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Abstract

Background: In the previous work, we developed a convolutional neural network (CNN), which
reproduces the results of the rigorous electromagnetic (EM) simulations in a small mask area.
The prediction time of CNN was 5000 times faster than the calculation time of EM simulation.
We trained the CNN using 200,000 data, which were the results of EM simulation. Although the
prediction time of CNN was very short, it took a long time to build a huge amount of the training
data. Especially when we enlarge the mask area, the calculation time to prepare the training data
becomes unacceptably long.

Aim: Reducing the calculation time to prepare the training data.

Approach: We apply data augmentation technique to increase the number of training data
using limited original data. The training data of our CNN are the diffraction amplitudes of mask
patterns. Assuming a periodic boundary condition, the diffraction amplitudes of the shifted or
flipped mask pattern can be easily calculated using the diffraction amplitudes of the original
mask pattern.

Results: The number of training data after the data augmentation is multiplied by 200 from
2500 to 500,000. Using a large amount of training data, the validation loss of CNN was reduced.
The accuracy of CNN with augmented data is verified by comparing the CNN predictions with
the results of EM simulation.

Conclusions: Data augmentation technique is applied to the diffraction amplitude of the mask
pattern. The data preparation time is reduced by a factor of 200. Our CNN almost reproduces the
results of EM simulation. In this work, the mask patterns are restricted to line and space patterns.
It is a challenge to build several CNNs for specific mask patterns or ultimately a single CNN for
arbitrary mask patterns.
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1 Introduction

High aspect absorbers used in extremely ultraviolet (EUV) masks induce several mask three-
dimensional (3D) effects, such as critical dimension (CD) and image placement errors.1,2 It is
necessary to include the mask 3D effects in EUV lithography simulation. Mask 3D effects can be
calculated rigorously using electromagnetic (EM) simulators.3–7 However, these simulators are
highly time-consuming for full-chip applications.

Recently, many attempts have been made to simulate the mask 3D effects using deep neural
networks (DNNs). They are classified into three models depending on the targets of DNNs.
Three possible targets are, from the mask plane to the wafer plane, the near-field amplitude
on the mask, the far-field amplitude (diffraction spectrum) at the pupil of the projection optics,
and the image intensity on the wafer. In the first model, the target is the near-field amplitude
on the mask calculated by EM simulation.8–11 This model requires many DNNs to reproduce
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different near-field amplitudes depending on the source position. In the second model, which is
our model,12 the target of DNN is the far-field amplitude at the pupil of the projection optics.
Because the far-field amplitudes are described in momentum (wave vector) space and the source
position corresponds to the incident momentum in Koehler illumination, our model naturally
parametrizes the source position dependence of the amplitude. The third model13,14 uses the
image intensity on the wafer as the target of DNN. This model is much straightforward than
other models because the image intensity is used in the following resist simulation. However,
the phase information is lost when the diffraction amplitude is converted to the image intensity.
The phase of the amplitude is not included in the targets of this model. The phase indirectly
influences the focus dependence of the intensity. Therefore, the model needs many intensity
targets at different focus positions for each mask pattern.

In our previous work,12 we developed a convolutional neural network (CNN), which repro-
duces the results of the rigorous EM simulation in a small mask area. The prediction time of
CNN was 5000 times faster than the calculation time of EM simulation. We trained the CNN
using 200,000 data, which were the results of EM simulation. Such a large amount of the data
was necessary to reduce the validation loss during the training. Although the prediction time of
CNN was very short, it took a long time (∼1 week) to build the training data. Creating the
training data in the work was possible because the mask area was small. However, when we
enlarge the mask area for optical proximity correction (OPC) in large area, the calculation time
to prepare the training data becomes unacceptably long. In the large area OPC process, the large
mask area is clipped into many small mask areas. The size of the clipped areas needs to be large
enough to avoid the influence from the surrounding mask pattern, at least near the center of the
clipped area.

In this work, we apply data augmentation to our CNN, which is a standard technique in DNN.
The technique allows us to increase the number of the training data without performing EM
calculation, which significantly reduces the time to prepare the training data. In Sec. 2, we
explain the detail of our data augmentation technique. In this work, we focus on the application
to metal layers and assume that the mask patterns are simple line and space patterns. In Sec. 3, we
study the accuracy of our CNN prediction on CDs and edge placement errors (EPEs). Section 4 is
the summary.

2 Data Augmentation for Large Mask Patterns

In the previous work,12 we assumed a periodic mask pattern with 720 nm × 720 nm mask area.
When we clip out a small mask area from the mask data, we should not use the edges of the mask
area to avoid the influence of the neighboring mask pattern. According to Ref. 15, the optical
interaction range Ropt is calculated as

EQ-TARGET;temp:intralink-;e001;116;284Ropt ¼
1.12λ

σNA
; (1)

where λ, σ, and NA represent the wavelength, coherence factor, and numerical aperture of the
scanner, respectively. The wavelength of EUV light is 13.5 nm, and the numerical aperture of
the current EUV scanner is 0.33. The coherence factor depends on the illumination setting,
and the typical value is 0.5. Inserting these values in Eq. (1), the optical interaction range
Ropt ¼ 90 nm. This value is the length on the wafer, and the number is multiplied by four on
the mask. Therefore, the optical interaction range on the mask is 4 × Ropt ¼ 360 nm. Figure 1
shows the usable mask area excluding the area influenced by the neighboring mask pattern. The
mask size L should be larger than 720 nm to get the usable mask area. Therefore, there was no
usable area for large area OPC in our previous work.

In this work, we choose 1024 nm × 1024 nm mask area. The usable mask area is 300 nm2.
The usable area is not large, but the EM simulation time highly depends on the size of the mask
area. The calculation time of 1024 nm × 1024 nm mask area takes 162 s using Core i9-9900K
CPU. In the simulation, we use 3D waveguide model,5–7 which solves coupled wave equations in
momentum space. The calculation time highly depends on the cut-off momentum. In this work,
we include the momentum ðkx; kyÞ, which satisfies
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where kmax
x ¼ kmax

y ¼ 6 · NA
4

2π
λ . This number is six times larger than the size of the pupil NA

4
2π
λ .

Discretizing the momentum by 2π∕L, there are 2121 ðkx; kyÞ pairs, which satisfy Eq. (2). The
size of the matrix solving the coupled wave equations is 4242 × 4242 because there are two
polarizations. The region in Eq. (2) is quasi-hyperbola, which resembles the diffraction spectrum
of mask patterns consisting of vertical and horizontal lines or holes. Mask patterns are conven-
tionally designed using X–Y coordinates. The minimum pattern pitch in X or Y direction is small
compared to the minimum pattern pitch in the diagonal direction. Therefore, the diffraction
amplitude in the diagonal direction decreases rapidly compared to the amplitude in X or Y direc-
tion in momentum space.

DNNs require a large amount of the training data. In the previous work, we used 200,000
training data. It will take a year if we calculate the same number of the data with the mask area in
this work. Data augmentation is a powerful technique in deep learning to increase the number of
the training data with limited original data. In our CNN, the input is the mask pattern, and the
outputs are the far-field diffraction amplitude Aðl; m; ls; msÞ, where ðl; mÞ is the diffraction
order, and ðls; msÞ is the source position (Fig. 2). In 3D waveguide model,5–7 not only the dif-
fraction momentum but also the source position (or incident momentum) is discretized by 2π∕L.
As discussed in Ref. 12, assuming the largest σ value to be 1, the diffraction order and the source
position are restricted by the pupil shape and the source shape as follows:

Fig. 2 Schematic view of light diffraction by an EUV mask.

Fig. 1 Usable mask area.
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s

q
≤
NA

4

L
λ
: (4)

When L ¼ 1024 nm, the number of the possible combination of ðl; mÞ is 457.
When the mask pattern is shifted or Y-flipped as shown in Fig. 3, the diffraction amplitudes

of these patterns can be easily calculated from that of the original pattern. Note that in EUV
reflective optics, X-flip is not symmetrical to the chief ray because it is tilted 6 deg in Y direction.

Following Ref. 12, the far-field diffraction amplitude Aðl; m; ls; msÞ is divided into the thin
mask amplitude (Fourier transform of the mask pattern) AFTðl; mÞ, which does not depend on
the source position ðls; msÞ, and the mask 3D amplitude A3Dðl; m; ls; msÞ

EQ-TARGET;temp:intralink-;e005;116;413Aðl; m; ls; msÞ ¼ AFTðl; mÞ þ A3Dðl; m; ls; msÞ: (5)

Figure 4 shows the source position dependence of the mask 3D amplitude. The source posi-
tion where the amplitude contributes to the image intensity is limited by the source shape and the
pupil shape. Only the overlapping area in Fig. 4 contributes to the image intensity. We approxi-
mate the mask 3D amplitude in this area by a linear function of the source position ðls; msÞ as
follows:

EQ-TARGET;temp:intralink-;e006;116;323A3D
x ðl; m; ls; msÞ ≅ a0ðl; mÞ þ axðl; mÞðls þ l∕2Þ þ ayðl; mÞðms þm∕2Þ; (6)

where a0 is the mask 3D amplitude at the center of the overlapping area: ðls; msÞ ¼
ð−l∕2;−m∕2Þ, and ax and ay are the slopes of the amplitude in the X and Y directions on the
source plane, respectively. We call these three numbers as mask 3D parameters.

Fig. 3 Original, shifted, and Y -flipped mask patterns.

Fig. 4 Source position dependence of mask 3D amplitude.
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Equation (6) is slightly different from equation (11) in Ref. 12. We modify the equation for
the following reason. 3D waveguide model calculates the diffraction amplitudes at the grid
points in Fig. 4. The model solves coupled wave equations, so all the amplitudes are calculated
simultaneously. Mask 3D parameters are derived by least square fitting to the amplitudes in the
overlapping area. The larger ðl; mÞ, the fewer grid points inside the overlapping area. If the num-
ber of the grid points is too small, the overlapping area becomes a line or just a point. In such
case, we approximate the amplitude in the area using only a0ðl; mÞ as the average of the ampli-
tudes and do not use axðl; mÞ and ayðl; mÞ. Therefore, the number of a0ðl; mÞ is 457, whereas the
number of axðl; mÞ or ayðl; mÞ is 349.

We use two different methods to derive a0ðl; mÞ for small ðl; mÞ and large ðl; mÞ.
Equation (6) is used to ensure that a0ðl; mÞ is always the average of the amplitudes. When
we define the overlapping area as O and the number of the grid points in the area as N, the
result of the least square fitting to Eq. (6) gives

EQ-TARGET;temp:intralink-;e007;116;578a0ðl; mÞ ¼ 1

N

X
ðls;msÞ∈O

A3D
x ðl; m; ls; msÞ; (7)

because

EQ-TARGET;temp:intralink-;e008;116;517

X
ðls;msÞ∈O

ðls þ l∕2Þ ¼
X

ðls;msÞ∈O
ðms þm∕2Þ ¼ 0: (8)

Equation (6) contributes to reducing the loss of CNN training in a0 compared to using equa-
tion (11) in Ref. 12.

In Eq. (6), we consider only the x polarized amplitude. The difference between the diffraction
amplitudes of x and y polarizations is very small, and the polarization change by EUV mask
diffraction is negligible as shown in Ref. 12.

The values of mask 3D parameters are determined by the mask pattern and the absorber. In
this work, we use Ta absorber with 50-nm thickness. We construct a CNN model, which predicts
the mask 3D parameters from the mask pattern. Figure 5 shows the architecture of our CNN. Six
independent CNNs are used for the real part and the imaginary part of three mask 3D parameters.
Six CNNs are merged into one model after the training. The input is a random line and space
pattern with a mask area of 1024 nm × 1024 nm. The pattern size is randomly selected from
60 to 160 nm (15 to 40 nm on wafer). Half of the training data are bright field (BF) masks, and
the rest are dark field (DF) masks. 1024 × 1024 binary data are averaged to 256 × 256 float data
before inputting to the CNNs. Circular padding16 is used because we assume periodic boundary
conditions for input mask patterns.

Figure 6 shows the loss functions of training and validation data for Realða0Þ with/without
data augmentation. The number of the original data for training is 2500, and the number of the
data for validation is 1000. With data augmentation, the original data are shifted by 103 nm

Fig. 5 Architecture of our CNN.
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increments in both X and Y directions and flipped along the Y axis. Therefore, the number of the
training data after the data augmentation is multiplied by 200 to 500,000.

Without data augmentation, the training loss decreases during the training, whereas the val-
idation loss does not. This is a typical overfitting phenomenon. With data augmentation, both the
training loss and the validation loss decrease during the training. The validation loss after the
training is small. The mean square error per target after the training is 1.52∕457 ¼ 0.0033. For
every 457 targets, the maximum value of the input data is normalized to 1 in the training.

Figure 7 compares the mask 3D parameters at several diffraction orders for 100 test data. The
correlation between the parameters by EM simulation and CNN predictions is generally good.
There are some exceptions such as Realðaxð0; 0ÞÞ where the correlation is poor. However, the
value is very small compared to the values of other parameters.

3 CNN Prediction Accuracy

The accuracy of our CNN is verified by calculating the image intensities of test mask patterns.
Training data in this work are random line and space patterns. Standard line and space test mask

Fig. 6 Training and validation loss for Realða0Þ with/without data augmentation.

Fig. 7 Mask 3D parameters calculated by EM simulation and parameters predicted by CNN.
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patterns are used to confirm the accuracy of CNN. Figure 8 compares the image intensities of a
line mask pattern by EM simulation, Fourier transformation (FT), and CNN prediction. In the
calculations, we assume λ ¼ 13.5 nm, NA ¼ 0.33, and annular illumination with σin∕σout ¼
0.3∕0.8. The bottom figures show the difference of the intensities between EM simulation and
FTor CNN prediction. The difference between EM and CNN is much smaller than the difference
between FT and EM.

Figure 9 compares the CDs and the EPEs of vertical (V) lines with several line widths. They
are measured at the cut line across the V lines in Fig. 8. In addition to EM, CNN, and FT, we plot
the result of the simulation using the linear (LIN) approximation of the diffraction amplitude in
Eq. (6) (LIN in Fig. 9). The difference between EM and LIN indicates the accuracy of the linear
approximation in Eq. (6). Also, the difference between LIN and CNN indicates the accuracy of
CNN prediction. The agreement among EM simulation, the linear approximation, and CNN
prediction is good. Figure 10 shows the results for horizontal (H) lines. The agreement between
LIN and CNN is good but we see small difference between EM and LIN. Adding higher-order
terms to Eq. (6) may help reduce this error.

Figure 11 compares the image intensities of a space mask pattern, and Figs. 12 and 13 show
the CDs and EPEs of Vand H spaces with several space widths. Similar results can be seen with
space patterns as with line patterns.

Fig. 8 Line mask pattern and its image intensities by EM simulation, FT, and CNN prediction.

Fig. 9 CDs and EPEs of vertical lines.
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Fig. 10 CDs and EPEs of horizontal lines.

Fig. 11 Space mask pattern and its image intensities by EM simulation, FT, and CNN prediction.

Fig. 12 CDs and EPEs of vertical spaces.
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4 Summary

Data augmentation technique was applied to the diffraction amplitude of the mask pattern.
Diffraction amplitudes of shifted or Y-flipped mask patterns were calculated using the diffraction
amplitude of the original mask pattern. The number of the training data after the data augmen-
tation is multiplied by 200 from 2500 to 500,000. Using a large amount of training data, the
validation loss of CNN was significantly reduced compared to the validation loss without
augmentation.

We verified the accuracy of our CNN by comparing the results of EM simulation with CNN
predictions. Our CNN almost reproduced the CDs and EPEs of line and space patterns.

In this work, the mask patterns are restricted to line and space patterns. We did not include
hole patterns, patterns with serifs and assist bars, or curvilinear patterns in the training data. We
do not expect our CNN to correctly predict images for these patterns. Neural network is only as
good as the data we feed it. It is a challenge to build several CNNs for specific mask patterns or
ultimately a single CNN for arbitrary mask patterns.

This work is based on the prior SPIE proceedings paper.17
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