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Abstract

Background: Predictive estimates of the final process outcome(s) of multistep, coupled proc-
esses can be difficult to make based on data measured at the various process steps. Self-aligned
quadruple patterning (SAQP) is an example of such a process where the prediction of pitch-walk
is desired at the various process steps.

Aims: Be able to both predict pitch-walk values and the uncertainty in the predicted values at
SAQP process steps based on optical critical dimension (OCD) spectroscopy outputs (dimen-
sions, angles, thicknesses, and so on) of mandrel, spacer, and other SAQP features.

Approach: Train a neural network using OCD-modeled values of an SAQP process to be able to
predict SAQP pitch-walk at early process steps. Use Bayesian dropout approximation (BDA),
a methodology using Bayesian inference with stochastic neural networks, to estimate uncertainty
in the predicted SAQP pitch-walk.

Results: Able to predict pitch-walk values, and the uncertainty in the predictions, of the final
SAQP structure after the deposition of the first spacer. The pitch-walk predictions become more
accurate as OCD information from the bottom mandrel RIE and bottom spacer are added as
inputs to the BDA network.

Conclusions: In contrast to a single output value that traditional neural networks would predict,
BDA makes an estimated distribution of predictions, where the BDA network gives both a most
likely value as well as a distribution of potential values. While this paper shows the power of
BDA to predict SAQP pitch walk, it is expected that BDAwill be a valuable tool to analyze many
data sets in semiconductor manufacturing to help improve yield and performance.
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1 Introduction

Self-aligned quadruple patterning (SAQP) is a method for enabling sub-lithographic patterning
that has been extensively discussed in the literature.1–5 While it can be used to pattern many line-
space layers, this paper will describe the use of SAQP for the fin layer. Indeed, SAQP is actively
employed in semiconductor manufacturing of FinFET devices.5,6

The SAQP process employs multiple nonlithographic sidewall spacer image transfers to
reduce the pitch to a quarter of the original lithographic pitch. Errors in earlier process steps
can propagate through the subsequent deposition and etch steps resulting in unwanted variations
in the final structure created with SAQP. Indeed, the difficulty of controlling the complicated

*Address all correspondence to Allen H. Gabor, Allen.Gabor@ibm.com

J. Micro/Nanopattern. Mater. Metrol. 041604-1 Oct–Dec 2022 • Vol. 21(4)

https://doi.org/10.1117/1.JMM.21.4.041604
https://doi.org/10.1117/1.JMM.21.4.041604
https://doi.org/10.1117/1.JMM.21.4.041604
https://doi.org/10.1117/1.JMM.21.4.041604
https://doi.org/10.1117/1.JMM.21.4.041604
https://doi.org/10.1117/1.JMM.21.4.041604
mailto:Allen.Gabor@ibm.com
mailto:Allen.Gabor@ibm.com
mailto:Allen.Gabor@ibm.com


process sequence of SAQP has been noted by many authors.3,7,8 One particularly troublesome
process-induced variation, the geometric oscillation of the quartered-pitch features, is commonly
referred to as pitch-walk.3

Chao et al.6 used optical critical dimension (OCD) data to create a calibrated SAQP
measurement model, using a data feedforward approach and verification by reference metrology.
A similar approach for measurement of the SAQP pitch-walking has been demonstrated with
OCD by Kagalwala et al.,9 using a virtual reference, instead of the calibrated reference of
Chao et al.6 While the OCD work enables the extraction of precise two-dimensional (2D)
measurements of the stack geometric parameters (which will be used in this study) it does not
enable reliable pitch-walk predictions of the final SAQP structure to be made early in the SAQP
process flow.

Given the complexity of its coupled multistep process, it is inefficient to guard against pitch-
walk from SAQP by relying on specifications of individually measured parameters from the
different process steps. Thus, rather than specifying limits for individual parameters measured
by OCD, it is highly desirable to be able to take those individual parameters, feed them into a
model and predict what the pitch-walk value will be if the wafers continue processing. One of the
goals of the work described in this paper is to predict the pitch-walk of the final SAQP structure
early in the process. This early projection of the pitch walk enables decisions on reworking
wafers, scrapping wafers, or feeding forward corrections to future processing steps so that down-
stream processing bandwidth is not wasted on wafers that will not meet the technology require-
ments. While other papers mention models to predict pitch walking, our paper is the first to
document the usefulness of its predictions at different process steps within the SAQP module.
A more detailed comparison of other prediction methodologies will be examined later in this
manuscript.

The desire to predict pitch-walk as early as possible in the SAQP process flow led us to the
use of deep neural network (DNN) methods. Spurred by the fast implementation of DNNs on
GPUs,10,11 DNNs have been employed in a wide variety of fields over the last decade.12–14 In
particular, they have been highly successful in producing regressions over high-dimensional
spaces. In this work, we investigated such a space in the form of the various geometric param-
eters measured over the process history of wafers making their way through the SAQP module.

One downside of typical DNN regression models is that they act as point estimators, report-
ing a single prediction for any given input vector, without reflecting the uncertainty associated
with the variability of a real manufacturing process followed by a real measurement process. This
inability to account for the uncertainty in the prediction would limit the usefulness of pitch-walk
predictions for making decisions regarding wafer scrapping, wafer reworking, or making feed-
forward process corrections. As an example, the pitch walk may be predicted to be 3 nm, where
the specification is <2 nm. If the 1σ uncertainty in that prediction is �3 nm the decision may be
to continue processing the wafer as there is the chance that the wafer will end up within the
specifications. On the other hand, if the uncertainty is �0.1 nm, the decision may be to scrap
the wafers and not waste further downstream processing bandwidth.

2 Methodology

To develop quantitative uncertainty estimates, we employ a DNN methodology adapted from
work by Gal and Ghahramani15 to make predictions of the probability distribution function
(PDF) that represents all possible outcomes for pitch-walk at the end of the SAQP process.
With an estimate of the entire PDF available, informed decisions can be made regarding the
reworking or scrapping of wafers that are not expected to meet a particular target threshold while
accounting for uncertainty both due to imperfect measurement and modeling (epistemic uncer-
tainty) and due to the variability inherent in the manufacturing process (aleatoric uncertainty).

The uncertainty represented by the PDF depends on the fraction of the total number of steps
in the module providing data to the network making the prediction. Predictions made later in the
module, and thus having more input values to the DNN, result in a narrowing of the predicted
PDF. We note that this stochastic approach is not tied to the physics of the SAQP module and has
broader applicability to model many complex problems related to devices and semiconductor
processes.
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2.1 Experimental Measurement and Interpretation

OCD measurements were obtained at five discrete process steps in the SAQP process (as
described in Sec. 3) using the methodology described by Chao et al.6 The OCD dataset of
∼30 wafers was collected from a stable process route under active process control without
any experimental splits. For each of the 30 wafers undergoing metrology, 20 sites were mea-
sured. After each process step, a number of geometric stack parameters were extracted from
OCD.

For modeling, up to 16 parameters were used as inputs to the DNN. These 16 parameters
were a subset of the parameters measured with OCD at the five discrete process steps and will be
described in more detail in Sec. 3. Note, the 30 wafers used for this study only included wafers in
which all the OCD measurements were available for all five process steps, i.e., wafers scrapped
before the final fin pitch-walk measurement were not included. Additional culling of the data
included filtering with a goodness-of-fit parameter threshold.

2.2 Bayesian Dropout Approximation Approach

The typical approach for developing a regression model based on a DNN is to first identify
a training set consisting of correlated vectors of inputs and outputs. The network topology and
activation functions are then chosen, with floating point representations of weights and biases
stored at each node. These weights and biases are adjusted in an optimization loop to allow the
network to reproduce the behavior of the training set. In this construction, the predictions of the
network are point estimates of the regressed quantities that are fully determined by the input
vectors.

An estimate of the error of a trained network can be made by averaging the error in the
predictions made on a validation set and assigning that error to all predictions. However, this
averaging results in a global estimate for the network as a whole that is not a function of the
input. Because training data cannot represent the entire input space and because of the inability
of any real training process to capture training data perfectly, the ability of a network to make
predictions is better for some inputs than others, often by orders of magnitude.

To extract estimates of the uncertainty from a regression network, in this study we exploit an
interpretation proposed by Gal and Gharamani15,16 of a standard neural network regularization
technique known as a dropout. In standard dropout,17 during any given training step, each node
has a probability p of being multiplied by zero, effectively severing its connection to the rest of
the network. During inference, that is when the network is used to make predictions, the output
of each node is multiplied by 1∕ð1 − pÞ. Empirically, it is found that dropout decreases the
tendency of networks to overfit and increases the performance of a trained network on test data
not in the training data set.18,19

Within the reinterpretation of the dropout technique due to Gal and Gharamani,15,16 here
referred to as Bayesian dropout approximation (BDA), the training of the network progresses
as with standard dropout. However, any inference includes the stochastic multiplication by zero
with the same probability p as was used during training and without the correction factor of
1∕ð1 − pÞ. Typically, the network is sampled with different dropout vectors many times for any
given input vector, as demonstrated schematically in Fig. 1(a), and the statistics of the outputs are
computed with a sample mean serving as a predicted value and the sample standard deviation
serving as a measure of the uncertainty in that prediction. Figure 1(b) shows an example of the
statistics that can be generated through this type of procedure.

A careful reading of the appendix of Ref. 15 will allow the reader to understand the
sampling during inference as a Monte Carlo integration of the product of the likelihood and
the posterior distributions, within the context of a variational inference approach to computing
the Bayesian distribution. Alternatively, and perhaps more intuitively, the repeated stochastic
inference may be thought of as sampling an ensemble of networks each of slightly different
topology and each consistent with the training data set. In this interpretation, in the limit of
long training and a large number of samples, the distribution of predictions arises from the
variability in the data-generating process being reflected in the variability in the training
data set.
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We have implemented the BDA algorithm in Python, using the Tensorflow package19,20 and
a custom, well-instrumented layer class that implements dropout during training and inference.
Using this software, a small library of stochastic neural networks, as discussed in Sec. 4, was
trained, based on 500 data points, and expanded to 10,000 data points via the data augmentation
technique defined in Sec. 2.3; 20% of these points were selected at random and reserved for
model validation. This library contains networks with inputs taken from each of the first four
OCD measurement steps. In all cases, the network outputs being regressed were the pitch-walk
measurements (α − β and α − γ), as discussed in Sec. 3, from the final fin step. Inputs from each
step were selected based on the likelihood of affecting this pitch walk, though this selection is
made permissively, erring on the side of inclusion rather than exclusion. The computational cost
of including input with a low gain is minimal during inference. These networks were trained
using a 15% dropout, heuristically tuned to give average squared z-scores near unity, and an
Adam stochastic optimization algorithm21 with hand-tuned learning rates.

As will be discussed more fully in Sec. 4, to make a pitch-walk prediction based on a set of
OCD parameters, those parameters are used as an input vector to the trained network and 100 to
1000 samples are taken to generate an output probability distribution. On consumer-level lap-
tops, such a computation is likely to be complete in tens of seconds, making it ideal for inline
applications. The sample mean and sample standard deviation of those outputs are then used as
a predicted value and uncertainty.

2.3 Data Augmentation

Data augmentation is a well-known strategy22 to increase the size of a data set to aid the opti-
mization routine during network training by filling in gaps in the parameter landscape. We aug-
ment our data set through the creation of new, albeit not independent, data points by interpolating
existing data points. We interpret the output features as a vector function on the n-dimensional
space represented by the n input features. We can then construct a simplex in this input space
using nþ 1 data points and represent the output vector as a finite element field on that simplex
with linear basis functions.23 To create a new data point, we choose a point within that simplex,
representing the input vector, and interpolate the basis functions to find the corresponding output
vector. In lieu of creating a full finite element mesh of the n-dimensional space, we randomly
select sets of nþ 1 data points to form simplices and reject any set for which the resulting sim-
plex does not meet restrictions on size and quality. These restrictions are determined heuristically
to avoid interpolating across too large a distance in parameter space. It is unknown if the data
augmentation technique introduces bias.

Fig. 1 (a) A schematic of DNNs employing the BDA approach. Both networks have identical
inputs, but 33% of nodes are zeroed out randomly (shown with black dashed borders), giving
different network outputs. (b) A typical histogram of outputs after a large number of samples with
identical inputs.
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3 Self-Aligned Quadruple Patterning

An SAQP fin process can result in pitch-walk, which is defined as a variation of the space-width
between neighboring fins. These space-width differences have previously been defined by the
geometrical SAQP model by Chao et al.6 The process steps of this SAQP model are shown in
Fig. 2. The five distinct process steps correspond to the OCD measurement steps used in this
work, including the following: (1) the top mandrel after lithography and RIE etching (TMRIE),
(2) the top mandrel postspacer deposition (TMSP), (3) the top spacer etch followed by top man-
drel pull and RIE etching to form the bottom mandrel (BMRIE), (4) the bottom mandrel post
spacer deposition (BMSP), and (5) the final fin formation at fin reveal (FIN). Three different
space-widths formed between the FINs at the final step of the SAQP process, as shown in
Fig. 2, are indicated by space-width designations α; β; γ used by Kagalwala et al.9 To be specific,
the OCD measurement steps one to five are measurement steps at five distinct process steps that
occur sequentially in the SAQP flow.

For the SAQP DNN training, the input dataset is based on measurements of the geometric
parameters from optical scatterometry (OCD). The elucidation of the geometric SAQP model
shown in Fig. 2 not only illustrates the fin space-widths, α; β; γ but also can be used to formulate
the network topologies comprised of different process-step parameters, measured by OCD, that
are used in the training of the DNNs. The geometrical SAQP model describes how the param-
eters such as mandrel widths and space widths between the mandrels can influence the space-
width differences in the FIN structures. In this work, the severity of pitch walk is evaluated by
looking at the values of α − β and α − γ.

Each process step of the SAQP can be approximated by an analytical equation based on
geometrical process parameters and their physical relationships. For example, the OCD data
for each process step can be solved by an analytic equation at each successive step in the process
sequence. The equations can be evaluated independently or by passing the output geometric
parameters from one process equation step to the next. For the later case, a series of time-ordered
sequential analytical equations6,24 can represent the SAQP process. While the analytic approach
is ideal for fitting and extracting parameters from the OCD measurements, it does not make
predictions about fin pitch-walking. Specifically, the space widths at the FIN step are only deter-
mined from the evaluation of the FIN analytic approximation to FIN OCD data, i.e., the last step
of the SAQP sequence. It is the aim of this work to predict pitch-walk values, using data from
earlier processing steps as interpreted using the analytic approach.

Pitch-walk occurs when the space-widths α; β, and γ are not equal. Nonidealities in the
pattern transfer steps of the SAQP process can result in errors that result in pitch-walking.

Fig. 2 A schematic of the process steps for SAQP.
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The unique dependencies of pitch-walk on the nonidealities of the discrete processing steps are
now elaborated. From the geometrical SAQP model shown in Fig. 2, we can define the relation-
ship between increasing or decreasing the top mandrel, top mandrel spacer, bottom mandrel, and
bottom mandrel spacer widths on the fin space-widths α, β, and γ.

• α has an inverse relationship with the following parameters: the top mandrel width in
TMRIE, the width of the spacer in TMSP, the bottom mandrel width in BMRIE, and the
width of the spacer in BMSP, i.e., as top mandrel CD, top spacer width, the bottom mandrel
CD and bottom spacer width increase the α space decreases.

• β increases as both the width of the spacer in TMSP and the bottom mandrel width (BM) in
BMRIE increase. In contrast, an increase in both the top mandrel width in TMRIE and the
width of the spacer in BMSP should have no impact on β.

• γ increases as the top mandrel width in TMRIE increases. However, γ has an inverse rela-
tionship with the bottom mandrel width in BMRIE and the width of the spacers in BMSP.
The width of the spacer in TMSP does not have an impact on γ.

Process excursions or variability of the different structural parameters during the SAQP
process can contribute to the pitch-walk at the FIN step. The relationship trends between the
geometric structural parameters at each SAQP process step and the fin space-width parameters
α; β, and γ are illustrated in Table 1. Using the table, one can determine what SAQP processing
deviations will contribute to pitch walking as measured by α − β and α − γ. As an example,
increasing either the bottom mandrel width in BMRIE, or the width of the spacer in BMSP,
is found to decrease both α and γ, and thus even though BMRIE and BMSP are not at nominal,
the α − γ pitch walk parameter will not be impacted. However, because increasing BMRIE

increases the β space, the α − β pitch walk parameter will be impacted. Similarly, the α − β
pitch walk parameter will be impacted by BMSP since α has a negative relation and β has
a neutral (no change) relationship.

The process sensitivities shown in Table 1 and the magnitude of the expected process errors
can enable a deeper understanding of what drives pitch walking. For example, since the spacer
deposition process in both top and bottom mandrels has an extremely tight process control, it is
expected to have a lower impact than the mandrel size on the fin space-widths. Therefore, the top
mandrel features with opposite sign contributions are expected to have a large influence on the
α − γ pitch walk parameter. Since the magnitude of the pitch-walk FIN space-width differences
α − β and α − γ are experimentally determined, we chose these two parameters as the output
layer for the DNN.

4 Network Topology FOR SAQP

As previously mentioned, the different network topologies used for training DNNs in this study
are comprised of different process-step parameters based on the geometric model for the SAQP
process sequence. It should be emphasized that because geometrical rules and relationships are
not built into the DNN, in contrast to a geometrical SAQP model, the SAQP DNN is not a
physics-based model. In an analytic approach, the process parameters are determined by sequen-
tially evaluating the equations in the SAQP process sequence. In contrast, each network created

Table 1 The sign (– or +) of the gains between the process steps TMRIE, TMSP, BMRIE, and BMSP,
the SAQP spacing parameters of α, γ, and β. An entry of 0 indicates little or no dependency.

Process step α space γ space β space

TMRIE – + 0

TMSP – 0 +

BMRIE – – +

BMSP – – 0
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in this work is trained to regress pitch-walk metrics against a subset of measured quantities
chosen from the OCD measurement step over the process history of the wafer. These measure-
ments are taken independently, so the choice need not be based on process-sequence order.

When choosing which quantities are well-suited to be input into our DNNs, two character-
istics were considered: (1) the quantity should represent an aspect of the intermediate geometry
that impacts pitch-walk as measured in the final step of the process and (2) quantities measured
later in the process delay the use of the network for predictions. The more quantities included
that possess the first property, the narrower the predicted PDF and the more certain the pitch-
walk prediction can be. Rather than strike a compromise in this trade-off between certainty and
early prediction, we constructed three different networks with three increasingly complete input
vectors (of sizes 6, 10, and 14), with each network regressing the same pitch-walk metrics. The
output of each of these three networks yields predicted final pitch-walk values well ahead of
the final fin RIE step.

Using Python-based TensorFlow,19 these different networks are trained with three hidden
layers. The nodes of the output layer for all these networks are the pitch-walk metrics α − β
and α − γ. For all three SAQP networks in this study, the number of nodes in the three hidden
layers is 100, 100, and 50, respectively. Next, the descriptions for the three networks are given.

The six-input network contains inputs only from the top mandrel, with three geometric
parameters each from TMRIE and TMSP. Figure 3(a) shows the top mandrel stack at TMRIE where
the geometric stack parameters 1 to 3 correspond to top mandrel top width, top mandrel height,
and undercut hardmask layer bottom width, respectively. Figure 3(b) shows the top mandrel
stack at TMSP, where the geometric stack parameters 4 to 6 correspond to undercut hardmask
layer height, undercut hardmask layer bottom width, and the sidewall spacer width along the
top mandrel. Figure 4 illustrates the six-input network with TMRIE and TMSP parameters from
Fig. 3 as input. Note that as mentioned earlier, the two nodes on the output layer are both final fin
pitch-walk parameters, α − β and α − γ.

Fig. 3 The stack geometry parameter definitions for the six-input network. (a) geometry parameter
definition and (b) geometry parameter definition.

Fig. 4 Schematic of six-input network with inputs from TMRIE and TMSP, as defined in Fig. 3.
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The 10-input network contains all input layer nodes from the 6-input network plus four addi-
tional geometric parameters from bottom mandrel step at BMRIE. Figure 5 shows the bottom
mandrel stack at BMRIE, where the geometric stack parameters 7 to 10 correspond to bottom
mandrel top width, bottom mandrel bottom width, bottom mandrel sidewall angle, and stack
nitride thickness, respectively.

Likewise, the 14-input network contains all input layer nodes from the 10-input network plus
four additional geometric parameters from bottom mandrel step at BMSP. Figure 6(a) shows the
bottom mandrel stack at BMSP, where the geometric stack parameters 11 to 14 correspond to
bottom mandrel top width, bottom mandrel sidewall angle, bottom mandrel height, and sidewall
spacer width, respectively.

5 Results and Discussion

5.1 BDA Predictions from Centroid of Input Data

In this section we examine the output of a fully trained n-parameter SAQP DNN network using
the methodology described in Sec. 2.2. By sampling the output of the forward-solve inference of

Fig. 5 (a) A schematic defining the stack geometry parameter definitions for the bottom mandrel
BMRIE for (b) the 10-input network.

Fig. 6 (a) A schematic defining the stack geometry parameter definitions for the bottom mandrel
BMSP for (b) the 14-input network.
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a given BDA network at a particular set of inputs, we can predict the distribution of the pitch-
walk metrics α − β and α − γ we expect from a system with those inputs. For demonstration
purposes, here we take the mean of each of the input parameters, which is the centroid of
the input data, as a “typical site.” Sampling the six-parameter network at this input centroid,
we determine histograms of the probability density for α − β [Fig. 7(a)] and for α − γ
[Fig. 7(b)]. As the distribution is approximately Gaussian, it is useful to interpret the mean and
sample standard deviation of the network output as a predicted process output and prediction
uncertainty. This yields predicted uncertainties for α − β and α − γ of 0.12 and 0.24 nm, respec-
tively. For a given dropout rate, prediction uncertainty serves as a convenient measure of the
underlying distribution of the experimentally measured pitch-walk.

The usefulness of this measure of prediction uncertainty can be accessed from the correlation
of the experimentally measured pitch-walk metrics as a function of the predicted pitch-walk.
This correlation scatter plot is shown in Fig. 8(a) for α − β and Fig. 8(b) for α − γ. The calculated
1σ values of the predicted pitch walk are shown. The selected dropout rate places 50% to 80% of
z-scores within the ½−1; 1� interval for all test datasets.25 This condition for a usable dropout rate
allows for internal comparisons of uncertainty within data sets with a familiar scale of units. Note
that the scale of the plots is displayed in nanometers and is not normalized for comparison. The
uncertainty (i.e., 1σ values) at both the lower and upper values of the correlation scatterplot are
significantly larger than those values that are clustered at the center of the plots. The data at the
center of the plots, with a larger number of experimental values, are better determined.

It is observed that the mean values of the predicted α − β are not as precisely predicted at the
α − γ. This observation from the six-input network, reflecting only parameters from the top man-
drel, is consistent with the previous discussion of SAQP. The α − γ pitch-walk is determined
primarily from the top mandrel, whereas the α − β pitch-walk value is inherently determined

Fig. 7 The probability densities predicted for (a) α − β and (b) α − γ with the six-parameter network
with inputs having their respective mean values.

Fig. 8 Correlation of the measured pitch-walk (PW) as a function of the predicted output of the six-
input network for both (a) α − β and (b) α − γ with inputs having their respective mean values.

Halle et al.: Bayesian dropout approximation in deep learning neural networks. . .

J. Micro/Nanopattern. Mater. Metrol. 041604-9 Oct–Dec 2022 • Vol. 21(4)



from both the top and bottom mandrel parameters, where the later parameter is not defined for
this network. Figure 9 shows the correlation plots using the 6 parameter, where only top mandrel
geometric parameter as inputted (Fig. 9a), as well as the 10 parameter (Fig. 9b) and 14 parameter
(Fig. 9c) where bottom mandrel geometric parameters are also inputted. As these bottom man-
drel parameters are added the delta between the measured and predicted values decreases.

5.2 BDA Predictions from Individual Input Data Points

In the previous discussion, we examined results from the forward-solve inference with different
n-parameter networks for an artificial site defined by the mean (or centroid) of the geometric
parameters. Using this approach, we gain an insight to the overall behavior of the SAQP net-
works. Alternatively, applying the forward-solve inference to individual experimental wafer/
chip-sites is a more realistic use-case for applying the pitch-walk prediction. The forward-solve
inference is applied to an arbitrary single chip location of a wafer with different n–parameter
networks, allowing a comparison of pitch-walk predictions at different process steps of the
SAQP process. These histograms of the probability density for both the α − β and α − γ pitch-
walks are shown in Fig. 10 for each n-parameter network. Figure 10 shows a comparison of the
predicted distributions to the experimental mean of the chip-site data, indicated by a red-colored
vertical bar. By visually comparing the means of the predicted distributions to the experimental
means, we can easily see that for both α − β and α − γ pitch-walks, increasing the number of
input layer/nodes in the network improves the agreement between the predicted and

Fig. 9 Correlation of the measured PW metric α − β with the predicted PW from the networks for
points in the test data set (a) six-input network, (b) 10-input network, and (c) 14-input network.

Fig. 10 The outcome of the probability density of the α − β and α − γ pitch-walk for an arbitrary
wafer site location is shown for the 6-input, 10-input, and 14 parameter networks. The experimen-
tal mean of the chip-site data is indicated by a red-colored vertical bar.
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experimental means. From the 6-input, 10-input, to 14 parameter networks, the improvement
between the predicted and observed value for α − β pitch-walk is substantial, with a reduction
of 2σ. This result is consistent with our previous discussion, in which the scatterplots of the
predicted versus measured α − β pitch-walk improve with increasing the number of parameters.
The pitch-walk uncertainty for both the α − β and α − γ does not significantly improve or
degrade with increasing number of input layers. The application of pitch-walk predictions over
a number of sites on a wafer, relative to a defined threshold value, can be applied to a predictive
disposition process.

5.3 Methodology: Sensitivity to Input Parameters

Amore nuanced understanding of the SAQP DDN is gained by exploiting the feedforward-solve
inference under BDA, giving insight into the parameter sensitivity of the network. A method-
ology for gauging the sensitivity of input layer parameters to DNN is briefly explored here.

The predicted distribution of an output parameter is generated by systematically varying
a chosen input layer parameter (η) over a small range, where the impact of η on the output.
Figure 11 shows two 2D histograms, generated using the fourteen parameter network, of the
probability density distribution for α − γ pitch-walk as a function of two different η, where
η projects into the page and is allowed to vary over a range of 0.25 standard deviations.
In Fig. 11(a), η is chosen to be one of the BMRIE parameters, and the distribution of predicted
α − γ pitch walk is shown to be rather insensitive to variations in η. However, when η is chosen to
be a TMRIE parameter in Fig. 11(b), we see that the predicted pitch-walk distribution is quite
sensitive and the histogram responds strongly.

The area of high probability density presumably corresponds to the tight distribution of the
parameter where the network was trained. These pitch-walk sensitivities shown here are con-
sistent with our understanding of SAQP. The pitch-walk α − γ should be sensitive to certain top
mandrel parameters, and not sensitive to bottom mandrel parameters. In principle, this analysis
can be extended to n-dimensional input parameters. n-dimensional sensitivity is graphically
complex and understanding parameter interactions are beyond the scope of this work. In sum-
mary, the ability to interrogate a DNN with this methodology is a computationally fast and
powerful tool for understanding process sensitivities.

5.4 Comparison to Other Prediction Approaches

Other architectures exist for modeling a multistep process. For example, a predictive modeling
conceptual framework using classifiers has been discussed by Stich et al.26 In the framework
from Stich et al. either machine learning or neural net classifiers are used to model yield on a
process tool. This proposal also suggests that a cascading classifier approach, for sequential

Fig. 11 (a) and (b) Two 2D histograms, generated using the fourteen parameter network, of the
probability density distribution for α − γ pitch-walk as a function of two different η, where η projects
into the page and is allowed to vary over a range of 0.25 standard deviations.
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process tools, with feedforward corrections into the process recipe might be achieved. This ambi-
tious approach has not yet been demonstrated for a complex production process flow such
as SAQP.

Ren et al.5 have recently published on the importance of a predictive model for pitch walk.
Their approach uses a process-based analytical model based on the following two types of
inputs: (a) metrology values of line widths and spacer thicknesses and (b) tool-specific charac-
terization of the key process parameters, which gives experimental distributions of the process
data, e.g., etch bias as a function of process temperature. The intent of the predictive analytical
approach is twofold dependent on the following: (a) feedback control early in the SAQP process
flow to improve PW control and (b) to experimentally assess the PW variance for different proc-
ess control knobs (such as etch temperature).

In contrast to this analytical model, our fully empirical model cannot be explanatory of the
underlying mechanism at play. However, while both approaches require measuring and provid-
ing key parameters, the analytical approach requires more domain experience to winnow the
available parameters to a relevant set. When using the BDA approach, selection of parameters
for inputs can be quite permissive, as the network will tune the gains of irrelevant parameters
toward zero in the training process with enough data. There is a small cost in the number of
network parameters to be trained and the number of floating point operations to be executed
during inference by allowing less relevant parameters to become inputs to the model, but given
the computationally lightweight nature of the BDA method, we feel this is a reasonable cost for
the resulting physical agnosticism and low implementation initialization effort. Additionally, as
the complexity of a process increases, the balance tilts further in the direction of the empiricism
and mechanistic implementation of the BDA approach, as even high-level domain experts are
hard-pressed to identify all possible relevant parameters and all the higher-order interactions
between them. Such complexity can arise from large numbers of steps in a process module,
an application that the BDA is well-suited for and allowing probabilistic yield assessments early
in the process flow. As previously discussed, this probabilistic assessment could facilitate either
re-work or the early removal of wafers that exceed the desired tolerances early in the proc-
ess flow.

6 Conclusions

We have described in detail the complexity of SAQP and the need to have a predictive model for
both the mean and the uncertainty of the pitch-walk prediction. Elaboration of the network input
layers, the top and bottom mandrel geometric stack parameters, and their contribution to three
types of space-widths α, β, and γ in the final pattern is given. The relationship of the stack
parameters to the output layers of the network, pitch-walk α − β and α − γ, is demonstrated.
We defined the relevant network topologies and the input layers for modeling SAQP: six-input
top mandrel only network, and 10 and 14 parameter networks including both top and bottom
mandrels. Modeling the complex SAQP process with a stochastic DNN achieved a very good
correlation of measured to predicted pitch-walk values despite the fact that the DNN model
contains no knowledge of the physics of SAQP. The use of the BDA to perform Bayesian infer-
ence is an effective, easy-to-implement, and computationally fast method for making sophisti-
cated predictions about the pitch-walk observed in SAQP. These predictions provide quantitative
uncertainties and can be used in further business-relevant calculations for process outcomes.

The predicted pitch-walk for the n-parameter network gives a range for uncertainty from the
probability density that is not found to significantly change by increasing the size of the input
layer nodes. However, increasing the number of input layer nodes/parameters does improve the
overall goodness-of-fit of the model predictions to the measured values for pitch-walk α − β.
Thus, increasing the number of input parameters does improve the pitch-walk prediction, (i.e.,
the predicted to experimental mean). For the available dataset, it is not unreasonable that the
magnitude of the pitch-walk uncertainty is dominated by the top mandrel process and that further
downstream processes do not increase or decrease the uncertainty. Thus, the ability to predict
both the mean and uncertainty for the pitch-walk outcome early in SAQP process flow is a
powerful methodology, which could be deployed for reliable manufacturing process disposition.
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While the network input nodes in this SAQP study were limited by design intent, the meth-
odology with the BDA approximation can easily be scaled to a much larger set of input param-
eters and network sizes. We have demonstrated that DNNs can be effectively used to model the
complexity of SAQP and with the use of the BDA approximation provide actionable results. This
approach can be readily extended to modeling other complex patterning processes, such as self-
aligned double patterning and self-aligned octuple patterning. In addition, there are a host of
opportunities to deploy the methodology demonstrated here to other device-yield scenarios.
Uncertainty estimation has a large literature, and for future work, it would also be of interest
to investigate competing approximation techniques such as Gaussian processes demonstrated
in Ref. 24.
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