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Abstract

Purpose: Automatic instance segmentation of glomeruli within kidney whole slide imaging
(WSI) is essential for clinical research in renal pathology. In computer vision, the end-to-end
instance segmentation methods (e.g., Mask-RCNN) have shown their advantages relative to
detect-then-segment approaches by performing complementary detection and segmentation
tasks simultaneously. As a result, the end-to-end Mask-RCNN approach has been the de facto
standard method in recent glomerular segmentation studies, where downsampling and patch-
based techniques are used to properly evaluate the high-resolution images from WSI (e.g.,
>10;000 × 10;000 pixels on 40×). However, in high-resolution WSI, a single glomerulus itself
can be more than 1000 × 1000 pixels in original resolution which yields significant information
loss when the corresponding features maps are downsampled to the 28 × 28 resolution via the
end-to-end Mask-RCNN pipeline.

Approach: We assess if the end-to-end instance segmentation framework is optimal for high-
resolution WSI objects by comparing Mask-RCNN with our proposed detect-then-segment
framework. Beyond such a comparison, we also comprehensively evaluate the performance
of our detect-then-segment pipeline through: (1) two of the most prevalent segmentation back-
bones (U-Net and DeepLab_v3); (2) six different image resolutions (512 × 512, 256 × 256,
128 × 128, 64 × 64, 32 × 32, and 28 × 28); and (3) two different color spaces (RGB and LAB).

Results: Our detect-then-segment pipeline, with the DeepLab_v3 segmentation framework
operating on previously detected glomeruli of 512 × 512 resolution, achieved a 0.953 Dice sim-
ilarity coefficient (DSC), compared with a 0.902 DSC from the end-to-end Mask-RCNN pipe-
line. Further, we found that neither RGB nor LAB color spaces yield better performance when
compared against each other in the context of a detect-then-segment framework.

Conclusions: The detect-then-segment pipeline achieved better segmentation performance com-
pared with the end-to-end method. Our study provides an extensive quantitative reference for
other researchers to select the optimized and most accurate segmentation approach for glomeruli,
or other biological objects of similar character, on high-resolution WSI.
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1 Introduction

Understanding the underlying details of glomerular morphology through renal biopsy evaluation
provides insights into various renal disorders.1–3 Glomerular count and size are critical mea-
surements in renal physiology. Abnormally large glomeruli, called glomerular hypertrophy,
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is a hallmark of kidney injury in obesity-associated glomerulopathies and diabetic nephropathy.4

The golden standard of characterizing glomerular size is to manually trace the contour of each
glomerulus to achieve segmentation masks.3 However, manual quantification of glomerular
number and size requires exhaustive resources and is not scalable. In recent years, there has
been a paradigm shift toward automatic glomerular instance segmentation, which aims to pro-
vide instance-level, pixel-wise annotation for each glomerulus driven by convolutional neural
networks (CNNs).5,6 The de facto standard method of instance segmentation of glomeruli, and
more broadly the kidney, is Mask-RCNN,7,8 an end-to-end pipeline which performs detection
and instance segmentation simultaneously.9 Since the end-to-end architecture of Mask-RCNN is
designed for natural images (e.g., ≈1000 × 1000 pixels), both downsampling and tiling are uti-
lized in order to leverage processing speeds and fit modern GPU memory when Mask-RCNN is
applied to high-resolution whole slide imaging (WSI) (e.g., >10;000 × 10;000 pixels on 40×).
However, a loss of information is often associated with the downsampling process that is inher-
ent to the end-to-end framework of Mask-RCNN. In particular, a single glomerulus from a WSI
can be more than 1000 × 1000 pixels in image resolution, which yields significant information
loss when the corresponding features maps are downsampled to the 28 × 28 resolution via the
end-to-end Mask-RCNN segmentation head,7 as demonstrated in Fig. 1. Thus the prevalent end-
to-end instance segmentation method might not be the best solution for high-resolution WSI.
When reimagining glomerular instance segmentation for high-resolution WSI, an intuitive idea
of addressing the trade-off between resolution and accuracy would be the fundamental separa-
tion of detection and segmentation. In this detect-then-segment manner, detection could be per-
formed on downsampled tiles for computational efficiency, whereas segmentation could be
conducted on high-resolution images as unrelated pixels are excluded by detection. Inspired
by this rationale, we aim to explore if the end-to-end or detect-then-segment framework is opti-
mal for high-resolution WSI objects in the context of renal pathology.

In this study, we propose a detect-then-segment framework for glomerular instance segmen-
tation in order to more broadly improve current instance segmentation techniques when applied
to high-resolution WSI. In our study, we utilize two distinct high-resolution segmentation net-
works for semantic segmentation, and we use Mask-RCNN for instance glomerular detection.
A central focus of our study is to compare our proposed detect-then-segment framework to the
performance of the end-to-end Mask-RCNN pipeline on high-resolution WSI. In addition, we
conduct extensive analyses to ascertain the best detect-then-segment strategy through two of the
most widely used segmentation backbones (U-Net and DeepLab_v3), six unique resolutions
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Fig. 1 The end-to-end Mask-RCNN instance segmentation pipeline in blue arrows and the pro-
posed detect-then-segment framework in black arrows. In our proposed method, the two-stage
detect-then-segment strategy is used, where detection will first occur on downsampled images,
and then segmentation is performed on high-resolution objects.
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(512 × 512, 256 × 256, 128 × 128, 64 × 64, 32 × 32, and 28 × 28), and two distinct color spaces
(RGB and LAB). To the best of our knowledge, no previous studies have comprehensively
evaluated glomerular segmentation performance comparing detect-then-segment and end-to-end
strategies.

To evaluate the performance of these two distinct segmentation frameworks, we divided our
experiments into two scenarios: (1) manual detection and (2) automatic detection. In the first
scenario—labeled as “manual detection”—manual detection results (bounding boxes) were used
to evaluate the segmentation performance in our detect-then-segment framework. Then in the
second scenario—labeled as “automatic detection”—automatic detection results from the same
Mask-RCNN detection head were used to compare segmentation performance across end-to-end
and detect-then-segment strategies. The key difference in our automatic detection phase is the
use of either an end-to-end Mask-RCNN segmentation head or an additional high-resolution
segmentation head for glomerular instance-level segmentation. Decoupling detection and seg-
mentation allows for more freedom in understanding how to improve the segmentation of glo-
meruli, and more broadly, high-resolution WSI objects of similar character.

For the manual detection phase, we trained the segmentation networks of our proposed
detect-then-segment method using 704 manually traced training glomerular images from 42
biopsy samples. Meanwhile, 98 validation glomerular images, 147 internal testing images, and
385 external testing images were manually extracted from 7, 7, and 5 WSI images, respectively,
to evaluate segmentation performance. The original resolution of our glomeruli image data
was of ≈1000 × 1000 pixels. To be compatible with our GPU memory, we first scaled all input
images down to the resolution of 512 × 512. Then according to our procedure, we further scaled
down the input images to the resolutions of 512 × 512, 256 × 256, 128 × 128, 64 × 64, 32 × 32,
and 28 × 28 to train and evaluate two of the most widely used segmentation backbones, U-Net
and DeepLab_v3.

For the automatic detection experiments, we compared performance between the end-to-end
Mask-RCNN segmentation and our proposed detect-then-segment approach using automatic
detection results. To do so, Mask-RCNN was trained and validated on the same biopsy WSI
images as the manual detection experiments. From the 4 internal testing WSI, 120 glomeruli
were correctly detected (IOU > 0.5 compared with true bounding box) from the detection head
in Mask-RCNN. Then we directly applied the trained Mask-RCNN segmentation head as well as
our trained segmentation models (U-Net and DeepLab_v3) from our first phase to the same 120
glomerular detected images to compute the final segmentation performance when the detection is
fairly provided. The experiments show that our detect-then-segment framework, under the auto-
matic detection scenarios, achieves a DSC value of 0.953, whereas Mask-RCNN provides a
lower DSC value of 0.902.

Our contributions, as listed as follows, do not claim algorithmic novelty over prior arts but
rather investigate the problems overlooked in the previous works.

• Proposing a new detect-then-segment glomerular instance segmentation framework by
performing instance detection and semantic segmentation on different resolutions with
a coarse-to-fine design to avoid extreme downsampling for high-resolution glomerular
segmentation in renal pathology WSI.

• Evaluating if the de facto end-to-end design or our detect-then-segment approach is opti-
mal for segmenting glomeruli in high-resolution WSI.

• Performing extensive analyses by varying the image resolution, color space, and segmen-
tation framework in segmenting previously detected glomeruli image objects. This com-
prehensive analysis allows us to provide an extensive quantitative reference for other
researchers to select the optimized segmentation approaches for glomeruli, or other bio-
logical objects of similar character, on high-resolution WSI.

2 Related Works

The introduction of WSI demonstrates a shift toward computer-aided diagnosis (CAD) tech-
niques to more accurately characterize critical objects. The use of WSI and its associated analysis
techniques has been shown to be effective and even expanding in the field of renal pathology.10
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To properly distinguish and characterize different glomeruli within renal biopsy samples, modern
deep learning techniques of detection and segmentation have been utilized. Several studies have
shown the great accuracy by which CNNs are able to properly detect and localize glomeruli
within sample images.6,11–13 Similarly, CNNs have also been able to accurately segment glo-
meruli, allowing for normal and sclerosed glomeruli to be properly distinguished.14–19 Other stud-
ies have further combined the process of the detection and segmentation of glomeruli.20 Of
course, the end-goal of deep learning in renal imaging is its application in CAD. In this regard,
several studies have also shown the ability to perform diagnoses based on the preliminary quan-
tification and characterization of glomerular data through deep learning.21,22 Common to all of the
above studies is the application of CNNs to localize, detect, segment, or characterize glomeruli to
better understand renal pathology. The uniqueness of our research presents itself by identifying
the specific techniques that work best for high-resolution glomeruli data, rather than using
common solutions to the niche field of renal imaging. Our paper analyzes several factors that
work best in the specific context of instance segmentation of high-resolution glomerular data,
and other biological objects of similar character and size. Additionally, we further propose a pipe-
line that is different than the conventional end-to-end instance segmentation tactics that are often
used in medical imaging and computer vision, so as to yield better and more accurate results.

3 Method

Generally, the methodology followed in this study can be broken down into two major steps:
(1) detection and (2) segmentation. Within detection, we discuss our approach toward manual
and automatic detection of glomeruli; on the other hand, within segmentation, we demonstrate
how we comprehensively analyzed our detect-then-segment framework, and the steps taken to
compare it to a classic end-to-end Mask-RCNN pipeline. Our detect-then-segment approach can
be seen visually in Fig. 2.

3.1 Detection

In the manual detection portion of our study, the manually traced bounding boxes for glomeruli
are used to provide the ideal detection results. In order to introduce more background variation
and avoid the problematic situation in which the glomeruli is always in the middle of the detec-
tion, we randomly expanded the detection bounding boxes to 1.5 times the longest dimension of
the manual boxes with random center shift. We ensured that the image still contained the com-
plete glomerulus.

In the automatic detection portion, Mask-RCNN9 was employed as the detection method.
The feature pyramid network23 with ResNet-10124 is used as the feature extraction backbone.
The default Mask-RCNN implementation (https://github.com/facebookresearch/maskrcnn-
benchmark) was used during training. For all training and testing within detection, the original
high-resolution WSI (0.25 μm per pixel) was downsampled to a lower resolution (4 μm per pixel),
given the size of a glomerulus25 as well as its ratio within a patch. Then we randomly tiled the
image patches (where each patch contained at least one glomerulus with 512 × 512 pixels) as
experimental images for our detection networks. Eventually, we formed a cohort with 7040 train-
ing images with manual segmentation masks for training the Mask-RCNN glomerular detection.

3.2 Segmentation

3.2.1 Manual detection

In this study, a standard implementation of the U-Net and DeepLab_v3 architectures was used to
perform segmentation on the glomeruli image data in the manual detection phase of our experi-
ment. In particular, U-Net and DeepLab_v3 were trained with the preprocessed images as
described in Sec. 3.1. The input image data for both segmentation frameworks contained three
input channels (RGB or LAB), and the output data contained two classes (foreground and
background).
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Limited by GPU memory, all original image resolution glomeruli (>1000 × 1000) were ini-
tially scaled down to 512 × 512. Then this input image dataset was further scaled down to the
sizes of 512 × 512, 256 × 256, 128 × 128, 64 × 64, 32 × 32, and 28 × 28. Once these images
were downsampled, the training images were further represented in either the standard RGB
or LAB image space. The LAB image space was evaluated as it was recently shown to confer
the best performance for basic image classification tasks by reducing image channel-wise
correlation.26 Data augmentation was also performed for image segmentation, where 50% of
the training images were altered through channel shuffling, translation, rotation, sheer, left-
to-right flipping, and Gaussian blur.

Two of the most prevalent segmentation backbones (U-Net and DeepLab_v3) were
employed in this study. Briefly, the U-Net architecture is an end-to-end fully convolutional net-
work. In terms of general network architectures, U-Net can be divided into two major portions:
(1) encoder and (2) decoder. The encoder contains both convolutional and max pooling layers
which obtain greater context of the input image through downsampling, allowing for the encod-
ing of the input image into feature representations at multiple different resolutions. The second
path is the decoder, which symmetrically expands and upsamples the input image. This allows
for precise localization using bilinear interpolation and effectively rescales the feature map to the
original image size.27 Similarly, DeepLab_v3 also has encoder and decoder stages. However, in
its encoder phase, DeepLab_v3 utilizes Atrous, or dilated, convolution to obtain greater context
of the input image. The decoder phase then follows to create and rescale the feature map of the
original image.9 Through the manually detected glomerular images, we evaluated the perfor-
mance of U-Net and DeepLab_v3 with the aforementioned designs.
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Fig. 2 An abstraction of the proposed detect-then-segment methodology used in our experiments.
Each row indicates a different trial, where a previously detected glomerulus is downsampled to the
distinct dimensions of 512 × 512, 256 × 256, 128 × 128, 64 × 64, 32 × 32, and 28 × 28. Then these
downsampled images are passed through a segmentation network. Two of the most prevalent
segmentation backbones (U-Net and Deeplab_v3) are used as the segmentation networks in this
study. The predicted masks are produced, and then upsampled back to the initial and original
resolution—which in our study was 512 × 512—of the glomerulus for a fair DSC comparison.
Additionally, in the trial utilizing a U-Net backbone, we separately evaluated the images in both
an RGB and LAB color space so as to understand the effect of color space on segmentation per-
formance. In the Deeplab_v3 trial, we only evaluated the best performing color space from our U-
Net experiment. Overall, the segmentation networks evaluated across six different resolutions, two
unique color spaces, and two distinct segmentation backbones.
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3.2.2 Automatic detection

Finally, in the automatic detection phase of our experiment, the trained Mask-RCNN network
was performed on all testing images to achieve 120 glomerular detection bounding boxes from 5
WSI biopsies in downsampled images. Then the bounding box coordinates were upscaled to the
original image resolution (>1000 × 1000 pixels) to crop the corresponding glomeruli and the
masks in the highest resolution. Furthermore, both DeepLab_v3 and U-Net pretrained models
were also applied on the same group of 120 images, which were downscaled to each of the tested
resolutions (512 × 512, 256 × 256, 128 × 128, 64 × 64, 32 × 32, and 28 × 28). After corre-
sponding predicted masks were generated, they were upsampled to the initial resolution to cal-
culate the mean and median DSC scores from the manual masks.

3.3 Data Analysis

The DSC was primarily used to evaluate the performance of segmentation. To begin, in our
manual detection experimentation—which comprised of the 704 training, 98 validation, 147
internal testing, and 385 external testing images—we evaluated the performance of U-Net and
DeepLab_v3 segmentation across six different resolutions (512 × 512, 256 × 256, 128 × 129,
64 × 64, 32 × 32, and 28 × 28) and two different color spaces (RGB and LAB). In particular, for
each epoch within the segmentation process for each resolution, DSC values were developed for
the validation and testing data. For each tested resolution, the best epoch was selected via the
highest DSC for the validation dataset, and the generated model in that epoch was saved. Then
these generated, predicted masks for each tested resolution were upsampled to a 512 × 512 res-
olution to be compared against the initial ground truth mask data (which is also of 512 × 512

resolution) for the validation and testing images. Mean and median DSC, as well as standard
deviation, were computed again for these upsampled image sets for each resolution. Figures 3
and 4 visually demonstrate three modes of DSC performance (good, average, and bad) across
both U-Net and DeepLab_v3. Namely, the green overlay is the predicted image, and the back-
ground of the image is the ground truth input.

Throughout our study, in the specific context of our manual detection phase results, we draw
a distinction between the terms of “sample space” and “512 space.”We define “sample space” as
the evaluation of the predicted images in each of the six tested resolutions (512 × 512,
256 × 256, 128 × 128, 64 × 64, 32 × 32, and 28 × 28) against the corresponding downsampled
input images to produce a preliminary DSC value across six distinct resolutions. We similarly
define “512 space” as the evaluation of the predicted images across the six tested resolutions

Ground Truth 28x28 32x32 64x64 128x128 256x256 512x512

Ground Truth

Ground Truth

Good

Average

Bad

28x28 32x32 64x64 128x128 256x256 512x512

28x28 32x32 64x64 128x128 256x256 512x512

U-Net

Fig. 3 Three categories of good, average, and bad performance which is defined by DSC. The
background of each comparison is the ground truth input, and the overlaid image is the predicted
mask. The results of U-Net are shown.
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which are then upsampled to the original size of the input image—which in our study was 512 ×
512 as established earlier—and then compared to the original resolution 512 × 512 input images
to produce a fair DSC score. This can be seen visually in the latter columns of Fig. 2.

Furthermore, in our automatic detection experimentation, which comprised a cohort of 120
glomerular images in original resolution (>1000 × 1000), we similarly applied the detect-then-
segment framework which was directly compared to Mask-RCNN through the use of mean and
median DSC, as well as the standard deviation of the DSC data. Through a similar process in the
manual detection phase, we applied Mask-RCNN to our cohort of input images and produced
relevant statistics for the DSC scores. Additionally, after applying both U-Net and DeepLab_v3
to each of the six tested resolutions of the input image and producing corresponding predicted
masks, such predicted masks were then upsampled and compared to the original resolution of the
input image (>1000 × 1000) for a fair DSC comparison.

4 Experimental Design

4.1 Dataset

WSI from renal needle biopsies and human kidney nephrectomy tissues were utilized for analy-
sis. The kidney needle biopsy was routinely processed, paraffin embedded, and 2 μm thickness
sections cut and stained with hematoxylin and eosin (HE), periodic acid Schiff (PAS) or Jones.
The human nephrectomy tissues were acquired from noncancerous tissue from patients with
cancer. The tissue was routinely processed, paraffin embedded, and 3 μm thickness sections
cut and stained with PAS. The data were deidentified, and studies were approved by the
Institutional Review Board. All manual annotations of glomerular detection were performed
by a renal pathologist with more than 15 years of clinical and research experience. Then the
segmentation masks for the detected glomeruli were either traced by the same renal pathologist
or first traced by a research associate and then confirmed by the renal pathologist. For the pur-
poses of training and testing, the high-resolution WSI (0.25 μm per pixel) was downsampled to a
lower resolution (4 μm per pixel). Then patches were identified which contained glomeruli in its
original resolution (>1000 × 1000 pixels). Images of glomeruli, as well as their manually traced
ground truth masks, were then collected. In this study, these input images served as our pre-
viously detected glomerular images upon which segmentation then was performed. Eventually,
we formed a cohort with 704 training, 98 validation, and 147 internal testing images.
Additionally, a group of 385 images was used as external testing data. The training, validation,

28x28 32x32 64x64 128x128 256x256 512x512

28x28 32x32 64x64 128x128 256x256 512x512

28x28 32x32 64x64 128x128 256x256 512x512

Ground Truth

Ground Truth

Ground Truth

Good

Average

Bad

DeepLab_v3

Fig. 4 Three categories of good, average, and bad performance which is defined by DSC. The
background of each comparison is the ground truth input, and the overlaid image is the predicted
mask. The results of DeepLab_v3 are shown.
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and testing data were used in our manual detection experimentation. Finally, a separate cohort of
120 images with Mask-RCNN detected glomeruli was used to directly evaluate the performance
of our proposed framework relative to Mask-RCNN. This set of 120 images was derived from
5 different patients with WSI of the kidney tissue and was utilized in our automatic detection
experimentation.

4.2 Experimental Design

Our study was split into two distinct phases: manual detection and automatic detection. For our
manual detection experimentation, 704 images were randomly chosen as testing images,
whereas the remaining 98 images were used for validation. Additionally, 147 internal testing
images were utilized alongside 385 external testing images from an independent cohort. On the
other hand, for our automatic detection experimentation, 120 images, kept in their original res-
olutions (>1000 × 1000 pixels), were used to evaluate the performance of our detect-then-
segment framework relative to Mask-RCNN.

The U-Net, DeepLab_v3, and Mask-RCNN pipelines were deployed on a typical workstation
with Intel Xeon CPU 2.2 GHz, 13 GB RAM, 33 GB Disk Space, 12 GB NVIDIA Tesla K80
GPU, and CUDA 10.1. For our manual detection experimentation, the hyperparameters of the
U-Net and DeepLab_v3 pipelines were 150 epochs, a batch size of 4, a learning rate of 0.0001,
a color space argument (RGB or LAB, depending on the trial), as well as a scale argument, which
was altered to test the performance of segmentation across six distinct resolutions. Additionally,
an Adam Optimizer was used to adaptively alter the learning rate, with beta values ranging from
0.9 to 0.999.

4.2.1 Manual detection

Within our manual detection experimentation, manually detected glomerular images were proc-
essed with two distinct color spaces, six different image resolutions, and two unique segmen-
tation backbones. We began with a U-Net segmentation framework, where the RGB and LAB
color spaces were studied. Within each color space, six resolutions were tested through the
U-Net pipeline: (1) 512 × 512, (2) 256 × 256, (3) 128 × 128, (4) 64 × 64, (5) 32 × 32, and
(6) 28 × 28. For each trial, 150 epochs were run for all training, validation, and testing images.
Additionally, within each epoch, a DSC value was generated for the validation and testing
images. For each resolution, the epoch with the highest DSC value for the validation data was
recorded and its generated model was saved. With this generated model, predicted masks were
created at each of the six resolutions analyzed for the validation and testing data. This process
was repeated yet again for the LAB color space. After this experiment was completed for the
U-Net framework, the previously described methodology was also repeated for the DeepLab_v3
framework, but the only color space analyzed for DeepLab_v3 was the best performing color
space in the U-Net trial. If the difference in performance between the two color spaces was
negligible in the U-Net trial, then we defaulted to RGB to analyze the DeepLab_v3 framework.
This is because utilizing the RGB color space is standard, and the introduction of the LAB color
space in our study was due to recent findings that show that the LAB color space produces better
results for image classification tasks by reducing image channel-wise correlation.26

Once all predicted masks were generated, the performance of the U-Net and DeepLab_v3
segmentation networks was then analyzed by upsampling the predicted masks for the validation
and testing images, and comparing them back to the original 512 × 512 ground truth mask. Mean
and median DSC scores were computed as a result of the upsampling.

4.2.2 Automatic detection

In the automatic detection phase, the performance of our detect-then-segment framework was
directly compared against Mask-RCNN through a cohort of 120 glomeruli images that were kept
in their original resolution (>1000 × 1000 pixels). In doing so, we utilized the model files that
were generated for each of the six resolutions for both U-Net and DeepLab_v3 as described in
Sec. 4.2.1. In particular, we first downsampled the 120 glomerular images to the scales of
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512 × 512, 256 × 256, 128 × 128, 64 × 64, 32 × 32, and 28 × 28. Then we procured each model
file produced at the corresponding resolutions in the U-Net trial with the RGB color space.
We then generated the predicted masks for each of the six downsampled resolutions of the
120 glomerular images utilizing the U-Net model file. We repeated this process for DeepLab_v3
in the RGB color space. All predicted image sets were then upsampled back to the original
size of the glomeruli images (>1000 × 1000 pixels). Mean and median DSC values were then
generated to evaluate performance. Furthermore, we also used a standard Mask-RCNN imple-
mentation to generate predicted masks at the corresponding original resolutions (>1000 ×
1000 pixels) of the glomeruli images. We then compared mean, median, and standard deviation
DSC values to investigate which methodology performed best.

4.3 Evaluation Metrics and Statistical Methods

DSC was the primary statistic used to evaluate segmentation performance. In particular, mean,
median, and standard deviation of DSC were generated for analysis. Additionally, to evaluate stat-
istical significance between each resolution and different methods, theWilcoxon Rank Sum test was
used with a significance threshold of eitherp < 0.05 or p < 0.01. A notched box plot was generated
to visually demonstrate median DSC data, as well as the results of Wilcoxon Rank Sum test.
Additionally, bar graphs were generated to show mean and standard deviation DSC data. Similarly,
to demonstrate the relation between the performance of segmentation within each resolution in both
LAB and RGB color space, DSC values for the U-Net trial were summarized in data tables.

5 Results

Our results presented in this section are divided into two central sections to explore each aspect
of our experimentation: (1) manual detection and (2) automatic detection.

5.1 Manual Detection

The first aspect of our study is manual detection, wherein we analyzed the key factors of seg-
mentation, which include: segmentation backbones, input image resolutions, as well as color
spaces. This phase of our study allowed us to better assess the conditions, in which a detect-
then-segment framework performs most optimally in the context of high-resolution WSI.

5.1.1 U-Net vs. DeepLab_v3

We first present that both U-Net and DeepLab_v3 confer particular advantages over one another
across the six tested resolutions in the context of glomerular image data. Tables 1 and 2 present

Table 1 The DSC scores collected for the internal testing data using both U-Net and
DeepLab_v3. The DSC is evaluated on images in 512 space. In particular, we define “evaluation
of images in 512 space” as the process by which the prediced masks are upsampled from the six
tested resolutions to the original resolution of the input images, which is 512 × 512 in the case of
U-Net and DeepLab_v3, and then compared against the 512 × 512 input images to produce a fair
DSC value.

Image resolution 512 × 512 256 × 256 128 × 128 64 × 64 32 × 32 28 × 28

U-Net Mean Dice�
Std dev

0.909�
0.099

0.936�
0.073

0.940�
0.051

0.920�
0.047

0.878�
0.066

0.853�
0.072

Median Dice 0.948 0.961 0.957 0.936 0.897 0.872

DeepLab_v3 Mean Dice�
Std dev

0.948�
0.062

0.947�
0.033

0.935�
0.048

0.907�
0.059

0.840�
0.080

0.817�
0.090

Median Dice 0.963 0.959 0.948 0.925 0.861 0.843
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DSC values for internal and external data for U-Net and DeepLab_v3 in the RGB color space.
Both tables show us that DeepLab_v3 would perform better than U-Net for larger resolutions,
such as 512 × 512, 256 × 256, and 128 × 128, but would under-perform relative to U-Net for
smaller image resolutions, such as 64 × 64, 32 × 32, and 28 × 28. As shown, there is no clear,
consistent framework that achieved the best DSC results for all trials. However, both U-Net and
DeepLab_v3 show distinct advantages—DeepLab_v3 tends to perform better for larger resolu-
tions, whereas U-Net confers higher DSC values for smaller resolutions.

5.1.2 Image resolution

In the trial utilizing a U-Net framework, the resolution in RGB space with the highest median
DSC value of 0.961 was 256 × 256, which was statistically different relative to 64 × 64, 32 × 32,
and 28 × 28. On the other hand, for the external testing dataset in RGB space, the resolution with
the highest median DSC value of 0.918 was 128 × 128, which was significantly different relative
to 28 × 28, 32 × 32, 64 × 64, and 512 × 512. A similar analysis was performed on the mean
values and standard deviation of the internal and external testing DSC data of the RGB color
space in the U-Net trial. For both internal and external data, 128 × 128 was the resolution with
the highest mean DSC values in both the sample space and the upscaled 512 space. Additionally,
Fig. 5 further shows the resolutions of 64 × 64, 32 × 32, and 28 × 28 experience the greatest
decline in the performance when comparing the DSC in sample space to the DSC in 512 space.

Considering the trial that used a DeepLab_v3 framework, the highest median DSC value for
internal data was 0.963, which occurred in the 512 × 512 resolution. This particular resolution
was significantly greater relative to 128 × 128, 64 × 64, 32 × 32, and 28 × 28. Similarly, for the
external data, the highest median DSC value was 0.934 which occurred in 256 × 256 space. This
resolution was statistically greater relative to the resolutions of 128 × 128, 64 × 64, 32 × 32, and
28 × 28. Analyzing the mean data for DeepLab_v3, it is clear that the highest mean DSC in the
internal data occurred in the 256 × 256 resolution when evaluating DSC in the sample space,
whereas the highest mean DSC in 512 space occurred for the 512 × 512 resolution. For the
external data, the highest mean DSC value occurred in the 256 × 256 resolution when evaluating
Dice in the sample and 512 space. Similar to U-Net, the highest difference in mean DSC between
the sample space and 512 space occurred in the resolutions of 64 × 64, 32 × 32, and 28 × 28.
The comparison of mean data can be seen visually in Fig. 6.

The aforementioned trend in the median DSC data and the results of the Wilcoxon Rank Sum
Test can be seen in Fig. 7.

5.1.3 Image color space

The conferred accuracy of using either the LAB or RGB color spaces were found to be negligible
in the trial utilizing a U-Net framework. Table 3 shows the results of the RGB and LAB color
spaces on the internal dataset using U-Net. Both RGB and LAB give almost the same best DSC
values, which is bolded. Therefore, the rest of the analysis in this paper is focused on the effec-
tiveness of segmentation in the RGB color space, as the results are generalizable due to the

Table 2 The DSC scores collected for the external testing data using both U-Net and
DeepLab_v3. The DSC is evaluated on images in 512 space, with an RGB color space.

Image resolution 512 × 512 256 × 256 128 × 128 64 × 64 32 × 32 28 × 28

U-Net Mean Dice�
Std dev

0.816�
0.141

0.899�
0.063

0.902�
0.072

0.873�
0.101

0.845�
0.086

0.815�
0.105

Median Dice 0.853 0.917 0.918 0.897 0.867 0.838

DeepLab_v3 Mean Dice�
Std dev

0.918�
0.071

0.922�
0.062

0.911�
0.068

0.887�
0.087

0.812�
0.122

0.810�
0.088

Median Dice 0.931 0.934 0.928 0.906 0.845 0.834
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similarity of segmentation performance between the RGB and LAB color spaces. In particular,
the DeepLab_v3 trial, as stated in the methodology, only performs its segmentation in the RGB
color space, due to the results of U-Net.

5.2 Automatic Detection

5.2.1 Detect-then-segment framework vs. end-to-end mask-RCNN

Table 4 demonstrates the results of applying our U-Net and DeepLab_v3 models on the cohort of
120 images during our automatic detection phase, and generating predicted masks by downsam-
pling the input images to six distinct resolutions. By evaluating the difference in the performance
between our proposed detect-then-segment pipeline relative to the standard end-to-end Mask-
RCNN framework, we found that both U-Net and DeepLab_v3 showed better mean and median

Fig. 6 The mean data and standard deviation for both internal and external testing images evalu-
ated in both sample space and 512 space. As shown, 64 × 64, 32 × 32, and 28 × 28 declined
greatly in accuracy when comparing DSC in 512 space relative to DSC in sample space.

Fig. 5 The mean and standard deviation for both internal and external testing images evaluated in
both sample space and 512 space. Similar to how we define “512 space,” the term “sample space”
refers to the process by which the predicted masks that are produced across six distinct resolu-
tions (512 × 512, 256 × 256, 128 × 128, 64 × 64, 32 × 32, and 28 × 28) are evaluated against the
corresponding downsampled input image across the same six resolutions. We re-evaluated such
images in 512 space for a fair DSC comparison through upsampling, as discussed earlier. As
shown, 64 × 64, 32 × 32, and 28 × 28 declined greatly in accuracy when comparing DSC in
512 space relative to DSC in sample space.
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Table 3 The performance between RGB and LAB on internal testing data using U-Net in 512
space.

Image resolution 512 × 512 256 × 256 128 × 128 64 × 64 32 × 32 28 × 28

RGB Mean Dice�
Std dev

0.909�
0.099

0.936�
0.073

0.940�
0.051

0.920�
0.047

0.878�
0.066

0.853�
0.072

Median Dice 0.948 0.961 0.957 0.936 0.897 0.872

LAB Mean Dice�
Std dev

0.917�
0.081

0.936�
0.068

0.940�
0.050

0.925�
0.045

0.872�
0.069

0.863�
0.066

Median Dice 0.946 0.961 0.957 0.941 0.896 0.882

Table 4 The results of applying our U-Net and DeepLab_v3 models on the cohort of 120 images
during our automatic detection phase, and generating predicted masks by downsampling the input
images to six distinct resolutions. The predicted masks were then upsampled and compared to the
original resolution ground truth masks to generate mean and median DSC values. The results of
directly applying Mask-RCNN are also shown.

Resolution 512 × 512 256 × 256 128 × 128 64 × 64 32 × 32 28 × 28
Mask
RCNN

U-Net:
mean Dice� Std dev

0.935�
0.062

0.947�
0.037

0.935�
0.035

0.903�
0.041

0.833�
0.060

0.791�
0.067

0.902�
0.038

U-Net:
median Dice

0.956 0.957 0.945 0.914 0.845 0.798 0.908

DeepLab_v3:
mean Dice� Std dev

0.953�
0.027

0.941�
0.034

0.919�
0.043

0.876�
0.053

0.771�
0.067

0.750�
0.067

0.902�
0.038

DeepLab_v3:
median Dice

0.961 0.950 0.931 0.891 0.782 0.753 0.908

Fig. 7 The notched box plots of each resolution for both internal and external testing data of the
RGB color space. (a) The results for the U-Net trial and (b) the results for DeepLab_v3. The legend
and asterisks demonstrates results of computing the Wilcoxon Rank Sum Test on the specified
resolutions. The median DSC values are derived by evaluating the ground truth mask in 512 × 512
resolution, relative to the predicted mask in 512 × 512 resolution for a fair comparison.
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DSC values for the resolutions of 512 × 512, 256 × 256, and 128 × 128 (p < 0.01, Wilcoxon
Rank Sum). In particular, at best, our framework provides a mean DSC value of 0.953 via the
DeepLab_v3 backbone operating on a previously detected glomerulus of 512 × 512 resolution,
whereas Mask-RCNN produced a mean DSC value of 0.902.

To evaluate the effects of low resolution for segmentation, we compute the upper bound
performance of glomerular segmentation at the resolution of 28 × 28, which is the resolution
for the segmentation branch in Mask-RCNN. The upper bound performance is computed by
downsampling each manual segmentation glomerular mask image from 512 × 512 to
28 × 28 with a nearest neighbor interpolation. The downsampled manual segmentation should
outperform any segmentation methods (e.g., Mask-RCNN, U-Net, and DeepLab_v3) at the res-
olution of 28 × 28. Next, we upsample the 28 × 28 manual segmentation masks back to 512 ×
512with a nearest neighbor interpolation and calculate the DSC between the downsampled-then-
upsampled manual segmentation with the original high-resolution 512 × 512 masks. By doing
this, we achieve a mean DSC value of 0.957, with a standard deviation of 0.006, which is the
upper bound of a particular segmentation method where the segmentation is performed at 28 ×
28 for an object with original resolution of 512 × 512. From Table 4, DeepLab_v3, achieved a
mean DSC of 0.953 at 512 × 512, which is very close to the upper bound of performing seg-
mentation at 28 × 28. This further demonstrates the advantage of performing glomerular seg-
mentation at high resolution, by the fact that the performance of automatic segmentation at
512 × 512 is comparable to even a manual segmentation at 28 × 28.

Table 5 shows the average inference time of each component in the detect-then-segment
framework for segmenting a high-resolution WSI, rather than an image patch. The detection
portion consumes a majority of the time, which is common for all segmentation methods.
The computational time of each segmentation method and the total inference time for each over-
all strategy are also presented. Our results show that the detect-then-segment approaches only
introduces, on average, <3 s onto the de facto standard end-to-end Mask-RCNN approach, when
processing an entire high-resolution whole slide image. In a clinical context, for the total infer-
ence time, <3 min of processing, a WSI is acceptable in clinical scenarios, when compared to
the time of preparing, scanning, and inspecting the tissue sample.

6 Discussion

First, in our experimentation with manual detection, we comprehensively searched and tested
for the best detect-then-segment strategy. The results demonstrate that: (1) utilizing a higher

Table 5 The results of computing an average inference time for each component in the detect-
then-segment framework, including the detection, segmentation, and the total inference time for
each strategy.

512 × 512 256 × 256 128 × 128 64 × 64 32 × 32 28 × 28

Average U-Net
inference time� std dev (s)

2.451�
2.596

1.989�
2.106

1.851�
1.960

1.834�
1.942

1.800�
1.906

1.800�
1.906

Average Mask-RCNN
inference time� std dev (s)

93.170�
39.813

93.170�
39.813

93.170�
39.813

93.170�
39.813

93.170�
39.813

93.170�
39.813

Average, total
inference time� std dev (s)

95.621�
39.601

95.159�
39.628

95.021�
39.637

95.004�
39.638

94.970�
39.641

94.970�
39.641

Average DeepLab_v3
inference time� std dev (s)

2.994�
3.214

2.074�
2.196

1.954�
2.069

1.920�
2.033

1.937�
2.051

1.080�
1.144

Average Mask-RCNN
inference time� std dev (s)

93.170�
39.813

93.170�
39.813

93.170�
39.813

93.170�
39.813

93.170�
39.813

93.170�
39.813

Average, total
inference time� std dev (s)

96.164�
39.555

95.244�
39.623

95.124�
39.630

95.090�
39.633

95.107�
39.632

94.250�
39.699
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resolution does not necessarily confer the best segmentation results; (2) the resolutions of 128 ×
128 and 256 × 256 consistently demonstrated the best segmentation results; (3) lower resolutions
(64 × 64, 32 × 32, and 28 × 28) experience the greatest loss of accuracy when comparing DSC in
sample space relative to 512 space; (4) DeepLab_v3 yields better results in higher resolutions
(512 × 512, 256 × 256, and 128 × 128), whereas U-Net performs most optimally in lower res-
olutions (64 × 64, 32 × 32, and 28 × 28); and (5) neither the LAB nor RGB color space give rise
to better segmentation results relative to one another. Briefly, our results in Sec. 5.1.2 demon-
strate that the resolutions of 128 × 128 and 256 × 256 consistently demonstrated the best DSC
results, and the particular resolution of 512 × 512 would actually yield relatively lower segmen-
tation results, especially for median DSC. Additionally, the lower resolutions—namely 64 × 64,
32 × 32, and 28 × 28—consistently experienced a great loss in accuracy when analyzing the
effectiveness of segmentation in 512 space. Finally, the results demonstrate that DeepLab_v3
and U-Net perform most optimally in different ranges of resolutions. When considering RGB
and LAB color spaces, we found there was no discernible effect or advantage of color space on
the segmentation of high-resolution glomerular images.

Further, we show that our proposed detect-then-segment pipeline is superior to the conven-
tional end-to-end Mask-RCNN framework. Our summarized results show that the image reso-
lutions of 512 × 512, 256 × 256, and 128 × 128, in both U-Net and DeepLab_v3 in RGB space
are significantly better than that of Mask-RCNN. Of course, the most optimal result was
achieved through DeepLab_v3, with a mean DSC of 0.953 which occured in 512 × 512 space.
However, both U-Net and DeepLab_v3 showed the same trend in the data. Overall, through our
automatic detection trial, we conclude that utilizing a detect-then-segment framework across
512 × 512, 256 × 256, or 128 × 128 will provide better segmentation results compared to the
typical Mask-RCNN pipeline. Additionally, through our manual detection trial, we demonstrate
that the most optimal detect-then-segment strategy involves utilizing a DeepLab_ v3 framework
on larger resolution input images (256 × 256 and 128 × 128), in either the RGB or Lab color
space. In this study, Mask-RCNN is employed as it has been used as a de facto standard end-to-
end method for glomerular segmentation in the renal pathology community. Although other pure
detection methods (e.g., Faster-RCNN) can be used in the detect-then-segment framework, we
directly use the detection results from Mask-RCNN to ensure a direct and fair comparison
amongst different segmentation strategies. Moreover, Mask-RCNN, with its new RoIAlign fea-
ture, outperformed Faster-RCNN even without the mask heads.9 In this study, the default weights
and segmentation head of Mask-RCNN are employed directly from its official implementation
(https://github.com/facebookresearch/maskrcnn-benchmark) without further optimization, since
providing the best detection performance is out of the scope of this paper. Note that the detect-
then-segment strategy is an adaptable framework such that the Mask-RCNN method could be
replaced by other advanced detection methods for potentially better performance.

One key advantage of our research is our analysis of several critical factors of segmentation.
In particular, our efforts strive to understand what works best for high-resolution renal WSI, as
opposed to practicing the standard end-to-end methods that are popular in computer vision. By
studying the effect of color space, resolution, and segmentation backbone on the characterization
of WSI through glomeruli data, we are better able to understand how to improve current seg-
mentation networks that operate on high-resolution images so as to yield better results. Another
key advantage is how our study definitively shows that our proposed framework can yield a clear
advantage in accuracy over the standard end-to-end instance segmentation methods in the con-
text of high-resolution renal WSI. Overall, our data provide a unique and important view toward
new methodologies that show better results in high-resolution imaging.

However, there are some important limitations to our study. First, the focus of this study was
in the context of renal pathology and glomerular data. However, we expect the findings will be
generalizable for other objects in renal pathology as the scaling issues are similar. Another limi-
tation includes the fundamental restraints of the GPU when processing large scale images. In our
study, the largest-resolution photo on which we trained our data were 512 × 512. In particular,
we had to downsample the original resolution of the glomerular data due to the memory lim-
itations of the GPU in order to efficiently conduct our study. Furthermore, another limitation
of this study is the lack of large-scale annotated testing data, which is important for quantifying
the generalizability of different methods and identifying corner cases. In this study, we have
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employed testing images from another independent cohort, distinct from the training cohort, to
perform an external validation. In the future, it is beneficial to include an even larger-scale and
more heterogeneous external validation data.

A central way by which this study may be improved is by diversifying the dataset so as to
include other biological objects, such as veins, arteries or tubules. Doing so would help solve the
problem of a lack of generalizability with respect to our results and would allow for the sig-
nificance of our conclusions to be more widespread.

7 Conclusions

Overall, our experimentation through manual and automatic detection phases lead us to a three-
fold conclusion: (1) a detect-then-segment framework is more effective than an end-to-end pipe-
line in the context of high-resolution renal WSI; (2) the performance of a detect-then-segment
framework is most optimal with a DeepLab_v3 segmentation backbone operating on a 512 × 512

resolution for previously detected glomerular input images; and (3) utilizing either RGB or LAB
color spaces for previously detected glomerular input images does not yield a particular advan-
tage over the other in a detect-then-segment framework. To conclude, our research paves the way
toward further discussion and analysis in understanding effective and more nuanced method-
ologies that are more accurate than the current framework by which we characterize high-
resolution images of glomeruli, and biological objects of similar character, on large-scale WSI.
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