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Abstract. We provide a method for calibrating microgrid polarization cameras that is simpler and easier to set
up than existing methods. Applying this method to three different commercially available cameras, we compare
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1 Introduction
Polarization cameras are division of focal plane imaging
polarimeters1 that use an array of micropolarizer filters aligned
to the detector array pixels, typically with the micropolarizers
oriented at angles 0 deg, 45 deg, 90 deg, and 135 deg. We
provide a polarization camera calibration approach that is sim-
pler than existing methods, and which does not require
a motorized rotation stage or the use of highly uniform flat
field illumination, such as that produced by an integrating
sphere.2–7 Taking advantage of this calibration approach,
we show how to separate the effects of temporal noise from
manufacturing variation when measuring the camera—a sep-
aration that is essential if we wish to fairly compare one cam-
era’s performance to another. As more polarization cameras
become commercially available, it becomes increasingly
important to have a practical and unbiased method for evalu-
ating and comparing these cameras.

Polarization cameras have conventionally been assembled
by manufacturing the detector array and the micropolarizer
array separately, then aligning them to one another and fixing
them in place. As a result, there is a small vertical displace-
ment between the polarizer layer and the detection layer that
allows for cross talk between neighboring pixels when the
light is incident from nonzero angles of incidence (see
Fig. 1).4 More recently, attempts have been made to manu-
facture the sensor and polarization filters together as part of
an integrated process to minimize cross talk and improve
alignment.8 From a user’s standpoint, reduced cross talk
here will appear as an increase in the diattenuation value
of the individual pixels.

Micropolarizers use finely spaced wire grid patterns that
can be difficult to manufacture, so that micropolarizer filters
have historically had trouble achieving the polarization
purity that monolithic polarization devices readily achieve.
Although monolithic polarizers can readily achieve extinc-
tion ratios of better than 103, or even 106, micropolarizers

have generally been limited to extinction ratios of <30.2,4

Moreover, previous reports in the literature have indicated
that micropolarizer orientation accuracy can vary by as
much as 0.5 deg from pixel to pixel, whereas mounts for
monolithic polarizers can readily achieve angular orientation
accuracy of better than 0.01 deg.4,9

After introducing our approach for calibrating microgrid
polarization cameras, we show measurements obtained from
three commercial polarization cameras. Using parameter
variance formulas derived from a measurement model, we
show how one can separate the effects of measurement
noise from manufacturing variations, allowing for quantita-
tive performance assessment and fair comparison among
cameras. This procedure is demonstrated on three commer-
cially available polarization cameras, showing the behavior
of not just a select number of pixels in the center region of the
image, but the entire set of pixels across the array.

2 Calibration Procedure
A nonideal linear polarizer is a diattenuator defined by its
maximum and minimum transmission values q and r as
the diattenuator is rotated with respect to incident linearly
polarized light. Thus, while an ideal polarizer achieves
100% transmission and 0% transmission at 0-deg and
90-deg orientation angles, the nonideal diattenuator will
achieve q and r. The Mueller matrix for a diattenuator
element with the q axis oriented at angle θ can be written
as Mðq; r; θÞ, as given in Eq. (1), where the diattenuation
isD ¼ ðq − rÞ∕ðqþ rÞ, and A ¼ 1

2
ðqþ rÞ is the mean trans-

mission. For a given diattenuator, it is possible to achieve an
ideal diattenuation of D ¼ 1 even when the peak transmis-
sion of the polarizer is very low A ≪ 1. The parameter A can
thus be considered the “efficiency” of the polarizing element.
The extinction ratio X is derived from the diattenuation
as X ¼ q∕r ¼ ð1þDÞ∕ð1 −DÞ.
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To measure the diattenuation properties of a polarization
camera, we generate linearly polarized light sequentially
oriented at four different θ angles and measure the detected
intensity at each of the four positions (see Fig. 2). Thus,
the source light Stokes vector is ssrc ¼ ðIp; 0;0; 0ÞT, and
the Mueller matrix of the generating polarizer MlpðθÞ,
which together generate a fully polarized state, sin ¼ Ip ·
ð1; cos θ; sin θ; 0ÞT for use in calibrating the camera pixels.
The quantity Ip is the light flux in photons/sec incident on
the given pixel of interest.

The behavior of a single pixel in the polarization camera
can be modeled as a linear diattenuatorMldðq; r; αÞ followed

by detection vector d ¼ ðη; 0;0; 0Þ with quantum efficiency
η. Thus, the above generated state will be detected as

EQ-TARGET;temp:intralink-;e002;326;330g ¼ d · Mldðq; r; αÞ · MlpðθÞ · sin: (2)

Setting the generating polarizer to orientations
θ ¼ 0 deg, 45 deg, 90 deg, and 135 deg, we obtain four
measurements:

EQ-TARGET;temp:intralink-;e003;326;265g0 ¼ Ie½1þD cosð2αÞ� þ n0; (3)

EQ-TARGET;temp:intralink-;e004;326;233g45 ¼ Ie½1þD sinð2αÞ� þ n45; (4)

EQ-TARGET;temp:intralink-;e005;326;206g90 ¼ Ie½1 −D cosð2αÞ� þ n90; (5)

EQ-TARGET;temp:intralink-;e006;326;179g135 ¼ Ie½1 −D sinð2αÞ� þ n135; (6)

where gθ represents the number of detected electrons, and nθ
the number of noise electrons, for incident light polarized at
angle θ. To work with both Gaussian and Poisson noise, we
will assume that all measurements are scaled to photoelec-
tron units—the same units as the noise terms nθ. Since the
incident light level is

(a) (b)

Fig. 1 The detection layer of a polarization camera, with micropolarizers (a) attached above the sensor
layer and (b) integrated into the sensor layer. Optical rays shown in blue are cross talk rays from one pixel
to its neighbor.

Fig. 2 Experimental layout for the calibration polarization state gen-
erator and the microgrid polarization camera. A diffuser is used to
ensure that the light source is unpolarized. The inset at right
shows a 2 × 2 section of the detector array.
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EQ-TARGET;temp:intralink-;e007;63;752Ip ¼
1

ηA
Ie; (7)

intensity Ie can be considered as the idealized photoelectron
number that would be detected if the polarizer were removed
(i.e., A ¼ 1). Since the detector element’s quantum effi-
ciency η and the polarizing element efficiency A appear
as a product, we can define ηext ¼ Aη as the external quan-
tum efficiency of the pixel. If the illumination is known to be
uniform a priori, then it is possible to estimate ηext at each
pixel to within an arbitrary constant. To measure the missing
constant, however, it is necessary to obtain an independent
measurement of Ip, such as with a radiometer.

Whereas previous calibration methods fitted pixel diatten-
uation parameters using images taken at a large number of
different input polarization angles,4,5,10 the choice of the four
angles (0 deg, 45 deg, 90 deg, and 135 deg) produces simple
formulas for estimating the incident intensity Ie and the
polarization properties at each pixel α, D, and X:

EQ-TARGET;temp:intralink-;e008;63;541Îe ¼
1

4
ðg0 þ g45 þ g90 þ g135Þ; (8)

EQ-TARGET;temp:intralink-;e009;63;499α̂ ¼ 1

2
arctan½ðg45 − g135Þ∕ðg0 − g90Þ�; (9)

EQ-TARGET;temp:intralink-;e010;63;462D̂ ¼ 2½ðg0 − g90Þ2 þ ðg45 − g135Þ2�1∕2
g0 þ g45 þ g90 þ g135

; (10)

EQ-TARGET;temp:intralink-;e011;63;420X̂ ¼ ð1þ D̂Þ∕ð1 − D̂Þ: (11)

From these equations, we can see that the estimates for the
pixel polarization properties do not depend explicitly on the
incident light intensity Ie. As a result, as long as the light
intensity does not vary significantly from one pixel to its
neighboring pixels, calibrating the camera does not require
spatially uniform illumination. While differences in light
level at the camera will produce differences in noise at
each pixel, this can be made small in comparison to the
differences produced by manufacturing variations.

3 Estimating Parameter Variances
From Eqs. (8)–(11), we can estimate the polarization proper-
ties of a pixel from the calibration measurements gθ. It is
also useful to assess how much individual pixels vary from
the overall mean—the parameter nonuniformity. Differences
in manufacturing process between, say, the center of the
detector array and its edges, may result in the pixel diatten-
uation and orientation at the edge being different than at the
center. If the manufacturing differences are small in compari-
son to the error induced by measurement noise, then we
should be able to ignore them. Otherwise, we need to
make sure to calibrate for the individual variations in pixel
properties.

Deriving formulas for the parameter variances involves
the application of the well-known expression for parameter
variance: varðx̂Þ ¼ hx̂2i − hx̂i2, where h·i indicates taking
the mean value. To proceed, we insert the equation for the
estimator x̂ and solve. Starting with Îe, we obtain

EQ-TARGET;temp:intralink-;e012;326;752

hÎ2ei ¼
�
1

42
ðg0 þ g45 þ g90 þ g135Þ2

�

¼ 1

16
hðIe½1þD cosð2αÞ� þ n0

þ Ie½1þD sinð2αÞ� þ n45

þ Ie½1 −D cosð2αÞ� þ n90

þ Ie½1 −D sinð2αÞ� þ n135Þ2i

¼ I2e þ
1

16
½hn20i þ hn245i þ hn290i þ hn2135i�; (12)

where we have used the assumption that the noise terms are
zero mean: hnθi ¼ 0. This causes no difficulties for Poisson-
distributed noise, since our definition of the measurement
and noise (g and n) result in the mean value of the
Poisson-distributed variable to be incorporated into g while
n retains the zero-mean stochastic portion.

Since hÎei ¼ Ie, we can write that varðÎeÞ ¼ hÎ2ei − I2e .
For uniformly distributed independent Gaussian (IG) noise,
this gives

EQ-TARGET;temp:intralink-;e013;326;514varIGðÎeÞ ¼
1

4
vg; (13)

where vg is the Gaussian noise variance at each pixel.
The 1

4
factor comes from the process of averaging over

four measurements to obtain Îe. In the pure Poisson (PP)
shot noise regime, we can substitute:

EQ-TARGET;temp:intralink-;sec3;326;424hn20i ¼ varðn0Þ ¼ hg0i ¼ hIe½1þD cosð2αÞ�i;

for each of the noise terms in Eq. (12), producing

EQ-TARGET;temp:intralink-;e014;326;381varPPðÎeÞ ¼
1

4
Ie: (14)

Next, we can calculate the variance of α̂ by inserting
Eq. (9) into the variance formula. While the result is a non-
linear equation, we can obtain a second-order power series
representation by taking the Maclaurin series expansion
in the noise variables nθ and extract the second-order
terms.11,12 This produces a lengthy polynomial expression
in the four noise variables, but if we assume that the
noise terms are independent of one another, then the ensem-
ble average of all mixed-noise terms (i.e., terms having n0n45
as factors) becomes zero. This greatly simplifies the expres-
sion. Finally, we substitute the IG noise model into the result,
giving

EQ-TARGET;temp:intralink-;e015;326;208varIGðα̂Þ ¼
vg

8D2I2e
ðradians2Þ; (15)

or the PP noise model, giving

EQ-TARGET;temp:intralink-;e016;326;155varPPðα̂Þ ¼
1

8D2Ie
ðradians2Þ: (16)

A similar series-expansion procedure allows for calculat-
ing the variances of D̂ and X̂ as well:
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EQ-TARGET;temp:intralink-;e017;63;600varIGðD̂Þ ¼ ð3D2 þ 4Þvg
16I2e

; (17)

EQ-TARGET;temp:intralink-;e018;63;552varPPðD̂Þ ¼ 4 −D2

16Ie
; (18)

EQ-TARGET;temp:intralink-;e019;63;522varIGðX̂Þ ¼
ð2D3 þ 2D2 þ 4Dþ 1Þvg

4ð1 −DÞ4DI2e
; (19)

EQ-TARGET;temp:intralink-;e020;63;479varPPðX̂Þ ¼
−D4 þ 6D3 þ 3D2 þ 4Dþ 1

4ð1 −DÞ4DIe
: (20)

The parameter variance equations are summarized in
Table 1.

4 Experimental Results
To verify that we can characterize polarization cameras and
separate manufacturing variability from noise in the results,
we collected calibration data from three polarization cameras
(“A,” “B,” and “C”) from three different manufacturers
(Table 2). The experimental setup uses a linearly polarized
incoherent light source, generated using a white light LED,
diffuser, rotatable linear polarizer (Glan–Thompson type),
and a narrowband spectral filter: 532� 10 nm for cameras
A and B, 520� 20 nm for camera C (Fig. 2). The spectral
filters are needed in order to make the camera comparison as
fair as possible, since camera C uses a nonremovable filter in
front of its detector array.

The initial datasets were collected by setting the generat-
ing polarizer to 0 deg and summing over many frames in
order to reduce the measurement noise. The same procedure
was then used for the 45 deg, 90 deg, and 135 deg orienta-
tions of the generating polarizer, and for the estimation of the
background. After subtracting the background, the summed
images were scaled from digital counts to photoelectron
units using previous calibration of the cameras’ gain values.
The radiometric gain values used for the four cameras were
2.2, 8.0, and 1.3 photoelectrons per digital count for cameras
A, B, and C, respectively. Taking the sum of the images,
rather than mean as is more common, is done in order to
maintain Poisson statistics in the data.

Unlike previous calibration methods, we do not use an
integrating sphere in order to make the illumination field uni-
form, as exact uniformity is unnecessary for the parameter
estimates. The main purpose of the diffuser in the experimen-
tal setup is to remove any residual polarization from the light

source. With the diffuser in place, the estimated degree of
linear polarization of the light source is measured to
be <0.1%.

First, we sum together 2000 calibration images for the
case of camera A, 100 images for cameras B and C, into
a single “sum image.” With the sum image, we implement
the parameter estimation Eqs. (8)–(11) at each pixel.
Taking the histograms of the resulting parameter images,
we calculate the mean and standard deviations of each
parameter, giving the results shown in Figs. 3 and 4 and sum-
marized in Table 3. Thus, these parameter histograms have a
distribution determined by a mix of (temporal) noise at each
pixel as well as pixel-to-pixel variation in polarization prop-
erties. Note that since there is an easy-to-adjust degree of
freedom in the orientation angle, we have defined the mean
of 0-deg micropolarizers’ orientation angle to be exactly
zero, so that the remaining orientation angles are defined
with respect to it.

The measurement results show a substantial range of per-
formance for parameter mean and spatial variation among
the three measured cameras, especially in the estimated
micropolarizer extinction ratios. However, it is important
to keep in mind that each camera uses pixels of different
sizes, with different quantum efficiencies, different readout
electronics, and different integration times. Thus, the meas-
urement variation alone is not in itself sufficient; for fair
comparison, it is necessary to separate the variation due to
measurement noise from variation due to manufacturing
differences of the pixels.

Looking at the distributions for Îe in Fig. 4, we find
that the measured standard deviations for Îe are far larger
than the theoretical noise-only standard deviations, i.e.,
varðÎeÞ ≫ 1

4
hÎei. This is an indication that the illumination

is significantly nonuniform, or that there is significant
pixel-to-pixel variation in the external quantum efficiency
ηA [defined in Eq. (7)].

Looking at the histograms for D̂ and X̂ in Fig. 4, we can
see that the two distributions are generally similar, but with
the value and the width of the probability distribution prðX̂Þ
increasing rapidly as hD̂i approaches 1. This close associa-
tion of the two distributions is also evident in Eq. (20) for
varðX̂Þ, where a factor of ð1 −DÞ4 appears in the denomi-
nator. Whereas the variance for D̂ is determined primarily by
the factor of Ie in the denominator Eq. (18), we see that the
variance for X̂ will be amplified by ð1 −DÞ−4 while the
mean value as given in Eq. (11) will be amplified by only

Table 1 Formulas for the mean and variance of detector array polari-
zation properties.

Parameter IG noise variance PP noise variance

varðÎeÞ 1
4 vg

1
4 Ie

varðα̂Þ
�

1
8D2

�
vg

I2e

�
1

8D2

�
1
Ie

varðD̂Þ
�
3D2þ4

16

�
vg

I2e

�
4−D2

16

�
1
Ie

varðX̂ Þ
h
2D3þ2D2þ4Dþ1

4ð1−DÞ4D
i
vg

I2e

h
−D4þ6D3þ3D2þ4Dþ1

4ð1−DÞ4D
i

1
Ie

Table 2 The four polarization cameras measured.

Camera A Camera B Camera C

Pixels 2464 × 2056 1200 × 1800 1164 × 874

Pixel size (μm) 3.45 7.4 4.65

Frame rate (fps) 90 110 20

Bit depth 12 12 12

Wavelength range VIS-NIR VIS-NIR 520� 20 nm
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ð1 −DÞ−1. If we write the signal-to-noise ratio for the esti-
mate of the extinction coefficient, we obtain

EQ-TARGET;temp:intralink-;sec4;63;237SNRðX̂Þ ¼ meanðX̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðX̂Þ

q ≈ ð1 −DÞI1∕2e :

Thus, for a fixed number of measurement photoelectrons,
the SNR declines as D approaches 1, and this behavior is the
property we see exhibited most clearly in the histogram for
camera A—the camera where the diattenuation is the highest.

The tail on the right hand side of the extinction ratio dis-
tribution prðX̂Þ moves rapidly to higher values as D comes
closer to 1. This is a well-known property for “Gaussian ratio
distributions”—in this case the ratio of ðDþ 1Þ to ðD − 1Þ,
for which the mean becomes undefined and the variance
becomes infinite.13,14 While this behavior poses no serious

problems for cameras B and C, camera A’s diattenuation
is sufficiently close to 1 that after background subtraction
a small fraction of pixels are left with zero or negative values
when in the crossed-polarization condition. As a result,
the tail of the distribution for D̂ extends past 1, so that for
these pixels the extinction coefficient becomes infinite
(for D ¼ 1), then wraps around to negative infinity and
approaches zero from the negative number side (for D > 1).
These values are unphysical, of course, so that in Fig. 4 we
have truncated the distribution forD at 1, and the distribution
for X at 1250. Only a small portion of the distribution tail lies
above these extreme values, so that without truncation the
data distribution mean will be dominated by these rare values
and will produce mean and variance values that are highly
unstable, just as theory predicts.

As a result of the non-Gaussian shape for prðX̂Þ, the
median and mode of the distribution are more useful sum-
mary metrics of the distribution than the mean, and

Fig. 3 Spatial histogram results for the three cameras, calculated after summing 2000 frames for camera
A, 100 frames for cameras B and C. Note that all of the orientation angles are adjusted so that the mean of
α0 is exactly zero. The calculated mean at the top left of each subfigure is given for each of the four pixel
types, followed by the measured standard deviation and the estimated noise-only standard deviation
values [obtained from Eq. (16)] in parentheses, i.e., mean (meas_std) (est_std). Gaussian curves for
the fitted histogram mean and standard deviations are shown as solid curves overlying the histograms.
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distribution quantiles can be used in place of the variance in
order to describe the width. In Table 4, we compare the
extinction ratio mean, median, and mode for camera A.
Whereas for cameras B and C these three metrics are almost
the same, we can see that for the case of camera A the mean

is biased toward high values by the long one-sided tail of the
distribution. In this situation, the median is probably the
most useful single metric for camera users to use in evalu-
ating camera pixel properties. For example, if we take the
mean of the diattenuation distribution prior to applying
the equation for the extinction coefficient, X ¼ ð1þDÞ∕
ð1 −DÞ, we obtain a result (column 4 in Table 4) that closely
approximates the median value.

4.1 Using Temporal Noise Estimates to Validate the
Variance Estimates

To validate the variance formulas, we capture a long
sequence of frames and analyze the behavior of the polari-
zation parameters for individual pixels over time. This
removes the effect of spatial variability so that only temporal
noise is present. For cameras A and B, we collected a
sequence of 2000 frames, while for camera C, we were
only able to capture 750 frames during a single calibration
period. At each individual frame, we calculate the pixel prop-
erties Ie, α, D, and X, and from the resulting set of 2000 (or
750) estimates, we calculate the parameter variance. This is
shown as the first point at the upper left of the plots in Fig. 5,
corresponding to N ¼ 1, where N is the number of frames
summed before calculating the parameters.

Next, we take the same dataset and sum every pair of
frames (i.e., N ¼ 2) before calculating the parameters. For
a shot-noise-limited measurement, this is equivalent to

Fig. 4 Spatial histogram results for the three cameras, calculated after summing 2000 frames for camera
A, 100 frames for cameras B and C. Gaussian curves for the histogram mean and standard deviations
are shown as solid curves overlying the histograms. In camera A’s data, the histograms for D̂ have been
truncated to 1, and those X have been truncated at 2000 to prevent unphysical values. The four colors
are coded to the four pixel orientation types: 0 deg, 45 deg, 90 deg, and 135 deg.

Table 3 Measured pixel properties for the four polarization cameras
obtained from the 2000-frame-sum images (camera A) or 100-frame-
sum images (cameras B and C). Each entry shows the mean value of
each parameter taken across the entire array, together with the tem-
poral-noise-removed estimate of the spatial standard deviation (the
variation due to differences in manufacture) in square brackets.

Parameter Camera A Camera B Camera C

α0 (deg) 0 [0.11] 0 [0.65] 0 [0.36]

α45 (deg) 44.96 [0.11] 45.20 [0.52] 41.75 [0.42]

α90 (deg) 89.81 [0.13] 89.50 [0.20] 86.34 [0.34]

α135 (deg) 135.10 [0.12] 134.88 [0.23] 125.70 [0.43]

D0 0.9927 [0.0025] 0.8495 [0.0152] 0.6621 [0.0082]

D45 0.9928 [0.0029] 0.8495 [0.0152] 0.6545 [0.0092]

D90 0.9894 [0.0031] 0.8945 [0.0117] 0.6984 [0.0067]

D135 0.9913 [0.0025] 0.8853 [0.0108] 0.6010 [0.0123]
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doubling the integration time and thus collecting twice the
number of photoelectrons. Calculating the variance for
this new set of 1000 (or 375) parameter estimates, we obtain
the second point shown in the plots of Fig. 5.

Following this procedure for increasing values of N, we
simulate the effect of measuring with steadily improving
SNR. Using hÎei in place of Ie in each of the variance
Eqs. (14)–(20), we plot the corresponding noise-only varian-
ces predicted from theory as a solid curve.

4.2 Separating Spatial Variability from Temporal
Noise

Although the temporal noise measurements of Fig. 5 show a
close fit to predictions, we can also see that the measured

variance of all the pixels in the image (Figs. 3 and 4) are
much larger than the values predicted from the variance for-
mulas. This is an indication that pixel-to-pixel (deterministic)
variability is dominating the measured variation, not tempo-
ral (stochastic) noise. To confirm this conclusion, we show
a single row of pixels from each of the calibration images
(Fig. 6), selecting every other pixel in order to avoid issues
of differences between micropolarizer orientations. Here, we
see that the α̂, D̂, and X̂ variances are dominated by a broad
systematic variation across the row rather than by uncorre-
lated noise.

With the effects of stochastic and deterministic variation
now clear, we can use our variance formulas to remove the
stochastic portion from a measured variance value, leaving
only the spatial pixel-to-pixel differences. If we assume
that the two sources of variation are Gaussian-distributed
and uncorrelated, then their combined effect is given by a
convolution of the two distributions: for stochastic variables
x and y, the variance of the sum z ¼ xþ y is given as

EQ-TARGET;temp:intralink-;sec4.2;326;542varðzÞ ¼ varðxÞ þ varðyÞ:
Therefore, if we know varðzÞ and varðyÞ and want to

solve for the standard deviation of x, then

EQ-TARGET;temp:intralink-;sec4.2;326;495stdðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðzÞ − varðyÞ

p
:

If we take the data for the estimated extinction coefficient
α̂0 from camera C in Fig. 3, then varðzÞ ¼ ½0.365�2 and

Table 4 Extinction coefficient summary statistics for camera A, using
the data shown in Fig. 4.

Pixel orientation
(deg) Mean (X̂ ) Median (X̂ ) Mode (X̂ )

1þhD̂i
1−hD̂i

0 327 275 236 275

45 342 289 246 278

90 208 190 172 187

135 254 232 216 230

Fig. 5 Temporal standard deviation of each parameter for a single pixel in each camera. The horizontal
axis indicates the numberN of frames summed prior to calculating the parameter standard deviation. The
dots indicate measurements, whereas the curve indicates the theoretical standard deviation value cal-
culated from the measured light level. Note that the camera A subfigure for X̂ uses a semilogarithmic plot,
while all of the other subfigures use a linear plot.
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varðyÞ ¼ ½0.065�2, so that stdðxÞ ¼ 0.359. In this case, we
see that the observed spatial variation is almost entirely
due to pixel-to-pixel manufacturing differences rather than
to random noise. This and the corresponding results for α̂
and D̂ for each of the four cameras is given in square brackets
as the “manufacturing variation” in Table 3. By removing
the stochastic component, we now have a direct means of
comparing the spatial variability in the pixel polarization
parameters.

5 Conclusions
To assess the performance of a microgrid polarization cam-
era, it is natural to look first for the mean angle of orientation
and the mean extinction coefficient of each of the four ori-
entations of detector array micropolarizers. The spatial varia-
tion in these parameters, however, is also an important
concern: any calibration that does not estimate each pixel
individually is subject to increasing error as the spatial vari-
ability increases. To eliminate this source of error, we can
calibrate each pixel individually, but the inability to average
over an ensemble of many samples means that the calibration
measurements will have a much lower SNR. Using the vari-
ance formulas of Eqs. (14)–(20), we have a simple method of
estimating parameter calibration accuracy, so that users can
determine how many calibration frames of data are needed.

We have also shown that the most popular metric for
quantifying the performance of polarizers, the mean of the
extinction coefficient, becomes problematic when the polar-
izer approaches perfection. As the diattenuation value
approaches 1, the tail of the distribution for X̂ lengthens,

so that the mean becomes biased and highly unstable.
Unless the mean of the diattenuation distribution is many
standard deviations below 1, i.e.,

EQ-TARGET;temp:intralink-;sec5;326;363Q ¼ ð1 − hD̂iÞ∕stdðD̂Þ ≫ 1;

the noise will dominate, producing mean and variance esti-
mates that are of little utility. As a result, the meaning of
extinction ratios of 103, or even 106 reported in the literature
can be unclear without knowing the conditions of the meas-
urement. If these reported values are taken from the mean
calculated from the data, then they are only useful if the
experimenter has made sure that Q ≫ 1, a condition that
can be difficult to achieve in practice. For the calibration
of camera A, we summed together 2000 frames of data
and found that even this quantity of data (amounting to
95 GB) was not nearly sufficient to achieve this condition.
Using our variance formulas, we can estimate that increasing
the number of frames summed to about 2 × 105 (i.e., 9.5 TB)
should be sufficient. In general, for high values of X, the
median and mode are much more robust metrics than the
mean, allowing them to be used at much more reasonable
signal-to-noise ratios.

It is also important to keep in mind that the micropolarizer
characteristics will, in general, depend on the wavelength
and the incident angle of incidence (and therefore on the
lens numerical aperture), so that a user may need to recali-
brate the sensor for each spectrum at which it is to be used,
and to a lesser extent, with each lens.15

Fig. 6 Parameter estimates for a row through the camera images, calculated after summing 2000 frames
for camera A, 100 frames for cameras B and C. The inset numbers give the measured mean and stan-
dard deviation, and the theoretical noise-only standard deviation, of the row data.
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The four cameras examined in Sec. 4 above show a wide
spread in estimated performance, and it is natural to ask just
how important it is to work with a camera that has pixels of
extinction ratio 300 versus one with, say, an extinction ratio
of 10. Tyo and Wei16 and Roussel et al.17 have shown that
even for an extinction ratio as low as X ¼ 5, the SNR in the
Stokes vector elements increases by a factor of only ∼2.7
relative to an ideal diattenuator (X ¼ ∞). This would
seem to argue that there is little benefit to be had once
the extinction ratio exceeds 10 or 20, but most researchers
and engineers persist in pushing hard to get the highest X
values. It seems likely that the reason for this gap between
the theoretical value of high X and the practical value placed
on it by users lies with the ease of calibration. For a polar-
imeter employing high extinction ratio elements, one can
approximate the polarizers as ideal diattenuators without
a heavy cost in error. A polarimeter with low extinction
ratio elements, on the other hand, requires a high accuracy
calibration, and the polarimetric estimation equations will
need to be more complex in order to accommodate the non-
ideal diattenuation values.

Another place where the higher extinction ratio provides
tangible benefits is for imaging polarimetry of natural out-
door scenes. In this situation, many pixels will be seeing
light with a degree of polarization close to zero, so that
the polarimetric SNR will be poor for measuring the spatially
resolved angle of polarization.17 Using a higher extinction
ratio will allow for seeing smaller polarization features
above the noise level.
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