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1 Introduction
The usefulness of odd-order surfaces is widely recognized
nowadays because the odd-order surface contains odd-
order powers of radial coordinate unlike conventional
aspherical surfaces and thus provides new degrees of free-
dom in optical design. A pioneering application of the
odd-order surface is found in viewfinder design of instant
cameras,1 for which the odd-order surface plays a major
role in correction of astigmatism induced by the tilted curved
mirror. The odd-order surface has been applied to imaging
optics, such as a projection display2 and a zoom lens.3

This surface type has been also applied to lithographic pro-
jection systems,4 in which diffraction-limited imaging per-
formance is required.

Few studies have been performed on odd-order surfaces.
Since odd-order surfaces consist of powers of absolute value
of radial coordinates, they are rotationally invariant. Thus,
one might infer that odd-order surfaces can be expressed
as the form of ordinary aspherical surface (even-order
power series). However, by considering the differentials of
odd-order surfaces, Shibuya et al.5 proved that odd-order sur-
faces cannot be represented as an even-order power series.
(This is due to the fact that the higher-order differentials
of odd-order surfaces cannot be defined at the origin.)
This property implies that odd-order surfaces have aberration
characteristics different from those of ordinary even-order
surfaces. Thus, they concluded that the odd-order surfaces
are effective and practically confirmed that odd-order coef-
ficients are effective parameters in optical design. However,
this result seems to be contradictory with the completeness of
Zernike polynomials because the rotational invariant terms
of Zernike polynomials consist only of even-order mono-
mials. Also, the fact that odd-order surfaces can be exactly
represented by Zernike polynomials has not been proven. To

resolve these problems, Tanabe et al.6 proved that not only
the displacement but also slopes of odd-order surfaces are
exactly represented by a finite number of Zernike polyno-
mials. As a result, odd-order surfaces are exactly represented
by a finite number of even-order polynomials. (Note that the
impossibility of Taylor expansion, which means expansion
of odd-order aspherical terms into even-order power series,
is not contradictory with the completeness of Zernike poly-
nomials.) They also practically confirmed that the effective-
ness of this approximation for the case of Schmidt corrector
plate with odd-order terms. However, since the required
number of even-order terms, which closely approximates
an odd-order surface, is not necessarily realistic for some
cases, odd-order surfaces are effective in optical design.
To analyze the characteristics of odd-order surfaces, we con-
struct an aberration theory for odd-order surfaces in this
paper. Moreover, we study how best to use them for optical
design of extreme ultraviolet lithography (EUVL) cameras.

One major derivation of aberration coefficients involves
expanding a wavefront function into a power series of
pupil coordinates.7–13 In Sec. 2, following this conventional
method, we derive the aberration coefficients of odd-order
surfaces to clarify the usefulness of these surfaces. An
aspherical ray trace procedure provides a conversion of
aspherical sag into additional optical path length and then
gives expansion of wavefront aberrations.

Section 3 shows a design example for EUVL cameras
with odd-order surfaces, whereas conventional EUVL cam-
era designs employ only even-order surfaces.14–16 Tanikawa
et al.4 first introduced odd-order surfaces and demonstrated
the effectiveness in aberration correction. Since higher-order
gradients of odd-order surfaces are undefined at the origin,
the surface figure cannot be intrinsically expanded as the
form of the even-order power series. Therefore, the associ-
ated wavefront aberrations cannot be expanded, and thus it is
impossible to define aberration coefficients at the origin.
Such wavefront aberration cannot be allowed for precision
optics. To avoid this, we apply odd-order terms into only*Address all correspondence to: Takao Tanabe, E-mail: tanabe-t@hakuto.co.jp
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the surfaces annular in shape in this paper. As a result, we
obtain a much improved design that is allowable for up-to-
date lithography tools. In this case, as predicted by the theo-
retical analysis in Sec. 2, odd-order surfaces are specifically
effective in correcting higher-order coma, astigmatism, and
tetrafoil. Moreover, the required number of even-order terms
that sufficiently approximates odd-order shape is not realis-
tic. From these two reasons, we conclude that odd-order sur-
faces provide a new degree of freedom in lens optimization.

2 Derivation of Wavefront Aberration Coefficients
of Odd-Order Surfaces

2.1 Wavefront Seidel Aberrations for Spherical
Surfaces

Deriving aberration coefficients involves expanding a wave-
front function into power series.7–13 In this paper, following
the method of Conrady,7 we derive aberration coefficients by
using the optical path differences (OPD) between a ray and
the principal ray. This method is easily applied to not only
conventional even-order surfaces but also any aspherical
surfaces.

Figure 1 illustrates the optical relation of the object, the
entrance pupil, the exit pupil, and the image in a lens system.
For simplicity, the height of the marginal ray at the exit pupil
is normalized to unity. This normalization simplifies the ray
coordinate.

Expanding the wavefront function into power series of
normalized pupil coordinates (ξ; η) provides wavefront aber-
ration coefficients of a single surface. According to Shack’s
notation,13 the wavefront function of an ordinary rotational
system is expanded as
EQ-TARGET;temp:intralink-;e001;63;400

Wðξ; η; hÞ ¼ W000 þW200h2 þW111hηþW020ðξ2 þ η2Þ
þW040ðξ2 þ η2Þ2 þW131hηðξ2 þ η2Þ þW222h2η2

þW220h2ðξ2 þ η2Þ þW311h3ηþ · · · ; (1)

where h means the relative (normalized) image height that
lies along y-axis. Also, Wijk are the wavefront aberration
coefficients and have the unit of length. In this equation,
we implicitly assume that there is rotational symmetry of
the optical system and the possibility of Taylor expansion
for any system functions, such as surface figure and wave-
front aberration.

In Eq. (1), the first four coefficientsW000;W200;W111, and
W020 correspond to the constant piston, the field-dependent

piston (the difference between the optical path length of an
on-axis ray and that of extra-axial principal ray), the magni-
fication error, and defocus, respectively. The fourth-order
coefficients W040;W131;W222;W220, and W311 represent
Seidel aberrations and correspond to spherical aberration,
coma, astigmatism, field curvature, and distortion, respec-
tively. These five wavefront errors dominantly affect the
image quality and thus they are the first target to be
corrected.

2.2 Wavefront Aberrations Induced by Small
Asphericity

In this section, we represent the aspherical contributions of
narrow bundles along the principal ray for rotationally sym-
metric optical systems. If the asphericity is small, the optical
path induced by the aspherical sag simply corresponds to the
additional wavefront aberration. We consider a sphere-based
aspherical surface, which is denoted as

EQ-TARGET;temp:intralink-;e002;326;549z ¼ cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2r2

p þ fðX; YÞ; (2)

where c is the curvature of the base sphere, (X; Y) is the coor-
dinate on the tangent plane at the vertex, the radial coordinate
r2 ¼ X2 þ Y2, and fðX; YÞ is a small asphericity from the
base sphere.

Since the intersection point between an incident ray and
aspherical surface cannot be analytically derived, an iterative
method is employed in practical ray tracing for the aspherical
surface. In the meridional section, Fig. 2 shows an incident
meridional ray from air to the material refracting at point P
on an aspherical surface.

Generally, the lowest order approximation of the aspheri-
cal sag from the base sphere provides the additional optical
path of an incident skew ray

EQ-TARGET;temp:intralink-;e003;326;361½P0P� ∼ ½P0P1� ¼ z0 cos θ ¼ fðX0; Y0Þ cos θ; (3)

where cos θ denotes the direction cosine of the incident ray
along the z-axis and (X0; Y0) is the coordinate of the incident
point P0 projected onto the tangent plane at the vertex.
Owing to the normalization of pupil coordinates, the incident
point (X0; Y0) is referred to the normalized pupil coordinate
(ξ; η) as

EQ-TARGET;temp:intralink-;e004;326;264ðX0; Y0Þ ¼ ðyξ; yηþ ȳÞ; (4)

Fig. 1 Definition of coordinate system for analyzing aberrations.
Fig. 2 Ray tracing at an aspherical surface of a single ray in the
meridional plane.
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where y and ȳ correspond to the actual paraxial marginal and
actual paraxial principal ray height, respectively. Note that
while the image height h, which appears in Eq. (1), is nor-
malized by the marginal image height and the ȳ is the actual
principal ray height.

By considering not only an incident skew ray but also an
exit skew ray from the surface, the wavefront aberration
function Wðξ; η; ȳÞ, which corresponds to the OPD between
a ray and the principal ray, is represented as follows:

EQ-TARGET;temp:intralink-;e005;63;653Wðξ; η; ȳÞ ¼ ðn cos θ 0 − cos θÞ½fðyξ; yηþ ȳÞ − fð0; ȳÞ�;
(5)

where n is the index of the material and cos θ 0 denotes the
direction cosine of the exit ray along the z-axis.

By applying the Taylor series of fðX; YÞ to Eq. (5)

EQ-TARGET;temp:intralink-;e006;63;576

Wðξ;η; ȳÞ ¼ ðn cos θ 0 − cos θÞ

×
�
y

�
∂f
∂X

ξþ ∂f
∂Y

η

�
þ y2

2

�
∂2f
∂X2

ξ2 þ 2
∂2f
∂X∂Y

ξηþ ∂2f
∂Y2

η2
�

þ y3

3!

�
∂3f
∂X3

ξ3 þ 3
∂3f

∂X2∂Y
ξ2ηþ 3

∂3f
∂X∂Y2

ξη2 þ ∂3f
∂Y3

η3
�

þ y4

4!

�
∂4f
∂X4

ξ4 þ 4
∂4f

∂X3∂Y
ξ3ηþ 6

∂4f
∂X2∂Y2

ξ2η2

þ 4
∂4f

∂X∂Y3
ξη3 þ ∂4f

∂Y4

�
þ · · ·

�
; (6)

where each derivative ∂mþnf
∂Xm∂Yn means ∂mþnf

∂Xm∂Yn ð0; ȳÞ. This formu-
lation is the basis to derive wavefront aberration coefficients.

2.3 Aberration Coefficients of Odd-Order Aspherical
Surfaces

We demonstrate the derivation of aberration coefficients of
the second- and fourth-order aspherical surfaces. These sur-
faces assume a major role in Seidel aberration theory. The
second-order aspherical surface is represented by the simple
quadric form. Namely

EQ-TARGET;temp:intralink-;e007;63;307fðX; YÞ ¼ AðX2 þ Y2Þ; (7)

where A is the aspherical coefficient. By substituting Eq. (7)
into Eq. (5), the aberration coefficients are calculated as

EQ-TARGET;temp:intralink-;e008;63;253

Wðξ; η; ȳÞ ¼ Aðn − 1Þ cos θ½ðyξÞ2 þ ðyηþ ȳÞ2 − ȳ2�
¼ Aðn − 1Þ cos θ½y2ðξ2 þ η2Þ þ 2yȳη�: (8)

In this expression, the first term represents the power
added to the base surface shape. The second term is the
wavefront tilt that means a magnification error. The
fourth-order surface is also represented as

EQ-TARGET;temp:intralink-;e009;63;159fðX; YÞ ¼ AðX2 þ Y2Þ2; (9)

where A is the fourth-order aspherical coefficient. The wave-
front function in Eq. (5) is

EQ-TARGET;temp:intralink-;e010;326;752

Wðξ; η; ȳÞ ¼ Aðn − 1Þ cos θ × ½4yȳ3ηþ 2y2ȳ2ðξ2 þ 3η2Þ
þ 3y3ȳηðξ2 þ η2Þ þ y4ðξ2 þ η2Þ2�: (10)

The above equation represents Seidel aberration coeffi-
cients of a fourth-order surface: distortion, astigmatism,
coma, and spherical aberrations, respectively. Note that
dividing the second term into astigmatism and field curvature
is possible.

The method described above enables the calculation of
aberration coefficients for any aspherical surfaces. We derive
explicit expressions for the first- and third-order surfaces,
which will be applied to the extreme ultraviolet (EUV) opti-
cal design described in Sec. 3.

Odd-order aspherical surfaces are expressed by the poly-
nomial to the odd powers of r, which become half-integer
powers of r ¼ X2 þ Y2. The first-order aspherical surface
is given by fðX; YÞ ¼ AðX2 þ Y2Þ1∕2 and the third-order
aspherical surface is given by fðX; YÞ ¼ AðX2 þ Y2Þ3∕2.
For both surfaces, the higher-order derivatives ∂mþnf

∂Xm∂Yn ð0; ȳÞ
do not vanish. Thus, the wavefront expression of Eq. (8) con-
tains an infinite number of terms. Namely
EQ-TARGET;temp:intralink-;e011;326;510

Wðξ; ηÞ ¼ Aðn − 1Þ cos θ ×
�
yηþ y2

2ȳ
× ξ2 −

y3

2ȳ2

× ξ2η −
y4

8ȳ3
× ðξ4 − 4ξ2η2Þþ · · ·

�
; (11)

for the first-order aspherical surface and
EQ-TARGET;temp:intralink-;e012;326;424

Wðξ; ηÞ ¼ Aðn − 1Þ cos θ ×
�
3yȳ2ηþ 3y2ȳ

2
ðξ2 þ 2η2Þ

þ y3

2
ηð3ξ2 þ 2η2Þ þ 3y4

8y
× ξ4 · · ·

�
; (12)

for the third-order aspherical surface.
By classifing terms in Eqs. (11) and (12) by the order of

pupil coordinates, Table 1 represents the aberration compo-
nents of the first-, second-, third- and fourth-order aspherical
surfaces.

The ordinary even-order aspherical surfaces, which are
the second- and fourth-order aspherical surface in this
table, correspond to Gaussian optics and Seidel aberration
theory. However, the aberration coefficients of odd-order
aspherical surfaces are completely different from those of
the fourth-order aspherical surface. For example, similar
to astigmatism, the y4 aberration coefficients of odd-order
surfaces are not rotationally invariant while that of the
fourth-order surface is just Seidel spherical aberration and
rotationally invariant. The y4 aberration coefficient of the
first-order aspherical surface is decomposed by Zernike pol-
ynomials as

EQ-TARGET;temp:intralink-;e013;326;168W ¼ ξ4 − 4ξ2η2 ¼ ρ4

8
ð5 cos 4ϕþ 4 cos 2ϕ − 1Þ

¼ 1

8
ð5Z17 þ Z12 − 3Z5 − 1Þ; (13)

where ξ ¼ ρ cos ϕ and η ¼ ρ sin ϕ in the pupil plane. The
classification of Zernike polynomials used in Eq. (13) is
shown in Table 2.
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This expression represents that the y4 aberration coeffi-
cient of the first-order aspherical surface is the combination
of tetrafoil, sixth-order astigmatism, and Seidel astigmatism.
As Eq. (13), the y4 aberration coefficient of the third-order
aspherical surface W ¼ ξ4 also consists of the nonrotational
Zernike polynomials in Table 2

EQ-TARGET;temp:intralink-;e014;63;425W ¼ ξ4 ¼ ρ4

8
ðcos 4ϕþ 4 cos 2ϕþ 3Þ

¼ 1

8
ðZ17 þ Z12 − 3Z5 þ 3Þ: (14)

From this point of view, the odd-order aspherical surfaces,
which are considered as low-order aspherical surface, are
effective in aberration correction because their aberration
coefficients contain higher-order Zernike polynomials,
such as Z5, Z12, and Z17.

3 Design Application

3.1 Outline of Optical Design

Since the beginning of 1990s, optical designs of EUVL cam-
eras have been researched extensively. Since no refractive
material is available for EUV region, all EUVoptical systems
are designed with mirrors. Among them a six-mirror con-
figuration that includes one pupil relay is optimal for the bal-
ance between the field width and nonobscured numerical
aperture. All optical surfaces are rotationally symmetrical
around the common axis. However, the aperture of each sur-
face is decentered, and the axial point is not imaged by the
system. Figure 3 illustrates the basic configuration of six-
mirror EUVL projection system.

The system in Fig. 3 consists of three groups. The reticle
side group (M1 and M2) reduces the angle of rays that enter
the pupil relay group (M3 and M4) in order to correct the
extra-axial ray aberrations. The aperture stop is placed at
M2. The pupil relay group (M3 and M4) makes the
image of the aperture stop onto M5, which is placed in

the wafer side group. Also, the intermediate reticle image
is formed between M4 and M5. The wafer side group resem-
bles the reticle side group.

In this section, we describe two designs of this six-mirror
EUVL camera to disclose the effectiveness of odd-order
aspherical surfaces. One is designed with only even-
order aspherical terms and the other with additional
odd-order terms. Table 3 represents the optical design
specifications:

In optical design, the merit function is constructed so that
the real magnification and real telecentricity are constrained
only in the exposure field, that is, this optical system does not
necessarily satisfy these specifications in the sense of para-
xial optics. Further, the merit function based on wavefront
aberrations with Gaussian quadrature is suitable for such a

Table 2 Classification of Zernike polynomials used in Eq. (13).

Expressions of Zernike polynomials Classification

Z 17 ¼ ρ4 cos 4ϕ Tetra-foil

Z 12 ¼ ð4ρ4 − 3ρ2Þ cos 2ϕ Sixth-order astigmatism

Z 5 ¼ ρ2 cos 2ϕ Seidel astigmatism

Fig. 3 Basic configuration of six-mirror EUVL projection system.

Table 1 Wavefront aberration coefficients of up to the fourth-order aspherical surface.

Power of y
First-order

aspherical surface
Second-order

aspherical surface
Third-order

aspherical surface
Fourth-order

aspherical surface

y yη 2yȳη (magnification error) 3yȳ2η 4yȳ3η (distortion)

y2 y2

2ȳ × ξ2 y2ðξ2 þ η2Þ (defocus) 3y2 ȳ
2 ðξ2 þ 2η2Þ 2y2ȳ2 × ðξ2 þ 3η2Þ (astigmatism)

y3 − y3

2ȳ2 × ξ2η 0 y3

2 ηð3ξ2 þ 2η2Þ 3y3ȳ × ηðξ2 þ η2Þ (coma)

y4 − y4

8y × ðξ4 − 4ξ2η2Þ 0 3y4

8y × ξ4 y4 × ðξ2 þ η2Þ2 (spherical)

Table 3 Optical design specifications for EUVL camera.

Features Specifications

Wavelength 13.5 nm

Numerical aperture 0.3 on wafer side

Exposure field Y 0 ¼ 28.5 to 30.5 (2-mm slit)

Magnification −1∕4

Telecentricity Telecentric at wafer plane

Residual wavefront
aberration

Less than 0.006λ;
(Strehl ratio >0.998)
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Table 4 EUVL projection system with only aspherical even-order terms.

Radius of curvature Thickness Material

Object Infinity 560.8785

1 −820.9470 −190.176 Reflective

2* 2206.467 319.2278 Reflective

3 474.5155 −287.472 Reflective

4 573.4281 810.925 Reflective

5 286.7007 −381.439 Reflective

6 453.9792 422.1489 Reflective

Image Infinity

Surface no. 1 2 3 4 5 6

Normalization
radius

90 40.5 100 257.5 48.5 150

A1 0 0 0 0 0 0

A2 0 0 0 0 0 0

A3 0 0 0 0 0 0

A4 2.232809 × 10−01 −2.881597 × 10−03 −2.152907 × 10−01 −9.832075 × 10−02 −2.395010 × 10−03 3.696353 × 10−02

A5 0 0 0 0 0 0

A6 −4.772316 × 10−02 −3.131182 × 10−04 6.599907 × 10−03 1.272619 × 10−02 2.296908 × 10−02 5.349752 × 10−03

A7 0 0 0 0 0 0

A8 1.286259 × 10−02 −3.977065 × 10−05 1.192252 × 10−03 −2.210501 × 10−02 −3.021419 × 10−03 6.579361 × 10−04

A9 0 0 0 0 0 0

A10 −3.111194 × 10−03 −3.388733 × 10−06 −1.066165 × 10−03 1.081757 × 10−02 5.460242 × 10−04 7.172373 × 10−05

A11 0 0 0 0 0 0

A12 4.695752 × 10−04 0 2.058089 × 10−04 −1.694801 × 10−03 −1.072324 × 10−04 1.554783 × 10−05

(a) (b) (c)

Fig. 4 Wavefront aberration of the even-order design: (a) bottom, (b) center, and (c) top.
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highly corrected optical system. All designs are achieved
with Code-V™. The radii of base spheres, the air spaces,
and the aspherical coefficients (excluding the conic constant)
are chosen for optimization.

3.2 Design with Even-Order Aspherical Terms

Table 4 represents a conventional EUVL system that is
designed with only sphere-based even-order aspheri-
cal terms.

In this design, the aperture stop is placed on the second
surface that is indicated by the asterisk. The aspherical sur-
face shapes are described by the following equation:

EQ-TARGET;temp:intralink-;e015;326;615z ¼ cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2r2

p þ
X12
n¼1

Anρ
n; (15)

where c is the curvature of the base sphere, r is the radial
coordinate, and ρ is the normalized radial coordinate of
which normalization radius is indicated in Table 4. To
meet the specification, even-order aspherical terms up to
12th order are needed. However, the Strehl ratios of this
design are at the level of 0.995, which are not sufficient
for up-to-date lithography tools.17 As we have practically
confirmed by a study of lens design, the use of even-
order aspherical coefficients up to 30th-, the second-order
term, and the conic coefficient has little effect on wavefront
improvement in this case. We infer that the ineffectiveness of
the second order is based on the fact that the second-order
aspherical term only generates the power and magnification
error that do not involve the higher-order aberrations. Also,
since the conic constant can be closely represented by ordi-
nary even-order aspherical surface, it does not improve the
optical performance significantly.

Figure 4 shows the wavefront aberration of the bottom,
center, and top of the field. Note that the scale is −λ∕10
to þλ∕10. The residual root-mean-square (RMS) wavefronts
are 0.012, 0.008, 0.011 waves, respectively. Also the Strehl
ratio is 0.995, 0.997, and 0.996.

Table 5 and Fig. 5 show the Zernike decomposition of the
wavefront aberrations. The strong asymmetry in the pupil

Table 5 Zernike decomposition of the wavefront aberrations of even-
order design (units are in waves).

Coma

Field Bottom Center Top

Z 8 −0.0045 0.0068 −0.0038

Z 15 −0.0099 0.0013 0.0065

Z 24 0.0005 −0.0021 −0.0054

Z 35 −0.0013 −0.0018 −0.0023

Astigmatism

Field Bottom Center Top

Z 5 0.0031 −0.0052 0.0017

Z 12 0.0174 0.0026 −0.0182

Z 21 −0.0029 0.0006 0.0057

Z 32 −0.0023 −0.0019 −0.0012

Trefoil

Field Bottom Center Top

Z 11 −0.0070 0.0087 −0.0030

Z 20 −0.0073 −0.0026 0.0063

Z 31 −0.0030 −0.0029 −0.0025

Tetrafoil

Field Bottom Center Top

Z 17 0.0124 0.0019 −0.0211

Z 28 0.0007 0.0008 0.0004

Fig. 5 Bar diagrams of the Zernike coefficients described in Table 5. (a) Coma, (b) astigmatism, (c) trefoil,
and (d) tetrafoil.
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relay (M3 and M4), which come from the large decentering,
causes asymmetrical aberrations, such as tilt, coma, and
astigmatism. Although the Seidel aberrations (Z8 for coma
and Z5 for astigmatism) are well-corrected, the sixth-order
wavefront aberrations (Z15, Z12, and Z17) are large and
their signs at the top of the fields are opposite to those at
the bottom. Among them, sixth-order astigmatism (Z12)
and tetrafoil (Z17) are dominant.

3.3 Improvement by Utilizing Odd-Order Aspherical
Terms

As shown in Sec. 2, odd-order aspherical surfaces have the
capability to control sixth-order wavefront aberrations (Z12

and Z17) independently. Introducing odd-order aspherical
terms into M3 and M4 reduces the residual wavefront aber-
ration significantly. Table 6 shows an optical design form
with odd-order aspherical terms.

Table 7 compares the residual RMS wavefront of
even-order design and that of the design using both even-

and odd-order terms. In the design with odd-order terms,
the Strehl ratios over the entire exposure field are almost
0.999 as required for up-to-date lithography tools.17

Figure 6 shows the wavefront aberrations of the bottom,
center, and top of the field. The scale is the same as Fig. 4.

Table 8 and Fig. 7 show the Zernike decomposition of
the wavefront aberrations. By comparing Tables 5 and 8,
the use of odd-order aspherical terms in M3 and M4 does
not change the balance of Seidel aberrations of coma (Z8)
and astigmatism (Z5). The sixth-order astigmatism (Z12)

Table 6 EUVL projection system with odd-order aspherical terms.

Radius of curvature Thickness Material

Object Infinity 573.3432

1 −839.4372 −200.5083 reflective

2* 1945.2131 353.6812 reflective

3 529.8170 −288.8153 reflective

4 584.2007 857.2901 reflective

5 281.1104 −376.3534 reflective

6 454.4199 423.0405 reflective

Image Infinity

Surface no. 1 2 3 4 5 6

Normalization radius 91.5 40.5 103 262 48 150

A1 0 0 2.025075 × 10−01 −5.005588 × 10−01 0 0

A2 0 0 0 0 0 0

A3 0 0 1.015068 × 1000 −5.603777 × 10−01 0 0

A4 2.359900 × 10−01 −2.580754 × 10−03 −9.049848 × 10−01 −2.558581 × 10−01 −3.623837 × 10−03 3.862932 × 10−02

A5 0 0 4.549866 × 10−02 −4.558530 × 10−02 0 0

A6 −3.896598 × 10−02 −2.214112 × 10−04 1.561940 × 10−01 1.008751 × 10−01 1.514787 × 10−02 5.490149 × 10−03

A7 0 0 5.883905 × 10−02 9.252107 × 10−02 0 0

A8 8.224229 × 10−03 −3.315761 × 10−05 −4.329746 × 10−02 7.071586 × 10−04 −1.313364 × 10−03 6.231698 × 10−04

A9 0 0 −6.664260 × 10−02 −9.514685 × 10−02 0 0

A10 −1.684451 × 10−03 0 1.680247 × 10−03 −6.676155 × 10−02 2.858667 × 10−04 1.114371 × 10−04

A11 0 0 5.288878 × 10−02 8.182442 × 10−02 0 0

A12 2.327812 × 10−04 0 −2.077366 × 10−02 −1.109241 × 10−02 −7.407131 × 10−05 0

Table 7 Comparison of residual RMSwavefront of two designs (units
are in waves).

Bottom Center Top

Only even-order 0.0116 0.008 0.0105

Both even- and odd-order 0.0058 0.0056 0.0054
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and tetrafoil (Z17) are evidently reduced, while lower-order
trefoil (Z11) still remains. Also, sixth-order coma (Z15) is
reduced.

In Sec. 2.3, we have proven that the y4 aberration coeffi-
cients, which correspond to spherical aberration for ordinary
fourth-order aspherical term, of the first- and the third-order
aspherical surfaces contain tetrafoil (Z17) and the sixth-order
astigmatism (Z12). Hence, odd-order surfaces have stronger
capabilities of correcting nonsymmetrical aberrations than
even-order surfaces, as shown in this design example.

3.4 Practical Impossibility of Expansion of Odd-Order
Aspherical Terms into Even-Order Power Series

Tanabe et al.6 have derived the expansion formula for mono-
mial and described the possibility of the close approximation
of odd-order aspherical terms by a finite number of even-
order aspherical terms. As proven in Ref. 6, the Zernike
expansion of monomial tα is given as

EQ-TARGET;temp:intralink-;e016;326;347tα ¼
X∞
n¼0

anQnðtÞ ¼
X∞
n¼0

ð2nþ 1ÞΓðαþ 1Þ2
Γðαþ nþ 2ÞΓðα − nþ 1ÞQnðtÞ;

(16)

where ΓðxÞ is the gamma function and QnðtÞ ¼
ð−1Þn
n!

dn
dtn t

nð1 − tÞn, which correspond to rotationally symmet-
ric Zernike polynomials. The variable t is the square of the
normalized pupil coordinate, that is, t ¼ r2.

In practical lens design, the number of available aspheri-
cal coefficients is realistically finite. For example, the maxi-
mum order of “odd-order asphere” in Code-V is limited to
the 30th-order coefficients. “extended odd asphere” in
Zemax allows 240 aspherical coefficients. However, such
an extremely high-order coefficient is not practically mean-
ingful in optical design.

Table 9 represents the even-order expansion coefficients
of odd-order aspherical surfaces up to 11th that were used in
the practical design described in Sec. 3.3. Note that the radial
coordinate r is used instead of t ¼ r2 and this is directly
derived from Eq. (16). All odd-order aspherical surfaces
are expanded by rotationally invariant Zernike polynomials
(powers of radius are up to 30th) and then rearranged to
the conventional even-order polynomial up to the 30th
order, the actual upper limit of Code-V. This table shows

(a) (b) (c)

Fig. 6 Wavefront aberration of the odd-order design: (a) bottom, (b) center, and (c) top.

Table 8 Zernike decomposition of the wavefront aberrations of the
design with odd-order terms (units are in waves)

Coma

Field Bottom Center Top

Z 8 −0.0044 0.0036 0.0005

Z 15 −0.0020 0.0033 −0.0002

Z 24 0.0008 −0.0012 −0.0023

Z 35 0.0000 −0.0002 −0.0003

Astigmatism

Field Bottom Center Top

Z 5 −0.0011 0.0046 −0.0035

Z 12 0.0045 0.0004 −0.0031

Z 21 −0.0023 0.0002 0.0010

Z 32 −0.0003 0.0002 0.0007

Trefoil

Field Bottom Center Top

Z 11 −0.0034 0.009 −0.0017

Z 20 −0.0026 −0.0020 0.0030

Z 31 −0.0020 −0.0013 −0.0017

Tetrafoil

Field Bottom Center Top

Z 17 0.0046 0.0059 −0.0119

Z 28 −0.0010 −0.0016 0.0004
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that the expansion coefficients of lower odd-order surfaces
contain very large positive and negative values. For the
first-order surface, the coefficients over 12th are 1E6 or
1E7 order in absolute value. The impossibility of expansion
of odd-order surfaces into even-order power series leads to
such diverging and vibrating expansion coefficients.

By using Table 9, one obtains even-order polynomials
that approximate the odd-order aspherical mirror shapes
(M3 and M4). Figure 8 shows the approximation error of
M3 for example. The effective apertures of such mirrors
are annular in shape, and the minimum normalized radii
are larger than at least 0.8.

(a) (b)

(c) (d)

Fig. 7 Bar diagrams of the Zernike coefficients described in Table 8. (a) Coma, (b) astigmatism, (c) trefoil,
and (d) tetraoil.

Table 9 Coefficients of even-order aspherical terms for approximating odd-order aspherical surfaces.

n r r 3 r 5 r 7 r 9 r 11

0 3.128055 × 10−02 −9.245482 × 10−05 1.388211 × 10−06 −4.983320 × 10−08 3.329260 × 10−09 −3.650024 × 10−10

2 7.976540 × 1000 7.072794 × 10−02 −5.899895 × 10−04 1.779045 × 10−05 −1.091521 × 10−06 1.137589 × 10−07

4 −1.675073 × 1002 4.455860 × 1000 1.115080 × 10−01 −1.867997 × 10−03 9.627219 × 10−05 −9.214472 × 10−06

6 2.758287 × 1003 −4.076287 × 1001 3.060275 × 1000 1.537985 × 10−01 −4.403561 × 10−03 3.540405 × 10−04

8 −2.955308 × 1004 3.668658 × 1002 −1.530138 × 1001 2.306977 × 1000 1.981603 × 10−01 −8.851012 × 10−03

10 2.123881 × 1005 −2.421314 × 1003 8.483083 × 1001 −7.105489 × 1000 1.831001 × 1000 2.453500 × 10−01

12 −1.061941 × 1006 1.150872 × 1004 −3.702933 × 1002 2.605346 × 1001 −3.729816 × 1000 1.499361 × 1000

14 3.795979 × 1006 −3.977874 × 1004 1.216678 × 1003 −7.861612 × 1001 9.453943 × 1000 −2.111346 × 1000

16 −9.869546 × 1006 1.009768 × 1005 −2.986392 × 1003 1.834376 × 1002 −2.025845 × 1001 3.800422 × 1000

18 1.881449 × 1007 −1.890718 × 1005 5.459453 × 1003 −3.242584 × 1002 3.404197 × 1001 −5.864849 × 1000

20 −2.626107 × 1007 2.602517 × 1005 −7.381180 × 1003 4.280211 × 1002 −4.344994 × 1001 7.116017 × 1000

22 2.650911 × 1007 −2.597989 × 1005 7.266354 × 1003 −4.138716 × 1002 4.101917 × 1001 −6.495838 × 1000

24 −1.882531 × 1007 1.828215 × 1005 −5.056702 × 1003 2.840296 × 1002 −2.764996 × 1001 4.275039 × 1000

26 8.915846 × 1006 −8.593126 × 1004 2.355235 × 1003 −1.308252 × 1002 1.255941 × 1001 −1.907325 × 1000

28 −2.527167 × 1006 2.420105 × 1004 −6.582955 × 1002 3.623438 × 1001 −3.440012 × 1000 5.151838 × 10−01

30 3.241745 × 1005 −3.087377 × 1003 8.344261 × 1001 −4.558181 × 1000 4.288184 × 10−01 −6.350921 × 10−02
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By this approximation, the resultant wavefront errors of
total optical system are represented in Fig. 9. This result
shows that the expansion of odd-order surfaces into even-
order power series does not work well in extreme short wave-
length region, even though we use the maximum number of
terms in Code-V. Actually, the wavefront errors exceed 10λ
that cannot be accepted in high-performance optics at all.
Thus, we conclude that the odd-order surfaces have unique
characteristics for aberration correction and provide degrees
of freedom in optical design.

In addition, as argued in Sec. 2.3, odd-order aspherical
surfaces are effective in correcting higher-order aberrations
of extra-axial image points. Thus, we note that odd-order
aspherical surfaces are also valuable in optical designs,
such as highly decentered or tilted projection display optics,
head-up displays, and infrared all-reflective systems.

4 Summary
We have theoretically investigated the aberration properties
of odd-order aspherical surfaces and reported an application
of odd-order aspherical surfaces for concrete optical design
of EUVL cameras. By constructing aberration theory for
odd-order aspherical surfaces, we have analytically
described the extra-axial wavefront aberrations induced by
them. This theory is based on Taylor expansion of wavefront
aberration function induced by the aspherical deviation from

the base sphere. By this analysis, we disclosed that aberra-
tion coefficients of low odd-order aspherical surfaces contain
higher-order aberrations, such as astigmatism and tetrafoil,
Thus, we theoretically predicted that odd-order aspherical
surfaces are effective in aberration correction.

In design application for EUVL cameras, we confirmed
that odd-order aspherical surfaces are effective for correcting
higher-order aberrataions. Moreover, we confirmed that
these odd-order aspherical surfaces are not exactly repre-
sented by the realisitc number of even-order terms.
Hence, we have concluded that odd-order aspherical surfaces
provide degree of freedom in aberration correction and are
practically effective at least for high precision and short
exposure wavelength optics.

Referring to the theoretical investigations for aberration
property of odd-order surface and the design studies of
EUVL optics, odd-order aspherical surfaces are effective
in correcting higher-order aberrations for extra-axial points
because the associated wavefront functions contain higher-
order aberrations. Thus odd-order aspherical surfaces are
valuable in optical design of not only the EUVL example
described here but also highly tilted or decentered optics,
such as projection display optics, head-up displays, and
all-reflective infrared systems.
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