problem than turbulence in the air-
borne data with Q ¼ 0.47 and ~Q ¼ 0.20. Since the platform
is moving between frames and the scene is approximately
planar, we use global perspective registration.21 Single-frame
bicubic interpolation is shown in Fig. 15(a) withM ¼ 3. The
corresponding FIF SR output is shown in Fig. 15(b). The
Moiré patterns are quite evident within the bicubic image
in Fig. 15(a). After FIF SR processing, there appears to be
an approximately 2× resolution enhancement based on the
resolvable bar patterns.

5 Conclusions
In this paper, we have provided a study of SR in the presence
of optical turbulence. The OTF analysis presented in Sec. 3
demonstrates scenarios, where significant levels of aliasing
may be present simultaneously along with turbulence degra-
dation. This provides motivation for the development of
restoration methods that can provide joint SR and TM, such
as the FIF SR method presented.

We have also introduced a turbulence-limited sampling
parameter in Sec. 3.2, ~Q, to complement the previously

Fig. 14 Truck infrared image sequence results. (a) Single-frame bicu-
bic interpolation, (b) FIF SR using global affine registration, and (c) FIF
SR using BMA registration. Sensor and algorithm parameters are
listed in Table 5.

Fig. 15 Airborne image sequence results. (a) Single-frame bicubic
interpolation and (b) FIF SR output. Sensor and algorithm parameters
are listed in Table 5.

Optical Engineering 083103-14 August 2019 • Vol. 58(8)

Hardie et al.: Fusion of interpolated frames superresolution in the presence of atmospheric optical turbulence



defined diffraction-limited sampling factor Q. We believe ~Q
is helpful in describing how a given turbulence level impacts
the potential for aliasing in an imaging system. A larger ~Q
indicates a lower pseudo cut-off frequency from turbulence,
relative to the sampling frequency, and reduced level of
potential aliasing. Also, the maximum ofQ and ~Q represents
the dominant factor in limiting aliasing (i.e., either diffrac-
tion or turbulence).

In addition, we have extended the FIF SR method with an
OTF model to equip it to operate in the presence of turbu-
lence. The atmospheric component has a parameter, α, that
accounts for the level of tilt reduction provided by the regis-
tration step. In Sec. 2.2, we have derived an OTF component
that models the blurring from the FIFs, as a function of the
parameter β. This allows us to mitigate the blurring from the
interpolation operation. This compensation is particularly
important for higher values of β that might be employed
when addressing turbulence. Together α and β parameters
give the OTF model a high level of flexibility to effectively
address a wide range of SR and TM scenarios.

Our experimental results in Sec. 4 include a ground-truth
based quantitative error analysis with simulated images gen-
erated with a numerical wave propagation method.20 The
results demonstrate quantitatively that the FIF SR method
proposed is able to effectively perform SR and TM in the
scenarios considered. One particularly interesting result pre-
sented in Sec. 4.1 shows that turbulence-induced warping
motion alone can provide the sampling diversity necessary
for effective multiframe SR. However, our results also show
that camera platform motion or jitter, when present, appears
to be more effective at this task. The real data results in
Sec. 4.2 show the versatility of the FIF SR method with three
distinct scenarios. The truck sequence is dominated by tur-
bulence. The airborne sequence is dominated by aliasing.
Finally, the coaster data includes a significant combination
of both turbulence and aliasing.
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