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1 Introduction
Low cost, commercially available unmanned aerial vehicles
(UAVs) increase the urgency of developing techniques to
detect, recognize, and/or identify such targets. Of the 235
commercial counter UAV systems reviewed in the 2018
study by Bard College,1 the vast majority of UAV systems
use radar and radio frequency sensors for detection. This
paper addresses detection using infrared (IR) imaging
cameras.2 The IR detection has potential advantages for
UAVs with low radar cross sections and for those flying
preplanned routes without active communications links.

Sensor models provide cost-effective means of designing
new sensors or upgrading existing designs. Sensor models
are effective in comparing relative sensor performance of two
similar but different sensors. However, models are even more
valuable if they are validated, that is, the model predictions
are borne out by field measurements. Validation allows mod-
els to predict sensor performance of a given sensor.

The sensor model discussed here is a physics-based
model for the detection of unresolved targets using either
the mid-wave infrared (MWIR) or the long-wave infrared
(LWIR) spectral bands.3–6 The two cameras used for collect-
ing the imagery are an LWIR camera and an MWIR camera.
Both are operated as fixed focal plane array devices, i.e.,
no scanning or dither.7 The data collection is described in
detail in a prior paper,8 which has provided radiometrically
validated, highly resolved signatures for two commercially
available UAVs. The results are directly applicable to the
recognition and/or identification tasks, whereas this paper

provides data and analyses applicable to the detection task.
As the target ranges increase, the targets become unresolved.

The discrimination tasks (detection, recognition, and
identification) are discussed in detail in literature from the
Army’s Night Vision and Electronic Systems Directorate.9–11

Briefly, the recognition and identification tasks require
that the target be resolved by the sensor, meaning multiple
pixels on the target. Detection can be accomplished with
unresolved targets with sufficient signal-to-noise ratio
(SNR). Imaging sensors can provide detection capability.
However, detection is often linked with searching and the
search task often involves a large field of regard. In this
paper, we use the sensor SNR as the primary metric for
the sensor’s ability to detect an unresolved target.

In this paper, we briefly describe the sensor model, the
targets, the data collection, and a comparison between the
model results and the actual measured SNR as a function
of range.12,13 Experimentally, great lengths are taken to
mitigate the influence of clutter, which is typically a
hindrance.14–17 This effort, overall, is a validation of the
proposed model.

2 Sensor Model
The model that we used to perform these studies is an L3
Technologies model called end-to-end MATLAB Sensor
Model (ETEMS), a physics-based SNR model for calculat-
ing the performance of staring IR sensors for detection of
unresolved UAVs. The model is an SNR model as a function
of target, atmospheric, and sensor parameters. It is a basic
SNR model but is extensive in that it includes many impor-
tant sensor parameters such as dark current, read noise,
optics emission temperature as well as a target model input
and MODTRAN atmospheric transmission, and emission
inputs.
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Included in the temporal noise sources are the background
shot noise from the scene (in this case, the dominant noise
factor), shot noise of the thermal emission from the lens, shot
noise from the thermal emission of the cold shield (small),
dark current shot noise, and readout integrated circuit noise

EQ-TARGET;temp:intralink-;e001;63;697Noisetemporal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
shot2bg þ shot2lensEmiss þ shot2dark þ read2

q
:

(1)

After the noise has been calculated, the signal is calcu-
lated. Using a modeled or measured target signature, the
spectral target contrast or broadband target contrast is
used. This contrast intensity is then converted to a contrast
irradiance as a function of slant range to target. Care is taken
to ensure that the target subtends less than one pixel prior to
using the target contrast intensity. If the target is not subpixel,
then the target signal intensity and the target background col-
umn from the target are converted to radiance with the total
visible area. Once the target and background are in terms of
radiance, then the pixel solid angle is used to calculate the
irradiance from each individually. These two quantities are
then used to calculate the target contrast irradiance. By using
a generic target, the user calculates the target contrast irra-
diance directly from MODTRAN and blackbody radiances.
Once the target contrast irradiance is known at our sensor
aperture, the model calculates the signal as follows:
EQ-TARGET;temp:intralink-;e002;63;459

Signal ¼
Z

λhigh

λlow

AopttintPVF
EcontrastðλÞ�

hc
λ

� τopticsðλÞτColdFilterðλÞ

× QEðλÞdλ; (2)

where Aopt is the sensor’s entrance pupil area, tint is the inte-
gration time, PVF is the pulse visibility factor, Econtrast is the
target contrast irradiance, h is the Planck’s constant, c is the
speed of light, λ is the wavelength, τoptics is the transmission
of the optics, τColdFilter is the transmission of the cold filter,
and QE is the quantum efficiency. Here, PVF is the average
energy on the detector for all possible spatial phases between
the point spread function (PSF) and the detector area.
Ensquared energy (not in the equation) is the maximum
PVF (centered on the detector).

Once both signal and noise are expressed in terms of elec-
trons, the SNR is simply the ratio of the two, which is easily
convertible into other metrics, such as noise-equivalent
irradiance, noise-equivalent temperature difference (NETD),
among others, but this trade study focuses on SNR

EQ-TARGET;temp:intralink-;e003;326;587SNR ¼ Signalffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Noise2temporal þ Noise2spatial

q : (3)

In this study, we set the spatial noise to zero and we
removed the spatial noise from the collected data by per-
forming a temporal average and removing the spatial noise.

3 Targets and Sensors
There were two UAV targets observed during data collection.
The first was the DJI Phantom 4 Pro (Fig. 1), with a char-
acteristic dimension of 15.7 cm. The second target was the
DJI Inspire 1 (Fig. 2), with a characteristic dimension of
20.1 cm. The characteristic dimension was found by outlin-
ing the target (segmentation) and then taking the square root

Fig. 1 (a) UAV1 DJI Phantom Pro 4 model and (b) MW image.

Fig. 2 (a) UAV2 DJI Inspire 1 model and (b) MW image.
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of the outlined target area. This characteristic dimension is
considered the “small” dimension because some flux from an
unresolved target can spill into background pixels and is thus
excluded from the outlined region. The larger dimension is
the square root of a box area that encompasses the UAV tar-
get (not to include the target blades). The idea of not includ-
ing the blades of the UAVs stems from the work done by
Fudala et al.8 in which they found the contribution of the
blades to be negligible. The large dimension for the DJI
Phantom Pro 4, UAV1, is 23.8 cm and the large dimension
for the DJI Inspire 1, UAV2, is 36.7 cm. In the LWIR, the
Phantom Pro 4 has an average temperature of 35.2°C, where
the RSSΔT is 1.44 K. In the MWIR, the Phantom Pro 4 had
an average temperature of 36.7°C and a RSSΔT of 1.08 K.
In the LWIR, the Inspire 1 had an average temperature of
43.8°C and an RSSΔTT of 9.82 K. In the MWIR, the
Inspire 1 had an average temperature of 39.1°C and an
RSSΔT of 10.9 K. The average temperature provides a
means for evaluating calibration (compared to the source
blackbodies) and calculating intensity, and the RSSΔT is
useful for calculating discrimination ranges (for object dis-
crimination of resolved targets). The calibration procedures
for these measurements are provided in Ref. 5.

There are two IR sensors used in the sensor model vali-
dation study. One is an MWIR imager and the other is an
LWIR imager. The MWIR imager is a type II superlattice
(T2SL) imager that is cryogenically cooled, and the LWIR
imager is a VOx uncooled microbolometer imager. The spec-
ifications of the imagers are found in Table 1.

These sensors provide very different characteristics for
sensor functional comparison. One is an inexpensive
uncooled LWIR and the other is a high-performance cryo-
genic MWIR sensor. In both cases, the calculations and
the SNR measurements use the raw output of these sensors
while viewing the UAVs, and the fixed pattern noise is
removed from the scenes through temporal averaging. The
SNR reported is the remaining temporal noise only.

4 Data Collection, Unresolved Targets
The data were taken with the goal of determining peak SNR
versus range. Although seven different ranges were used in

the MW and LW, only the final five ranges had unresolved
targets in the MW (199, 336, 393, 451, and 508 m). In the
LW, four ranges provided a suitable unresolved target (126,
199, 336, and 393 m). This shorter range from the LW cam-
era was attributable to the MW sensor having a detector size
approximately one-half as large (in one-dimensional) com-
pared to the LW detector size. The target moved out in
range along the line of sight of the sensor but was fixed
in range during image capture. Therefore, locating the target
in the imagery was aided by seeing the target at closer
ranges, knowing that the target remained in a clear sky back-
ground region and did not move much (particularly within
100 consecutive frames) either horizontally or vertically.
The MW camera provided 60 frames per second and the
LW camera provided 30 frames per second. Figure 3 is an
entire frame of the image and indicates the region of interest
(ROI) for locating the target. The range to the target was pro-
vided using two techniques and both were applied to the data
reduction. First, a laser range finder was applied to the target
for discrete ranges where the UAV was directed to be station-
ary. Second, a GPS sensor on board provided more data on
the distance from the sensor. Both of these data were used to
analyze the SNR as a function of range.

The UAV was essentially stationary for frames near the
end of the collection for each range and that was where
the laser range finder verified the ranges. The seven ranges
for which the data were processed were 37, 126, 199, 336,
393, 451, and 508 m, which were called increments 0
through 6. The GPS data (including range) were captured
10 times per second, slower than either camera. Onboard
GPS information was processed and proved useful in con-
firming targets, particularly for the longest ranges (508 m
for MW and 393 m for LW). Frames chosen for processing
were from the right most section where the target was nearly
stationary in the field of view.

Sensor imagery was collected from close range where the
UAV was easily detected to long range where the UAV was
difficult to find. The data were collected in multiple “incre-
ments” where recording is briefly stopped and then restarted
with small gaps in the recording. If the UAV moved signifi-
cantly during the gap in recording, it was very difficult
to reacquire the UAV when the SNR was low. There was
cloud clutter nearby, and there were other confusers, such
as other aircraft or birds within the vicinity of the UAV.
Track confusion did occur during the analysis process and

Fig. 3 Background with ROI. The flight path of the UAV went directly
from the sensor to this clear region in the clouds. The background of
the UAV is always this clear region.

Table 1 Sensor parameters.

Imager
MWIR T2SL
cryocooled

LWIR VOx
uncooled

Field of view (deg) 36.7 × 20.6 36.0 × 27.4

Array format 1280 × 720 640 × 480

Band (mm) 3.45 to 5.25 8 to 12

Detector pitch (mm) 8 17

Fill factor (area %) 80 90

Focal length (cm) 1.6 1.67

F-number (unitless) 2.3 1.25

NETD (mK) 41 50

F λ∕d 1.25 0.735
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the GPS data (latitude, longitude, and altitude) were used to
estimate the image pixel location in X- and Y-dimensions
for reacquisition of the UAV and to confirm that we indeed
reacquired the UAV. If reacquisition was successful, the
maneuvers recorded by GPS and transformed into pixel
space were mirrored in the target track locations.

5 Processing and Imagery
The background in the images included clear sky, a variety of
clouds, and land with natural and cultural objects present.
Unresolved targets could only be seen with the clear sky
background with visual searching. Cloud or land background
may have precluded finding the unresolved target.

The flight path along a line from the cameras to the UAV
kept the UAV within the clear sky region. This allowed
a visible sighting of the target for all but the longest ranges.
For the longer ranges, knowing the previous target location
in the image led us to a small 7 × 7 ROI. The 7 × 7 ROI
worked, but just barely for the longer ranges (later in the
collection). The clouds moved during the data collection
and generally got within a few pixels of the target. Clouds
were not allowed to impinge on the rim of the 7 × 7 ROI
where the background pixels were located. When that hap-
pened, earlier frames at that same range were selected for
processing.

The definition used for peak SNR is as follows:

EQ-TARGET;temp:intralink-;e004;63;465SNRpeak ¼ ½PeakTgtPixVal −MeanðAllBGPixValsÞ�
stddevðAllBGPixValsÞ :

(4)

This calculation was made on 100 consecutive frames
(collected at either 30 frames per second LW or 60 frames
per second MW). The average and the standard deviation
of the 100 peak SNR values constituted the peak SNR.
Note that each frame was processed separately so the tem-
poral noise was not reduced by frame averaging. We adopted
the convention of expressing SNR and signal and noise by
using optical power as our power. Our signal and noise were
linearly related to optical power and therefore were not
squared.

We used a 7 × 7 pixel grid centered on the peak pixel
(within a larger ROI), as shown below in Fig. 4 (a real exam-
ple is shown in Fig. 5). Our investigation included two ways
of defining the background pixels. One used pixels from

clear sky regions. The other defined background as the
rim of the 7 × 7 ROI used in processing. Advantages of
using pixels not near a target included the ability to detrend
the background data without contamination by the target.
Also, the number of background pixels was less constrained
than the rim of the ROI. Similarly, the advantage of using
the rim of the 7 × 7 ROI included simplicity and using
background pixels near the target. The results did not differ
significantly between the two methods. Our sensors under-
sampled the PSF so that a 3 × 3 area was sufficient to contain
the target when the target was subpixel in size. For example,
a Gaussian PSF was fit to the MW camera data, yielding
a sigma of 0.8 pixels.

Some algorithms define the target by using a summation
mask over a region around the peak pixel. For example,
a 3 × 3 or 5 × 5 mask collects the values from the surround-
ing pixels. It has been noticed that sometimes the peak pixel
value is less than a summation of power in the region
immediately surrounding the peak pixel. However, we
have defined the peak target pixel value to just be the
peak pixel within our ROI, which we have identified in
a manual process for each image. We then created a 7 × 7
area ROI to define the background pixels as the rim. The
3 × 3 and 5 × 5 boxes around the peak pixel can be thought
of as guard rims to prevent the PSF from spreading target
power into the background pixel region. Our pedestal is
then the mean value of the 24 pixels that make up the rim
of the 7 × 7 ROI. The noise in the denominator of the SNR
definition is then the standard deviation of the 24 pixels.
A discussion below will identify this noise as the total
noise. This is the noise of the data itself, not considering any
processing of the data by an algorithm or temporal averaging
by a human observer.

6 Noise Discussion and Results
The effect of noise on observers is well quantified in the
literature for imaging.18 The literature is less abundant
with regard to the effect of noise in IR detection systems.
Calculating noise directly from images is easy enough to
do, but the raw images are not the end product for these algo-
rithms. A common way of treating noise is to classify it into
temporal noise and spatial noise (fixed pattern noise). Spatial
noise is readily reduced by averaging frames over time.

Fig. 4 A 7 × 7 ROI is centered on the peak value pixel (Pk). The 24
pixels around the rim are used as background (BG) pixels.

Fig. 5 Pixelated view of the ROI centered on the peak pixel along
with the background pixels taken from the rim of the 7 × 7 ROI.
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Temporal noise can be effectively treated by a differencer,
subtracting the previous frame from the present frame. If
you treat a single frame, the spatial noise in our data is two
to three times as large as the temporal noise. The total noise
is read directly from the single image, but spatial noise and
temporal noise are added in quadrature to match the total
noise. The remaining temporal noise for the MWIR is 6.6
digital units and the temporal noise for the LWIR is 5.8 dig-
ital units. These values correspond to clear sky noise with
the fixed pattern noise removed.

We define the total noise as the standard deviation of the
background pixels. One can detrend the background pixels if
that is likely to be a part of the image processing. Generally,
we notice ∼10% reduction of the total noise with detrending
for the imaging sensors used. Our operational definition of
temporal noise is the standard deviation of the background
pixels after subtracting the previous frame (to remove spatial
noise). Spatial noise is then obtained by subtracting the
variance of the temporal noise from the variance of the total
noise and taking the square root of the resulting difference.
Both temporal noise and spatial noise can consist of more
basic forms of noise, but those are not readily determined
from imagery.

The sensor model provides temporal noise estimates
along with peak pixel value for the SNR. The model suggests
estimates of the spatial noise and clutter but avoids attempt-
ing to model spatial noise or clutter. The suggested noise
estimates are based on experience with similar focal planes
and common algorithms for reducing spatial noise. Clutter is
grouped into four categories: none, low, medium, and high.
The low, medium, and high levels of clutter are estimated
from field-collected imagery, with no algorithmic process-
ing. The user can lower the clutter based on algorithms
on hand. Consequently, the validation is based on an SNR
versus range where the noise is temporal. The actual imagery
produces the results described above.

7 Peak SNR Results
Three parameters that yield the peak SNR value are given in
the equation above. The three inputs and the resulting SNR
values for 100 consecutive frames are represented in Fig. 6.
The sensor model uses an average PVF in estimating the
peak value by converting the radiant intensity in photons/
sec-steradians to electrons per second from the detectors.
The phase of the PSF causes a variation from a maximum
value to one-fourth the maximum value depending on the
location of the center of the PSF with respect to the center
of the detector. The model uses an average PVF obtained by
moving the PSF to all possible positions on the detection
since all locations are equally probable. Some of the data
show an almost periodic variation, in part because of the tar-
get drifting (e.g., due to wind) during the 100-frame period.
Sometimes the target is more stationary, and the effect is
much less. One can imagine the PSF scanning across
the detectors yielding a somewhat repetitive pattern in the
data. Therefore, the purpose of averaging 100 frames of
results is to emulate an average PVF, as used in the model.
Keep in mind that the averaging is after the SNR is obtained
for each frame. It is not an averaging intended to reduce
the temporal noise, although some averaging might well
be inherent (e.g., with human observers). With detection

systems, the processing is more likely to be an algorithm
so temporal noise averaging is not done.

8 MWIR SNR and Model Results
The sensor model is run for the targets and sensors above.
MODTRAN is used to calculate the atmospheric transmis-
sion as well as the path radiance associated with the back-
grounds. The MWIR results for UAV1 are shown in Fig. 7.
The black curve is the measured SNR using the technique
described above. The “Model SNR Small UAV1” and
“Model SNR Large UAV1” are the two top curves, where
one model is associated with the characteristic dimension
and the other is the large dimension (both described above).
In the model, once the target goes from resolved to unre-
solved, the intensity is assumed to be associated with a
point source. Note that the small target goes from resolved
to unresolved at around 340 m (notice first data points are
separated between small and large targets; the large target
is still resolved). Also, the modeled SNR curves assume
a perfect diffraction-limited optical system and uniform
detector response. The two top curves do not address both
of these errors (finite size target and real sensor PSF).

In addition, the path radiance associated with the back-
ground is measured to be different than the MODTRAN pre-
diction. The background radiance in the sensor model is
corrected for both the two top curves and the two bottom

Fig. 6 Multiplot showing the three factors involved in calculating the
peak SNR and the resulting peak SNR for each of the 100 frames
used at this range for the LW camera.

Fig. 7 MWIR results for UAV1.
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curves. These errors constitute a 15% to 20% error in the
background flux.

The two “corrected” curves were associated with the cor-
rection of the finite target size and the real PSF. We imple-
mented an average pulse visibility function for the real sensor
modulation transfer function. The average PVF (associated
with a large number of random PSF positions) dropped
from 0.25 for a diffraction-limited system to 0.082 for an
aberration-limited system. Also, the finite target size was
convolved with the PSF to determine an effective drop in
PVF for finite size unresolved targets. When the target
was 1.0, 0.5, and 0.25 times the pixel pitch, the average
PVF dropped to 0.062, 0.076, and 0.080, respectively. This
approach was used to correct the effective average PVF asso-
ciated with the real sensor MTF and the finite target size
(even though unresolved).

The MWIR results for UAV2 are shown in Fig. 8.
Unfortunately, when the authors took the UAV2 data, the
flight rate for the UAV was fast and the increments associ-
ated with the SNR measurements were too far to collect rea-
sonable SNR data. That is, the range for the five planned
increments yielded longer range, but an SNR that was too
low to measure. We were able to obtain one good measured
SNR data point as shown. As in the case with UAV1, the two
top curves are shown for the model without real PSF correc-
tion and without finite target size correction. The two bottom
curves show the corrected curves with the real sensor PSF
and the finite target size.

It is also worth mentioning that the measured data are
closer to the small target assumption than the large target
assumption. This is reasonable since there is clear back-
ground coming through the “box” that is the target, and as
the target range increases, less flux strikes the detector in
regions within the target. The target is less of a “box” than
an unresolved target.

In the LWIR case, the results for UAV1 are shown in
Fig. 9. In this case, the average PVF for the diffraction lim-
ited case is 0.45. The Fλ∕d for the sensor is 0.73 and the
optics of the sensor are close to diffraction limited, so no
correction is performed for the real MTF measurement as
it is performed in the MWIR. The PVF correction is per-
formed for the finite target size as shown in Fig. 9, but
there is not much difference in the SNR from the original
noncorrected SNR values.

The resolved target was assumed to be resolved and was
not corrected. The correction was only applied after the target
became smaller than the detector size or detector instantaneous
field of view (IFOV). The measured SNR fell right between
the large UAV1 dimension and the small UAV1 dimension.

The LWIR results for UAV2 are shown in Fig. 10. There
are two curve pairs, where a curve pair corresponds to the
small and large versions of UAV2. However, the two pairs
vary with background temperature (infinite path radiance
associated with the background). The closer measurements
correspond with a background radiance of 33.5C and the
longer range measurements correspond with a background
radiance of 29.5C. The SNR is corrected for these back-
ground radiances, but unfortunately only a single-point SNR
is retrieved from the data (as shown). If we had been able to
reduce the SNR for the longer ranges, the two higher curves
would have been applicable for the data.

The UAV flight path is shown in Fig. 11 (the UAV is flown
to the area of the background outlined). While the clouds
moved slowly and we used the hole in the clouds as shown
(the UAV target is shown in the blow-up image to the right),
the background temperature in the LWIR varied with the posi-
tion of the hole (between the clouds) in the sky as well as the
bottom of the hole to the top of the hole. This caused the back-
ground variation in the LWIR to vary from 33.5C to 29.5C.

9 Uncertainties and Errors
There are quite a few uncertainties associated with the mea-
surements as well as errors associated with the model

Fig. 8 MWIR results for UAV2.

Fig. 9 LWIR results for UAV1.

Fig. 10 LWIR results for UAV2.
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calculations. Figure 9 shows the allocation of uncertainties
in the measurements and errors in the modeling. The uncer-
tainties include the target outline (affects both area and
radiometry) uncertainty estimated at 3% error. The radio-
metric uncertainty is derived from the blackbody calibra-
tion of the target radiometry as well as spectral errors
associated with the target emission and reflection. The
transmission uncertainty is associated with the actual trans-
mission of the atmosphere, compared to the MODTRAN
calculation of transmission (note this is spectral). There
are two path radiance components. The path radiance error
is measured in this case and is found to be up to 20% differ-
ent than the MODTRAN estimate. Since the path radiance
is measured, we correct the error, but the measurement
uncertainty of the path radiance measurement is estimated
at 5%. This error is due to the fact that background
temperature can vary greatly from point to point in the
sky; however, MODTRAN uses general location informa-
tion to estimate background path radiance. We measured
the MTF of the sensor (and effectively the PSF), but the
measurement error of this real MTF is estimated at about
5%. Finally, target size blur, (i.e., the impact of the finite
target size on the PVF) we have handled this by taking a
small target size and large target size and then comparing
those target sizes with the sensor real PSF. This approach

has an uncertainty estimated to be the highest at around
10%.

The modeling errors are the path radiance, the real MTF
(and not diffraction limited), and the target size blur associ-
ated with the finite target size. All of these errors reduce the
modeled SNR, where the component errors are shown. They
are all biased toward a lower SNR, so the effect is not root
sum squared. From a basic model that is corrected, these
errors contribute to a 439% increase in SNR. So, for the
corrected model, the SNR is 23% of the uncorrected SNR
as shown in all worst-case cascaded errors.

The UAV shape results in a signature that contains back-
ground as well as target within a rectangular area. This
results in targets that are not resolved in the sense of recog-
nition or identification but has energy in more than a single
pixel (bleeds over into adjacent pixels). For this study the
effective area of the UAV is used to determine an unresolved
distance. Once the target becomes smaller than a detector
IFOVor pixel, then an assumed Gaussian target size is con-
volved with the PSF to determine the effect on the average
PVF. This factor is used in the correction of the model cal-
culations and is range-dependent, but the largest contributor
in this case is around 20% reduction in the SNR. In addition,
target size blur is more largely effected by the MWIR band
due to camera parameters. The reason can be found by
examining how a “point” is imaged by any imaging system
through the PSF. For MWIR, the Fλ

d value is 1.25, which
causes the PSF to effectively fill a single pixel. Therefore,
when the PSF is convolved with the actual UAV, the signal
is effected greatly. However, for LWIR, the Fλ

d value is 0.735,
which causes the PSF to be much smaller than a single pixel
and in turn has much smaller difference when convolved
with the actual UAV.

The path radiance error can be characterized in numerous
different ways. In temperature, the error shown is the back-
ground measurement correction (versus the MODTRAN
model) and the background measurement. For a 2% change
in flux that corresponds to a 13.5% change in Celsius tem-
perature (note Kelvin may be a better metric for tempera-
ture), then the SNR error is 83%.

Fig. 12 Uncertainties and errors.

Fig. 11 UAV2 flight path: the UAV begins at this initial position and
flies out toward the cloud gap indicated at the center of the FOV.
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10 Conclusions
We have provided a comparison of a sensor model applied
to two UAV targets, namely, an atmosphere, and two sensors.
This validation exercise has demonstrated that the model
is accurate within a set of estimated uncertainties.
Recommendations for future work are investigation of target
size correction for unresolved targets that are not <1∕10 th of
an IFOV, use of real MTF and PSF for sensors that are not
diffraction limited, and path radiance corrections when back-
ground measurements are available. This work was pre-
sented at SPIE Defense + Commercial Sensing conference
in April 2019.19
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