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Abstract

Background: Affective neurofeedback constitutes a suitable approach to control abnormal neural activities
associated with psychiatric disorders and might consequently relief symptom severity. However, different
aspects of neurofeedback remain unclear, such as its neural basis, the performance variation, the feedback
effect, among others.
Aim: First, we aimed to propose a functional near-infrared spectroscopy (fNIRS)-based affective neurofeedback
based on the self-regulation of frontal and occipital networks. Second, we evaluated three different feedback
approaches on performance: real, fixed, and random feedback. Third, we investigated different demographic,
psychological, and physiological predictors of performance.
Approach: Thirty-three healthy participants performed a task whereby an amorphous figure changed its shape
according to the elicited affect (positive or neutral). During the task, the participants randomly received three
different feedback approaches: real feedback, with no change of the classifier output; fixed feedback, keeping
the feedback figure unmodified; and random feedback, where the classifier output was multiplied by an arbitrary
value, causing a feedback different than expected by the subject. Then, we applied a multivariate comparison of
the whole-connectivity profiles according to the affective states and feedback approaches, as well as during
a pretask resting-state block, to predict performance.
Results: Participants were able to control this feedback system with 70.00%� 24.43% (p < 0.01) of perfor-
mance during the real feedback trials. No significant differences were found when comparing the average
performances of the feedback approaches. However, the whole functional connectivity profiles presented sig-
nificant Mahalanobis distances (p ≪ 0.001) when comparing both affective states and all feedback approaches.
Finally, task performance was positively correlated to the pretask resting-state whole functional connectivity
(r ¼ 0.512, p ¼ 0.009).
Conclusions: Our results suggest that fNIRSmight be a feasible tool to develop a neurofeedback system based
on the self-regulation of affective networks. This finding enables future investigations using an fNIRS-based
affective neurofeedback in psychiatric populations. Furthermore, functional connectivity profiles proved to be
a good predictor of performance and suggested an increased effort to maintain task control in the presence of
feedback distractors.
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.5.3.035009]
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1 Introduction
We can describe neurofeedback and brain–computer interfaces
(BCI) as a group of devices and protocols that use neurophysi-
ological signals to detect mental states and take this information
to promote more realistic interactions between humans and
machines.1,2 For this, the participant might reach the self-control
of his neural response patterns directly and consciously, without
the interference of external stimuli.1 Specifically to the affective
neurofeedback, this self-control focuses on areas or networks
related to different affective states, such as basic emotions,
or states of valence.3,4 Generally, affective neurofeedback
protocols are based on electrophysiological asymmetries in

frontal areas using electroencephalography (EEG) or different
hemodynamic patterns in specific cortical and/or subcortical
areas using functional magnetic resonance imaging (fMRI).4

Among a wide range of applications, the use of affective neuro-
feedback constitutes a suitable approach to control abnormal
neural activities associated with psychiatric disorders and
might consequently relief symptom severity.5 Previous studies,
including healthy subjects and patients with schizophrenia,
major depressive disorder, personality disorders, addiction,
obsessive-compulsive disorder, among others, show that the
voluntary control of the neural activity in regions of interest
is feasible.6,7 Furthermore, in some cases, this control was
associated with clinical improvement.7,8
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Recently, functional near-infrared spectroscopy (fNIRS) has
been proposed as a source of neurophysiological information
to neurofeedback systems,9 including affective neurofeedback
applications.10 fNIRS uses low-energy light detectors and trans-
mitters to indirectly measure the local neural activity based on
changes of oxyhemoglobin (O2Hb) and deoxyhemoglobin
(HHb) concentration in the cortical surface,11 including the pre-
frontal cortex (PFC), a cortical area commonly related to affect
induction and processing.12,13 For neurofeedback applications,
fNIRS has several advantages: (1) it has relatively easier data
acquisition protocols, (2) reduces the discomfort and anxiety
of patients during experimental preparation and data acquisition,
(3) can be acquired in comfortable seating positions; and (4) can
be expanded to naturalistic settings. Moreover, it bears the addi-
tional advantages of portability, simplicity, and computational
economy of its features, opening doors for robust applications
using neurofeedback.9,12,14,15

In this context, we first aimed to evaluate the efficacy of an
fNIRS-based affective neurofeedback system. In fact, previous
studies reported neurofeedback experiments founded on the
self-regulation of activity in the orbitofrontal cortex (OFC)
and PFC using fMRI16,17 and fNIRS10 but limited to a univariate
approach. Additionally, recent meta-analyses demonstrated that
the occipital area is a core region to affective elicitation18,19 and
might be related to the vividness and effectiveness of the strategy
of self-regulation.20,21 Thus, our system focuses on these frontal
and occipital networks to induce self-regulation based on positive
affect. Indeed, this approach was already demonstrated using
frontal areas and an fMRI neurofeedback,17 however not yet
reported using fNIRS or including the occipital network.

While the previous literature explores different topics of
affective neurofeedback implementation, two important aspects
should be carefully observed: the feedback approach and the
illiteracy phenomena. The feedback approach refers to the infor-
mation continuously presented to the participant about his/her
performance.22 This immediate response is used to keep the
user’s interest and attention, besides allowing the brain to
develop fast and practical strategies to adjust and improve neural
activity control.23 To our knowledge, no other studies evaluated
the feedback effect in affective neurofeedback experiments.
However, motor imagery experiments suggest that the feedback
can lead to distraction and reduced attention,24 or generate frus-
tration and stress.25 Thus, the feedback might cause an essential
impact on affective neurofeedback protocols since this would
hinder the elicitation and maintenance of the targeted emotions
or affective states.

Therefore, our second aim was to evaluate three different
feedback approaches on performance: real, fixed, and random
feedback. High control performance with the real feedback
would be expected due to the possibility of reinforcement or
corrections of the elicitation strategies.22 On the other hand,
although the absence of feedback (fixed condition) does not
allow corrections to the strategies in use, its reduction of
distractors could lead to performances close to the real
condition.24 Finally, a random feedback would cause an initial
encouragement26 but also might lead to frustration and
irritation25 after a while. Thus, we would expect a low control
performance in this condition.

The illiteracy phenomena state that even with long periods of
training, clear instructions, and improvements in the experimental
protocol, it is expected that some participants will present poor
control performance.27 These are examples of “nonperformers”

or “illiterates,” which can compose up to 50% of potential neuro-
feedback users.25,28 During the last years, there is an intense
debate about possible predictors for this lack of ability to control
different protocols of neurofeedback.29 While some studies
evaluated the influence of the mental strategy used to control
the neurofeedback system,30,31 others correlated psychological
aspects with performance, such as the self-confidence,32 frus-
tration,25 and concentration.33 Using neurophysiological data, the
neurofeedback performance was predicted from functional28,34–38

and structural39 resting-state measures. Therefore, our third aim
was to evaluate possible predictors to the affective neurofeed-
back performance. Based on previous findings, we might expect
the pretask resting state as a promising predictor of performance.

However, instead of performing univariate analyses to under-
stand the feedback effect and the illiteracy phenomena, we
applied here a connectivity-based multivariate analysis. For
this, we used the connectivity information from all the recorded
areas simultaneously. This approach was inspired in the concept
of functional connectivity fingerprints,40,41 which is based on the
idea that individuals have a functional connectivity profile that is
both unique and reliable, similarly to a fingerprint.41 Hence,
with this whole-connectivity approach, we were able to evaluate
the contribution of the entire set of functional connections to
the desired aspect (here, the performance in different affective
states and feedback approaches).40

2 Methods

2.1 Participants

Thirty-three healthy participants (17 females), aged between
20 and 35 years (mean age of 25.58� 3.26 years) and all
undergraduate or graduate students, were recruited. The subjects
had no diagnosis of neurological (ICD-10: G00-G99) and/or
psychiatric diseases (ICD-10: F00-F99) and had normal or
corrected-to-normal vision.

Ethical approval was obtained from the local ethics
committee and all participants provided written consent prior
to participation.

2.2 Data Acquisition

The recording was performed using the NIRScout System
(NIRx Medical Technologies, LLC., Los Angeles, California)
with an array of optodes (12 light sources/emitters and 12 detec-
tors) covering the orbitofrontal, prefrontal, temporal, and occipi-
tal areas. Optodes were arranged in an elastic band, with nine
pairs of source–detectors positioned over the fronto-temporal
regions and three pairs of source–detectors over the occipital
region (Fig. 1). We selected these regions considering the
core role of the PFC, OFC, and occipital cortex in the elicitation
of affective states.18,19 Four positions of the International 10–20
System were adopted as reference points during the setup: detec-
tors 1 and 9 were positioned approximately over the T7 and T8
positions, respectively, whereas the Fpz and Oz were in the
center of channels 5–5 and 11–11, respectively (Fig. 1). Source–
receptor distance was 30 mm for contiguous optodes, and the
used wavelengths were 760 and 850 nm. The differential path-
length factor (DPF) was set to 7.25 and 6.38, respectively, for
both fronto-temporal and occipital regions.42 Signals obtained
from these 32 channels were measured with a sampling rate
of 5.2083 Hz (maximum sampling rate of the equipment—
62.5 Hz—divided by the number of sources—12) using the
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NIRStar 14.0 software (NIRx Medical Technologies, LLC, Los
Angeles, California).

2.3 Experimental Configuration

Each subject performed the neurofeedback task (see Sec. 2.4).
In addition, they completed an 11-point Likert mood scale
immediately before and after the session to quantify sleepiness,
agitation, strength, confusion, agility, apathy, satisfaction, worry,
perspicacity, stress, attention, capacity, happiness, hostility,
interest, and retraction.43

For the experiment execution, subjects were seated in a
padded chair with armrests, positioned at a 1-m distance in
front of the monitor. They were asked to remain relaxed,
with hands within sight resting on the table or on the armrests
of the chair. They were also asked to avoid eye movements,
as well as any body movement. The recording room became
completely dark and the subject used earplugs.

2.4 Neurofeedback Task

During the neurofeedback task, subjects were asked to use their
mental states to transform an amorphous figure in a perfect

circle. For this purpose, they were instructed to imagine/remem-
ber personal experiences (autobiographical memory) with pos-
itive affect context during “positive trials” or to remain relaxed
(not thinking about particularly emotional contents, here called
as neutral affect) during “neutral trials.” The trial label varied
according to the color of the figure presented on the screen
(blue and yellow, respectively). The session consisted of two
blocks of 5 min of continuous resting state (before and after
the neurofeedback test), two training blocks used to train
the classifier and two test blocks with visual feedback about
the subject performance [Fig. 2(a)].

Visual stimuli were created and presented using the
Psychophysics Toolbox extensions.44–46

2.4.1 Classifier training blocks (no feedback)

Each classifier training block consisted of 10 trials (5 for pos-
itive affect and 5 for neutral affect) presented in a random order
[Fig. 2(b)]. For the first 5 s of each trial, a white cross is dis-
played in the center of a black screen. This interval is essential
to restore the fNIRS baseline level after the previous trial.
A blue (indicating a trial for positive affect elicitation) or yellow
(indicating a neutral trial) amorphous figure appears in the

Fig. 1 (a) Schematic representations of channel configuration. Different colors represent the regions of
interest of each NIRS channel: yellow for the lateral orbitofrontal cortex (lOFC), green for the medial
orbitofrontal cortex (mOFC), blue for the medial prefrontal cortex (mPFC), pink for the lateral prefrontal
cortex (lPFC), purple for the occipital/striate cortex, and orange for the occipital/primary visual cortex.
Pictures of the probe used during the data acquisition are provided in (b) for the left lateral, (c) for
the frontal, (d) for the right lateral, and (e) for the back views. In all subfigures, red squares represent
sources, blue circles represent the detectors, dotted lines the NIRS channels.
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center of the display, and the instruction was to perform the
corresponding affective task. To replicate the length of the test
block trials (see Sec. 2.4.2), the figure remains on screen for
32 s (2 s of initial instruction þ30 s of feedback) [Fig. 2(c)].

After the figure disappears, a self-evaluation screen is pre-
sented, and participants were instructed to blink and move in
this period but not in the other phases. Due to this orientation,
this screen had no preset duration to allow the participant to feel
comfortable to proceed to the next trial. At this point, the user
was asked if he/she was able to elicit the proper neutral or
positive experience, assigning a score in a 1 to 9 scale.

For each trial, real-time signal processing of both O2Hb and
HHb concentrations from all NIRS channels was carried out
every 1 s. Data from the previous 2 s (beginning with the instruc-
tion period) were merged with the actual second to compose
a 3-s moving window [Fig. 3(a)]. The signals of each NIRS
channel were initially filtered using a simple moving averages
filter, used as an online low-pass filter with a cutoff of 1 Hz.47–49

After this, the variation of O2Hb and HHb concentrations was
calculated by the Beer–Lambert law, using the pretest resting
block as the reference of concentration. Finally, inspired by
voxel normalization approaches for fMRI-based neurofeed-
back,50,51,52 for each channel, the moving O2Hb and HHb con-
centration values were corrected by the averaged concentrations
from the same channel during the previous neutral condition.
This approach was used for both positive and neutral conditions
(although for the neutral condition this procedure is only
possible from the second trial since it needs the first one for
normalization).

At the end of each block of classifier training, the resulting
300 × 64 matrix was then used to train a linear discriminant
analysis (LDA) classifier to recognize the two classes (positive
and neutral affect). In this matrix, lines correspond to 300
examples resulting from 30 moving windows for each trial
(5 per class, 10 in total). Columns presented 64 features
of mean concentration of O2Hb and HHb from a total of
32 channels each. The use of mean concentration as input
was due to its simplicity and discriminative power in BCI
experiments.14

LDA was used based on its extensive application in BCI
and neurofeedback protocols, allowing further comparisons with
other experiments.53,54 Also, considering the most common clas-
sifiers, LDA seems to consider all discriminative information
available, allowing the interpretation of all areas/connections
evoked during the task.55 Thus, although studies such as Ref. 15
present other classifiers as more accurate, we used the LDA algo-
rithm based on its informative power. The LDAwas implemented
using the BCILAB toolbox56 and applying the default settings.

2.4.2 Feedback test blocks

Each feedback test block consisted of 11 trials presented in
a random order, totaling 22 trials at the end of the experiment
(10 trials with real, 6 with fixed, and 6 with random feedback)
[Fig. 2(d)].

Each test trial starts with a baseline period comprised of
a white cross in the center of a black screen [see Fig. 2(e)].
After 5 s, the cross disappears and a blue or yellow amorphous
figure appears, indicating the target task. This stays the same for
2 s, after which the shape of the figure begins to change accord-
ing to the output of the classifier. For these trials, real-time
signal processing of data follows the same steps as previously
described in Sec. 2.4.1 and presented in Fig. 3(a). Each moving
window was then real-time classified using the LDA model cre-
ated in the training blocks and the output ranged from −1 for
definite neutral affect classification to þ1 for definite positive
affect classification.

According to the feedback of interest, each output of the
classifier could be multiplied by a different numeric value
[Fig. 3(b)]. During trials with real feedback, the outputs of
the classifier were always multiplied by one, with no change
of the original value. During trials with fixed feedback, the out-
puts were always multiplied by zero, keeping the feedback
figure unmodified (in other words, keeping the target figure as
feedback figure). Finally, during trials with random feedback,
each output was multiplied by a random value between −1
and þ1, causing an output possibly different of the expected
by the subject. To facilitate the understanding of the feedback

Fig. 2 (a) Block structure of the experimental protocol, (b) example of trials distribution and (c) screen
events during a classifier training block, and (d) example of trials distribution and (e) screen events during
a feedback test block.
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logic, the Appendix presents examples of signal traces and
the consequent feedback of a randomly chosen subject during
each feedback condition.

2.5 Offline Analysis

2.5.1 Quantifying performance

To compute performance, we first quantified the number of trials
correctly performed during each feedback. Here, we considered
a trial as correctly performed if the sum of the classifier outputs
resulting from 30 moving windows was in accordance with the
trial label, that is, if

P
30
n¼1 yn < 0 for neutral trials or

P
30
n¼1 yn ≥

0 for positive trials. Then, the number of trials correctly per-
formed was divided by the total of trials with the respective feed-
back. For example, if 8 of 10 trials were successfully executed,
a real feedback would result in a performance of 80%; if 2 of
6 trials were correctly performed, a fixed feedback would result

in a performance of 33.33%; and if 4 of 6 trials were success-
fully completed, a random feedback would result in 66.67%.

The difference of performance between the three feedbacks
was evaluated by a paired-samples t-test, with Bonferroni
correction to three multiple comparisons. Possible relations
between the accuracies of each feedback type were also evalu-
ated using a Spearman’s correlation and the p-values were
Bonferroni corrected for multiple comparisons (three pairs of
feedback). Finally, to investigate the experiment efficacy as
a neurofeedback system, we considered the real feedback per-
formance as the general task performance. Then, the signifi-
cance of task performance was evaluated by a one-sample
t-test against chance level (50%).

2.5.2 fNIRS preprocessing

The offline preprocessing was performed using the MATLAB
software (MathWorks, Massachusetts) with the nirsLAB

Fig. 3 Schematic representation of (a) the real-time signal processing, during both block of classifier
training and block of feedback test and (b) the feedback logic. (c) An illustrative example of the window
movement according to the trial timeline.
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v2014.12 toolbox (NIRx Medical Technologies, LLC., Los
Angeles, California). Each participant’s raw data were digitally
bandpass filtered by a linear-phase FIR filter (0.01 to 0.2 Hz) to
filter noises due to the heartbeat (0.8 to 1.2 Hz), respiration
(0.3 Hz), and Mayor waves (∼0.1 Hz).57–59 Then, each wave-
length was detrended by their respective whole length record
(without segmentation), and the variation in concentration of
O2Hb and HHb was calculated by the Beer–Lambert law
(DPF set to 7.25 and 6.38, respectively).42

2.5.3 Evaluating literacy

To evaluate possible factors related to the task performance, we
exclusively considered performances achieved during the real
feedback. Therefore, we first tested the gender effect on literacy
by a two-sample t-test. Then, the age effect was evaluated using
a Spearman’s correlation coefficient.

The whole-connectivity profiles extracted from the 5 min of
resting state recorded before and after the experiment were also
tested as a possible predictor of literacy. For this, the connec-
tivity between a pair of regions was evaluated by the magnitude
squared coherence of the two corresponding NIRS channels,60

here calculated using 20-s Hamming windows with 50% of
overlap. This procedure was repeated for all combinations of
channels and for both O2Hb and HHb, generating two 32 × 32
matrices for each block of resting state (pre- and posttask). Then,
we averaged all connectivity values in each matrix, resulting
in a single whole-connectivity score for each block and each

chromophore. After this, these values were correlated to the
performance by a Spearman’s correlation coefficient, and the
respective p-values were Bonferroni corrected for four multiple
comparisons (2 resting-state blocks × 2 chromophores).

Finally, the influence of psychological factors was also
explored. The difference between the mood scores after and
before the neurofeedback test (Δmood) was correlated with
the task performance by a Spearman’s correlation and the
p-values were Bonferroni corrected for multiple comparisons
(16 Δmood scores).

2.5.4 Brain connectivity during different affective states
and feedback approaches

The connectivity between a pair of regions was evaluated by the
magnitude squared coherence of the two corresponding NIRS
channels,60 here calculated using 20-s Hamming windows with
50% of overlap. This procedure was repeated for bothO2Hb and
HHb, as well as all possible combinations of NIRS channels,
generating two 32 × 32 matrices for each affective state (neutral
and positive) and feedback type (real, fixed, and random).

The difference between the whole-connectivity matrices
during each pair of affective states or feedback approaches was
performed using the Mahalanobis distance. The Mahalanobis
distance uses the data from each matrix as a multidimensional
dataset and compares it to another multidimensional dataset.
Mahalanobis distance showed greater sensitivity compared to
other distance measures, because it considers mean and variance

Fig. 4 In (a), each subject’s performance for real (blue), fixed (green), and random (red) feedback. The
dotted line represents 50% level of performance and the continuous line the 70% level. In (b), the dis-
tribution of subjects according to their performances in positive (y -axis) and neutral trials (x -axis) during
the real feedback. The diameter of the circle is proportional to the number of participants for which that
level of performance was observed. The distribution of participants according to their accuracies and
pretask resting-state connectivity scores is presented in (c) for HHb-based connectivity scores and in
(d) for O2Hb-based connectivity scores. In both cases, red lines represent the trend.
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differences in connectivity matrices.40 Its output is a number rep-
resenting how distant one dataset is from the other. The smaller
the distance between the matrices, the greater the similarity
between the connectivity patterns during the comparison.61

To obtain each Mahalanobis distance, first, for each subject,
we take the connectivity matrices for each trial in condition A
(e.g., positive affect during real feedback) and condition B
(e.g., neutral affect during real feedback). Then, we get the
Mahalanobis distance between the matrices of conditions A
and B. After this, we randomly shuffle the labels of the trials
and calculate the Mahalanobis distance between the permuted
A and B. We repeated this step 103 times to generate a permu-
tation distribution. After that, we calculated the z-scores of the
real distance between A and B relative to the distribution of the
permutations (this was accomplished by assigning a p-value to
the real distance relative to the permutation distribution, and
then using the inverse normal distribution to transform the
p-value into a z-score). Up until here, all the analysis was done
at the subject level, and the next step was simply to calculate
one-sample t-tests for each affect and feedback condition.
The resulting p-values were Bonferroni corrected for 6 multiple
comparisons (3 feedback × 2 chromophores) when comparing
the affective task effect and for 12 multiple comparisons (2
affective states × 3 feedback combinations × 2 chromophores)
when comparing the feedback effect.

3 Results
The general performance (median � standard-deviation), calcu-
lated considering only the real feedback, was 70.00%� 24.43%,
being significantly greater than chance level (p < 0.01). This

level of performance indeed demonstrates that the paradigm
implemented here worked as an affective neurofeedback. As
can be seen in Fig. 4(a), more than half of the participants
reached performances above 50%. Moreover, for 19 partici-
pants, the performance was higher or equal to 70%, and 5 of
them reached 100% performance.

A more detailed exploration of these performances is
obtained by considering the performance for the neutral and
positive trials, independently. As can be seen in Fig. 4(b),
6 subjects obtained accuracies under 50% for both classes, as
well as 16 subjects reached more than 50% for both trials.

In a second step, we compared the effect of three different
feedback approaches in performance. Additionally to the real
feedback, both fixed (66.67%� 20.57%, p < 0.001) and ran-
dom feedback conditions (66.67%� 13.06%, p < 0.001) were
significantly different from chance level. Although a positive
correlation was found between real and fixed feedback perfor-
mance curves (r ¼ 0.745, p < 0.001), there were no significant
differences when comparing the averages of each pair of
feedback.

Additionally, we evaluated possible factors related to the illit-
eracy phenomena. No significant gender or age effects on per-
formance were found. However, Fig. 4(c) shows that the pretask
resting-state connectivity score calculated using HHb concen-
tration was positively correlated to performance (r ¼ 0.511,
p ¼ 0.010). In contrast, no significant correlation with the per-
formance was found using the O2Hb concentration [Fig. 4(d)]
or when evaluating posttask resting-state connectivity scores.
Finally, no significant correlations were observed between
Δmood scores (VAMS questionnaire) and subjects’ performance.

Fig. 5 Average weights assigned by the LDA classifier for each feature using HHb and O2Hb concen-
trations. In (a), the average of weights from all features in classes, and (b) the average of those weights
relevant to classify (b) positive and (c) neutral trials. Hottest colors indicate higher relevance while cooler
colors indicate lower relevance.
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To evaluate the relevance of each feature in our neurofeed-
back setup, we first normalized the weights assigned by the
LDA for all subjects, during both training blocks. For each
trained classifier (more details in Sec. 2.4.1), we first subtracted
the minimum absolute weight from all features’ weights in that
features set. Then, all resulting values were divided by the maxi-
mum absolute weight. Then, with weights now ranging from
0 to 1, we averaged these values among all participants.
Figure 5 shows these averaged and normalized weights for fea-
tures calculated using O2Hb and HHb concentrations. Although
some of these channels present higher contribution to identify-
ing one class, it is notable that the most relevant features that
contribute for both classes are distributed around the lateral
and medial portions of the OFC (with particular attention to
the left mOFC), the medial parts of the PFC and occipital
areas, and are based on HHb concentration.

Lastly, we looked at the whole functional connectivity matri-
ces related to positive and neutral conditions according to the
delivered feedback. As can be seen in Figs. 6(a)–6(b) and 7(a)–
7(b), HHb matrices presented the highest coherence values,
with stronger connections among neighbors and homologous
contralateral channels. Although the connectivity patterns
remain remarkably similar for both positive and neutral trials,
and for the three feedback conditions, all distance-based

comparisons (task effect and feedback effect comparisons)
presented statistical significance with p ≪ 0.001, as shown in
Fig. 8. To better visualize the differences in connectivity matri-
ces due to the affective states, we plotted the difference matrices,
which were calculated by subtracting the positive class from the
neutral one [Figs. 6(c) and 7(c)]. Notably, the differences were
generally positive, indicating that the neutral class has strong
overall connectivity. Moreover, the real feedback presented
the lower variation among all the feedback conditions.

4 Discussion
Here, the three following objectives were set out: (i) to evaluate
if it is possible to develop an fNIRS-based affective neurofeed-
back system using the self-control of networks activities, includ-
ing the OFC, PFC, and occipital cortex, (ii) to further test
the feedback effect in performance and in the subject’s multi-
variate functional connectivity, and (iii) to investigate possible
demographic, psychological, or physiological predictors of
performance.

4.1 Performance and Literacy

Exclusively considering the general performance (during real
feedback), we found that our volunteers were able to self-control

Fig. 6 Coherence matrices comparing all-to-all channels using O2Hb concentrations. Graphs from the
(a) first and (b) second columns correspond to neutral and positive trials, respectively, and the (c) last
column corresponds to the difference among them. Matrices from each line correspond to real, fixed, and
random feedback, respectively. Hottest colors were indicating higher coherences (or differences) while
cooler colors indicate lower coherences (or differences).
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the accessed networks activity using neutral and positive affec-
tive states. Even more, the majority of our participants reached
performances over the 70% threshold, which is suggested by the
BCI/neurofeedback community as sufficient to perform device
control and communication.62

Subjects performing under the mentioned threshold would
probably improve their performance after a few training ses-
sions, as already observed in longitudinal experiments using dif-
ferent BCI and neurofeedback approaches.63–66 However, it is
expected that some of them keep the poor performances even
after exhaustive training sessions or subject-specific improve-
ments of the system (e.g., with specific features or different clas-
sifiers).27 These are examples of BCI/neurofeedback illiterates,
commonly described in the literature, whose best option to
attain proficiency would be switching to another neurofeedback
approach.27,29

Here, we found the pretask resting-state connectivity as
positively correlated to the task performance. It means that
the greater the connectivity during the resting state, the greater
might be the performance on an affective neurofeedback. This
correlation is expected considering recent studies that report the
default mode network (DMN, also known as the “resting-state
network”) and the affective workspace network (AWN) being
partly overlapped.18,67–69 Also, considering that this connectivity

score is based on the same regions used as input to the classifier,
it is expected that highly interconnected cortices tend to produce
precise and clear activation patterns. Furthermore, this result is
in agreement with previous studies reporting the resting-state
connectivity as a relevant predictor of performance in different
BCI/neurofeedback tasks and recording modalities.37,70,71

To the best of our knowledge, this is only the second work
using an fNIRS-based real-time affective neurofeedback, and
the first one to consider a multiregional approach. However,
our results are in agreement with previous findings of hemo-
dynamic-based neurofeedback, mainly with fMRI targeting
the OFC72,73 or the PFC.10,16,17 As expected, relevant features
were placed around the OFC, PFC, and the occipital cortex.
These regions were recently listed as fundamentals to the
affective induction and processing.18,19 The mOFC, in special,
was the most relevant feature among all. This is reasonable con-
sidering that this region guides internal responses to affective
contexts,68 which is a core aspect to achieve an affective-
based self-regulation. Also, the occipital cortex plays an impor-
tant function to improve the vividness and effectiveness of the
autobiographical memory evocation.20,21

Concerning the predominance of changes in HHb as relevant
features, although O2Hb and HHb present similar results in
comparative studies for LDA classification,14 the best features

Fig. 7 Coherence matrices comparing all-to-all channels using HHb concentrations. Graphs from
the (a) first and (b) second columns correspond to neutral and positive trials, respectively, and the
(c) last column corresponds to the difference among them. Matrices from each line correspond to
real, fixed, and random feedback, respectively. Hottest colors were indicating higher coherences
(or differences) while cooler colors indicate lower coherences (or differences).
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set might vary according to the application. For example, motor
imagery studies have found O2Hb as the most robust features,57,74

whereas in a similar affective experiment our group also reported a
predominance of HHb features among the most relevant ones.75,76

Previous studies describe different advantages for each measure.
The O2Hb is reliable and shows higher retest reliability.77 On the
other hand, although presenting higher variability, HHb features
are commonly related to the fMRI blood oxygen-level dependent
signal.78

Thus, these results open one more protocol option to be applied
in clinical populations,6,7 with the advantage that fNIRS is a port-
able and easy-to-setup equipment,9,12 also enabling applications
out of the lab,79,80 and with a new multivariate approach.

4.2 Feedback Effect on Performance

The performance of the user of neurofeedback is usually vari-
able during the learning process.81 Such variability tends to
decrease when the user reaches complete control of the system.
However, difficulties in properly controlling the neurofeedback
system might cause frustration and disappointment, obviously
impairing learning affective protocols. Moreover, for potential
therapeutic applications, users will need to be able to self-regu-
late their networks activities during stressful situations, such as
anxious or depressive states.6 In this context, it is important to
simulate some distractors/stressing stimuli to evaluate its pos-
sible consequences in the neurofeedback tasks.

In the performance during fixed feedback, which might be
considered as a mild task distractor, we found a high correlation

with the performance in real feedback. No significant difference
between these feedback conditions was observed. These results
are in line with previous EEG findings.24,25 We argue that this is
an important result for the potential therapeutic application of an
affective neurofeedback system. In a real situation, for instance,
where a patient would need to apply the affective neurofeedback
training to relief a given situational symptom, he will need to do
this without any type of feedback. This scenario is indeed simu-
lated by the fixed feedback condition.

Contrary to our expectations, the random feedback was not
different from the other feedback approaches. However, this
finding is consistent with previous results in other nonaffective
tasks, such as motor imagery BCI in EEG.26,82 Since this is the
first experience of all participants with an affective neurofeed-
back system, a possible explanation is that a greater task engage-
ment was caused by the random feedback, which worked as
a strong task distractor.26 Possibly, exposure to longer periods
of random feedback would lead to frustration and demotivation.82

4.3 Task and Feedback Effects on fNRIS
Whole-Connectivity

Significant differences in distance in all the performed compar-
isons suggest that the neural networks accessed have different
connectivity patterns for each condition (affective states and
feedback).40,61 Significant differences between positive and neu-
tral connectivity profiles were already expected given that the
classifier used in our neurofeedback was able to find different
neural patterns during both affective states.54

It is notable that the connectivity maps for both affective
states are highly overlapped. This functional overlapping may
be related to two neural networks that share some brain areas
and connectivity pathways. The positive affect processing
may be related to the AWN,18,19,68 which involves subcortical
areas classically listed as “emotional centers,” such as amygdala
and ventral striatum, as well as cortical areas implicated in affec-
tive processing, such as the lOFC, the ventrolateral prefrontal
cortex, the ventromedial prefrontal cortex, the dorsomedial
prefrontal cortex (dmPFC), and the lateral portions of the right
temporal/occipital cortex.18,19,83 On the other hand, the neutral
affective state might be reasonably related to increased activity
in the DMN,84,85 which include areas such as the mPFC, the
posterior cingulate cortex, and the inferior parietal lobule.86,87

Two of these overlapped areas play an important role in both
tasks used during this affective neurofeedback experiment: the
dmPFC and the occipital cortex. The dmPFC is highly associ-
ated and engaged during remembering of personal events
(autobiographical memory),69 as well as during the spontaneous
thinking.88 In addition, the occipital cortex is crucial to the
quality of the autobiographical memory because it regulates
subjective vividness during imagination.20,21 Even more, fNIRS
studies found high connectivity between contralateral occipital
areas during resting state.89,90 The higher connectivity found in
neutral trials for all feedback approaches may also be explained
by a DMN characteristic. Previous studies found that the brain
activity decreases during different tasks when compared to
passive mental states, which suggests the existence of a baseline
neural activity in the absence of external attentional focus.91–93

Finally, in both O2Hb and HHb maps (Figs. 6 and 7), the
neutral to positive differences showed increased values accord-
ing to the presented feedback (real feedback with lower
differences and random feedback with higher differences).
In accordance, an fNIRS study observed reduced prefrontal

Fig. 8 Bar graph with mean and standard error for z-scored
Mahalanobis distances between each comparison, during (a) task
and (b) feedback effect evaluation. Asterisks represent significant
difference from zero (p < 0.05). Blue bars correspond to O2Hb data,
whereas red bars to HHb data.
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oxygenation when attentional distractors were presented during
an affective task.94 Negative distractors may lead to changes
exclusively on the brain activity but not in the task performance.
This may be caused by a compensatory brain effort to maintain
similar performance levels even with competitive stimulus.95

4.4 Innovation and Limitations

As previously mentioned, up to our knowledge, this is the first
study to propose fNIRS-based affective neurofeedback based on
the self-regulation of frontal and occipital networks. This is a
relevant result considering that neurofeedback is a noninvasive
and nonpharmacological approach for the treatment of psychi-
atric disorders.6,7 Our protocol might be especially valuable for
mood disorders, such as the major depressive disorder and the
obsessive–compulsive disorder, considering the self-control of

critical areas of its neurocircuitry.96 In addition, we pioneered
used a connectivity analysis to evaluate the feedback effect
and the illiteracy phenomena related to affective neurofeedback
protocols.

However, this study possesses some limitations of note. First,
we adopted an unbalanced number of trials for real, fixed, and
random feedback. This difference is a consequence of the pro-
tocol length, which might take up to 60 min considering the sys-
tem setup and the task execution. Thereby, to avoid the influence
of fatigue and stress related to the long duration,97 we presented
more trials with real feedback than with fixed and random feed-
back. This choice was based on the use of the real feedback to
validate the neurofeedback protocol.

Additionally, this study has a limited sample size with con-
trolled aspects, such as health history and educational level.
Although it was enough to validate the neurofeedback protocol,
as well as to allow an initial evaluation of the feedback effect and
the illiteracy phenomena, this aspect should be improved in
future studies.

Therefore, the next step of the research should consider the
use of a balanced number of trials, as well as an increased
sample size, for example, including psychiatric patients or par-
ticipants with different educational levels. These aspects might
result in more variability to validate our results and reinforce
the better understanding of the self-control of neurofeedback
protocols.97–99 Also, future studies should use the self-evaluation
scores to correlate it with the effective performance or

Table 1 Simplified rules for screen updates according to the trial
class.

Converted output Neutral trial Positive trial

Less than 0 More shaped figure More deformed figure

Equal to 0 Same figure Same figure

Greater than 0 More deformed figure More shaped figure

Fig. 9 Example of signal traces from subject 8 during a positive trial with real feedback, including the
classifier output from each moving window and the converted output according to the respective feed-
back condition. Continuous green and dotted red lines represent HHb and O2Hb concentrations,
respectively.
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connectivity patterns. This data will provide more information
regarding the relationship between system and user from the
participants’ perspective.

5 Conclusion
In conclusion, our results suggest that fNIRS might be a feasible
tool to develop affective neurofeedback systems based on self-
regulation of frontal and occipital networks. Additionally, it
seems to be possible to predict performance using a short pre-
task resting-state period, suggesting that the general background
connectivity rules the self-control capacity. Finally, although
no significantly different performances were found using real,
fixed, and random feedback conditions, offline functional con-
nectivity profiles analyses suggest a neural basis for an increased
effort to maintain task control in the presence of distractors.

Appendix
As previously described, each trial starts with a black screen
with a cross during the first 5 s. This period is essential to
both O2Hb and HHb concentrations to recover to its baseline
level. Then, during the following 2 s, the orientation screen illus-
trates the trial class (a yellow figure for neutral trials or a blue
figure for positive trials). The next second is used to compose
the first moving window [for more details refer to Fig. 3(c)],
meaning that the first feedback is provided 8 s after the

beginning of the trial. Consequently, the 30th, and last, feedback
screen appears after 37 s after the start of the trial.

The feedback presentation is ruled by the logic described in
Sec. 2.4.2, where first, the classifier output is converted accord-
ing to the feedback condition. Then, the figure format is shaped
according to the trial class, as shown in Table 1. To facilitate
the understanding of this logic, Figs. 9–11 show examples of
signal traces and the consequent feedback of a randomly chosen
subject during each feedback condition.

In Fig. 9, we can see an example of a positive trial with real
feedback. In this case, the classifier output is the same as the
converted output. It is possible since, during real feedback con-
ditions, the classifier output is always multiplied by one. Then,
the figure format will be reliable to the participant’s expectation.
Also, following rules for positive trials as shown in Table 1, pos-
itive converted outputs lead to more shaped figures, whereas
negative converted outputs lead to more deformed figures.

On the other hand, Fig. 10 shows an example of a neutral trial
with fixed feedback. In this case, due to the fixed feedback con-
dition, all results from feedback calculation are equal to zero.
Therefore, following Table 1, the same figure is presented for
all feedback screens.

Finally, Fig. 11 shows an example of a neutral trial with
random feedback. In this case, feedback calculation outputs
are predominantly different from the classifier output and,
consequently, different from the self-regulation patterns. Then,

Fig. 10 Example of signal traces from subject 8 during a neutral trial with fixed feedback, including
the classifier output from each moving window and the converted output according to the respective
feedback condition. Continuous green and dotted red lines represent HHb and O2Hb concentrations,
respectively.
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following rules for neutral trials as shown in Table 1, converted
outputs with negative results lead to more shaped figures,
whereas positive results lead to more deformed figures.
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