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Abstract. Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography
for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics
and computer-aided detection. We propose an automated image quality assessment system for ABUS images
that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images:
the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast
contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts
based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity
of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas
under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and
0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate
for online evaluation of image quality during acquisition. The presented concept may be extended to further
image modalities and quality aspects. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
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1 Introduction
Three-dimensional (3-D) automated breast ultrasound (ABUS) is
gaining importance in breast cancer screening programs as an
adjunct to x-ray mammography.1 It has been shown that its
use may lead to early detection of small invasive cancers that
are occult on mammography in women with dense breasts.2–4

Furthermore, ABUS is a radiation-free technique, which is rela-
tively inexpensive and effective, since images are acquired by
technicians and interpreted later by radiologists—in contrast to
hand-held ultrasound, which needs to be performed by experi-
enced clinicians.

However, the quality of the images highly depends on the
acquisition procedure. Bad skin contact or slight misplacement
of the transducer during ABUS acquisition produces imaging
artifacts, which may obstruct a complete diagnostic evaluation.
This may lead to a recall of the woman for subsequent additional
imaging, which increases screening costs. Recall rates of up to
19% due to BI-RADS category 0 rated images (Breast Imaging
Reporting and Data System of the American College of
Radiology) have been reported,5 which means that these images
were incomplete or of low quality and that a possible abnormal-
ity could not be clearly seen or defined. These numbers can be
explained by the fact that technicians need some time to train
before they are able to produce artifact-free images since the

positioning of the transducer frame is an essential factor for
image quality. Automated image quality assessment (AQUA)
could support the technicians in recognizing image artifacts
during or directly after image acquisition. By doing so, techni-
cians could repeat the scan with corrected parameters while the
woman is still in the examination room. In the described sce-
nario, correctly detected artifacts would help to anticipate and
potentially avoid recalls caused by insufficient image quality.

While there are several studies investigating image quality
assessment of (breast) MRI6–8 and of hand-held ultrasound
images,9 very little work has been performed to investigate
image quality assessment of ABUS images. In Ref. 10, an algo-
rithm to reduce motion artifacts in ABUS images based on non-
linear registration was developed. Generally, ultrasound image
quality is considered from the technical point of view. The
descriptions in Refs. 11–13 focus on the functionality of the
equipment (beam former, transducer) but not on the usage
of the system in daily routine. More recently, we investigated
the incidence and influence of diverse ABUS artifacts in a reader
study.14 In that previous work, the investigated artifacts had been
defined by radiologists, technicians, and physicists, aiming at
those that were disturbing diagnostics. In the present work,
we concentrate on three of the most relevant aspects that
could be avoided in the majority of cases by rescanning: the
acoustic shadow caused by the nipple, the position of the nipple
relative to the rest of the breast in the image, and the shape of
the breast contour on the image. If we manage to achieve high
specificity in artifact detection, avoiding unnecessary rescans,
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such a tool could not only lower the number of recalls that cost
time and money but also help to train the technicians.

The contribution of this work is the development of an auto-
mated image quality assessment system to automatically detect
the previously mentioned artifacts. Such a system will support
technicians during image acquisition by giving a warning if im-
aging artifacts disturbing the clinical interpretation of the images
are present. A repetition of the affected scans with corrected
parameters can then be performed while the patient is still in
the examination room.

2 Background

2.1 Automated Breast Ultrasound Imaging

ABUS images are acquired by a wide linear array ultrasound
transducer sliding continuously over one breast, which is gently
compressed by a dedicated membrane while the patient lies in a
supine position. During the sliding motion of the transducer, the
ultrasound scanner acquires more than 300 transversal images
covering a large segment of the breast. These single slices are
stacked to form a 3-D ultrasound image that can be examined in
multiplanar reconstructions.15 Depending on the size of the
breast, three to five views of each breast are acquired. The posi-
tioning and compression of the breast are standardized to some
extent and include anterior–posterior (AP), lateral (LAT), medial
(MED), superior (SUP), or inferior (INF) views, the breast
being gently pushed in these directions, respectively. The latter
one (INF) is acquired very rarely and was not contained in our
datasets.

2.2 Automated Breast Ultrasound Image Quality
Aspects

The focus was put on the three most frequent quality aspects that
could be avoided by a repeated scan. The first problem is an

incorrect nipple position within the image. In some cases, the
nipple is pushed very close to the edge of the breast in coronal
view [see Fig. 1(a)]. This may cause severe posterior acoustic
shadows, obscuring anatomical structures behind the nipple,
which can usually be avoided by proper repositioning of the
transducer. The second issue is the shadow of the nipple [see
Fig. 1(b)]. In the area around the nipple, there is commonly no
perfect contact between transducer and skin, resulting in an
acoustic shadow behind the nipple on the ultrasound image.
Air-filled ducts may contribute to this effect. In most cases,
the image is nevertheless usable for diagnostics, but sometimes,
the shadow covers noteworthy parts of the breast tissue.
Applying more contact gel in a repeated scan often resolves
this problem. The third aspect is also correlated to the position-
ing of the transducer and the breast. If the breast is not supported
correctly by the provided cushions, there might be a lack of con-
tact and the outer regions of the breast will not be not imaged
[see Fig. 1(c)]. This results in large background areas in the
image as well as irregular breast contour lines.

2.3 Automated Image Quality Assessment

In this work, we propose an automated image quality assessment
system checking the images during or directly after the acquis-
ition. The current standard and the proposed additional work-
flow step are indicated in Fig. 2. The early automatic detection
of image quality issues will initiate a repeated acquisition if indi-
cated. This will only take a few minutes. If a problem that dis-
turbs the diagnosis was only detected later by the radiologist, the
woman would have to be recalled, which would take several
days. In order to build a convenient application for clinical prac-
tice, we first gathered expert definitions of artifacts and had real
image data annotated by clinicians. Approved image processing
algorithms were employed to extract features characteristic of
distinct quality aspects. Feature design was based on a training

Fig. 1 Sample ABUS images with artifacts. (a) Nipple is too close to the contour of the breast, (b) nipple
shadow is too prominent, (c) breast contour is too irregular. (d)–(f) Correctly acquired images of the same
breasts as in (a)–(c), respectively. For each example, original transversal view (top) as well as recon-
structed sagittal (left) and coronal views (main) are shown.
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dataset (dataset A, introduced below) and aimed at translating
the physical properties of the artifacts into computable values
taking into account the radiologists’ descriptions. Classifiers
were used to reproduce the manual annotations based on the
most meaningful subset of available features. In order to be
used in clinical environments and produce results before the
patient leaves the facility, the algorithms had to have a low
run time (a few minutes at most). Similarly, in order not to pro-
duce unnecessary inconveniences for patients, the false positive
rate was sought to be very low (clearly below 10%).

3 Methodology
The presented software development approach is based on
machine learning and evaluated against the expert assessment
of two clinicians. In what follows, first we explain the features
computed for the detection of each image quality aspect and
subsequently present the learning algorithm used. All image
processing routines were implemented in C++ using the open
source National Library of Medicine Insight Segmentation
and Registration Toolkit (ITK, www.itk.org). All computations
were performed on a Windows 7 machine with an Intel® Core™
i7-2627M processor at 2.7 GHz and with 6 GB of RAM.

3.1 Relative Nipple Position

The position of the nipple relative to the rest of the breast in the
image is important because it relates to acoustic shadows that
hamper the clinical interpretation of the image. The absolute
nipple position in the image was given by the technician during
image acquisition and stored as a private DICOM tag as speci-
fied by the standard acquisition protocol. The ABUS images
were prepared for feature extraction in several preprocessing
steps. First, a two-dimensional (2-D) coronal breast mask was
computed similarly to the approach proposed by Wang et al.16

Therefore, a coronal mean projection of a stack of 120 slices
close to the skin was performed. However, the top 50 slices
from the skin were excluded from the breast mask computation
to avoid responses from skin tissue. The projection image was
smoothed using a Gaussian filter with a sigma of 0.2 mm and
binarized by applying Otsu’s thresholding method.17 In order to
close holes within the breast mask or along its edges, the binary
image was dilated and holes were filled before it was eroded
again. Finally, the breast contour line was computed in 2-D
based on the mask image, as shown in Fig. 3. Note that the

nipple coordinates xT and yT are generally assumed to be the
same for all coronal slices, and the z-coordinate of the nipple is
always on top of the image, since there is direct contact between
transducer and nipple. The breast contour line is the same in all
slices due to the compression of the breast and the properties of
ultrasound. Using this contour and the given nipple position,
nine features were extracted.

• cview: The view of the considered image strongly
influences the absolute nipple position and may affect the
impact of a nipple being close to the contour line of the
breast. Thus, a categorical feature cview that can be one of
the four available standard views (AP, LAT, MED, SUP)
was extracted from the information provided in the header
of the DICOM file.

• xT and yT: The given nipple coordinates ðxT; yTÞ, which
are the same for all coronal slices, were considered pos-
sibly important features since the absolute nipple position
in the image may correlate with the position relative to the
breast. As the appearance of ABUS images differs a lot
depending on the breast size and the transducer position,
the absolute nipple position is, however, not coupled
directly to the nipple position relative to the breast image.

• dmin: The shortest Euclidean distance dmin between the
nipple position ðxT; yTÞ and the breast mask contour line
was computed.

• cio: It was determined whether the nipple was located
inside or outside the breast mask. The latter case can
occur when the shadow around the nipple is very dark
and close to the breast contour such that this region is, by
mistake, not included in the breast mask. A categorical
feature cio ∈ f1;−1g was included.

• d�min: The signed distance between nipple position and
contour line was computed as d�min ¼ dmin · cio.

• AB: The total 2-D physical area of the breast AB was com-
puted using the pixel size and the number of pixels within
the breast mask.

• AB∕I: The ratio of the physical 2-D area of the breast to the
total image size was calculated as AB∕I ¼ AB∕AImage.

• dCOM: The center of masses ðxCOM; yCOMÞ of the breast
area and the Euclidean distance dCOM between
ðxCOM; yCOMÞ and ðxT; yTÞ was determined.

3.2 Nipple Shadow

In order to estimate the size of a possible nipple shadow, it was
assumed that the shape of the shadow could be approximated by
a cylinder around the nipple with the axis going in the antero-
posterior direction. As the nipple is (approximately) a disk in the
coronal plane, once it has stopped the US wave, it produces a
cylindrical acoustic shadow. The nipple position ðxT; yTÞ was
obtained from the DICOM header as given by the technician
during acquisition. The size of the dark cylindrical region
around the nipple position was estimated by counting cylinder
segments (rings) that had low pixel intensity. The radius of the
different cylinder segments varied from 4.0 to 20.0 mm in steps
of 4 mm (see Fig. 4). In the anteroposterior direction, the height
of each cylinder segment was ∼2.0 mm. The highest layer was
positioned starting at 6 mm below the skin, avoiding potentially

Fig. 2 Workflow diagram for general ABUS screening application.
Automated image quality assessment (gray box) could be performed
directly after the data were sent to the PACS system.
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disturbing high-intensity signals due to skin fat or sound reflec-
tions within the coupling layers of the transducer. The deepest
layer ended at 26.0 mm below the skin. It was empirically deter-
mined that these measures were useful to describe the extent of
the nipple shadow. The following seven features were extracted:

• cview: The view of the considered image affects the abso-
lute nipple position and the possibilities of supporting the
breast properly by cushions.

• xT and yT: The coordinates ðxT; yTÞ describing the abso-
lute position of the nipple in coronal plane were included.

• NI<50 and NI<60: The segments showing a lower mean
intensity than a specific threshold value were counted.
The intensity threshold was set to 50 and 60, respectively,
yielding two features, NI<50 and NI<60, for every image. In
the present 8-bit grayscale images, these threshold values
yielded reasonable differentiation between tissue and
shadow signals.

• NPix: The amount of pixels NPix in the cylinder segments
that had a mean intensity below 60 was counted. This
number accounted for the different sizes of the considered
cylinder segments.

• σ2bright: The variance σ
2
bright of brightness in one cylindrical

region of 4.0 mm radius around the nipple was calculated
since ultrasound shadow signals tend to have a lower vari-
ance than signals reflected from structured tissue. The cyl-
inder went from the skin to a depth of 25.0 mm in the
anteroposterior direction.

3.3 Breast Contour Shape

In order to extract the breast mask and its contour line, several
preprocessing steps were performed. They were similar to those
described in Sec. 3.1 but with a focus on the breast contour line.
A 4.0-mm stack of coronal slices starting at a distance of 7.0 mm
from the skin was used for breast mask generation. The top
7.0 mm of coronal slices were excluded since they often contain
spurious signals caused by sound reflections within contact fluid
on parts of the transducer that do not have skin contact. Coronal
slices lying deeper than 11.0 mm were not included in order to
avoid signals from the ribs that can already appear from this
depth on, depending on the breast size and the transducer posi-
tioning. A total of 17 features were extracted:

• cview: The view direction was taken into account since
breast positioning and cushion support depend on the
intended view.

• AB: The physical area AB in 2-D coronal view of the breast
mask was assessed as a first indicator for the amount of
tissue being imaged.

Fig. 3 Steps toward nipple position classification: (a) smoothed coronal projection, (b) binary mask after
Otsu threshold, (c) dilated mask, (d) closed mask, (e) holes are filled, (f) eroded and contoured mask
with a marker at the nipple position (set by technician during image acquisition).

Fig. 4 Arrangement of cylinder segments that were used to estimate
the size of a nipple shadow. The symmetry axis was at the nipple posi-
tion. Three out of ten used layers and three out of five used rings
(radii) are shown.
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• AB∕I: The relative size of the breast mask
AB∕I ¼ AB∕AImage compared to the total size of the image
was computed. The higher this value, the higher the prob-
ability that the breast was imaged completely.

• xC and yC: The position ðxC; yCÞ of the breast mask cent-
roid was computed as an indicator for the position and
“mass distribution” of the breast within the image.

• l1, l2, and F: An ellipsoid was fitted to the breast contour
line, and the lengths l1 and l2 of the ellipsoid axes were
determined. The flatness F was computed as the ratio
l1∕l2 to indicate whether the breast contour was extremely
elongated in one direction or rather roundish.

• pMask: The perimeter pMask of the breast mask was deter-
mined and corresponded to the length of the breast con-
tour line. The higher the pMask, the more curves and
irregularities might be in the contour line.

• pCircle and rCircle: The perimeter pCircle and the radius
rCircle of a circle that has the same surface as the breast
mask were computed.

• NBorder and pBorder: The amount of pixels NBorder that
belong to the breast mask and are touching the edges of
the image, as well as the physical length pBorder of these
pixels (perimeter on border), were measured. The higher
these measures, the higher the probability that the imaged
breast is very large.

• RBorder: The ratio RBorder ¼ pBorder∕pMask of the breast
mask perimeter along the border and the total breast
mask perimeter were computed.

• RRound: The roundness RRound ¼ pCircle∕pMask was deter-
mined as the inverse ratio between the actual perimeter of
the mask and the perimeter of a circle with the same sur-
face. Since the circle is the geometrical shape with the
lowest ratio between perimeter and surface, RRound being
close to 1 is a strong indicator for a round and smooth
breast contour line. If RRound is very small, the determined
breast contour line is supposed to be “inefficient,” mean-
ing that it has many turns and irregularities.

• p1 and p2: The first two principal moments p1 and p2 of
the breast mask were determined.

3.4 Learning Step

We first evaluated each of the three image quality aspects indi-
vidually and afterward merged all above described features in
order to detect images of generally insufficient quality, i.e., a
fourth classifier was trained. This joint classification approach
was motivated by the fact that a large portion of the positive
images was affected by more than one artifact. The manual
annotation of two experienced clinicians served as ground
truth for classifier training.

Classification tasks were performed on dataset A (introduced
below) using the random forests classifier,18 as provided by the
OpenCV library (version 2.4.10).19 While the number of trees
was set to 100, the number of considered random features for
decision tree construction was determined internally by the clas-
sifier, as proposed in Ref. 18 as log2ðMÞ þ 1, where M is the
number of given features. The maximum depth of each tree was
set to 15, and the minimum sample count required at each node

to be split was set to 10% of the total number of samples. Ten
repetitions of 10-fold stratified cross-validation (CV) were con-
ducted to evaluate the performance of the classification. For
each repetition, the instances were randomly partitioned into
10 folds under the constraint that images of the same patient
were within one fold to avoid bias.

The resulting receiver-operating characteristic (ROC) curves
were fitted by a binormal function, as implemented in MATLAB
and Statistics Toolbox (Release 2011a, The MathWorks, Inc.,
Natick, Massachusetts, United States). First, for each repetition
of CV, the merged ROC curve of all 10 folds was computed by
sorting all instances into one curve. These were used to deter-
mine the mean ROC curve and the 95% confidence interval (CI)
of all 10 repetitions. The area under the ROC curve (AUC) was
estimated from the fitted curves, whereas single values of sen-
sitivity and specificity were retrieved from the original (unfitted)
classifier outputs. To compare the performance of the joint
approach to that of the single classifiers, the significance of
the difference between the corresponding AUCs was computed
as a p-value using the method described in Ref. 20, as well as
the Bonferroni correction21 to account for multiple (three) com-
parisons. This means that the computed p-values were multi-
plied by 3 and then compared to a confidence level of α ¼ 0.05.
The number of actually positive and negative instances was used
to compare two ROC curves.

3.5 Additional Performance Tests

In order to investigate the robustness and potential overfitting of
the trained classifiers, an independent test dataset (called B) was
employed. These data were acquired in a different clinic and
manually annotated by a different reader group than dataset
A. After training the four classifiers on the complete dataset
A, they were applied to dataset B and compared to the manual
rating results. Classifier decision thresholds were chosen such
that the specificity in the training step was 97%. To obtain sta-
tistics, the data were bootstrapped 100 times. The data were also
used to examine the difference between the joint classification,
which is based on all features at once, and the straightforward
combination of the three single classifier outputs to a combined
rating. Ground truth for this comparison was the combination of
the manual annotations, i.e., if at least one artifact was detected
concordantly by both readers, the case was considered positive.
As an additional performance measure, the inter-rater agreement
between the two readers (R2 versus R3) as well as between the
automated image quality assessment and the manual rating
(AQUA versus R2&R3) was computed as Cohen’s κ.22

4 Results

4.1 Dataset

In total, 815 ABUS volumes acquired from 114 women
were obtained in routine clinical care and split up into two
datasets, A and B. The images were acquired using either the
Somo-v automated 3-D breast ultrasound system (U-systems,
Sunnyvale, California) or the ACUSON s2000 ABVS (Siemens,
Erlangen, Germany). Details on the size and spatial resolution of
the images are given in Table 1. According to the acquisition
protocol, the nipple position (in coronal view) was indicated
manually by the technicians after each measurement and stored
in the DICOM header of the corresponding file so that it could
easily be used for further image processing. In some images, the
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nipple is not visible at all. These cases were excluded from the
analysis of the relative nipple position and the nipple shadow.
Detailed description of the datasets is given in Table 2. The
Institutional Review Board waived the need for informed con-
sent and approved the use of anonymized images for this study.

All images were classified separately by two clinicians with
several years of experience in ABUS imaging. Dataset A was
annotated by Readers 1 and 2, whereas dataset B was annotated
by Readers 2 and 3; i.e., one reader was the same and one was
different for the two datasets. Among others, the above-men-
tioned quality aspects—nipple position, nipple shadow, and
breast contour shape—were taken into account during manual
classification.14 The detailed rating results for dataset A are
shown in Fig. 5. The distribution of artifacts was similar in data-
set B. Considerable inter-rater disagreement has already been
observed in another study dealing with quality rating of ultra-
sound images.23 It renders classifier training difficult, but
excluding the unclear, i.e., differently rated, cases from the study
would mean excluding the critical cases and might bias the
results. As the focus of the proposed application was put on
a high specificity, we decided to consider only those cases “pos-
itive” that were rated as such by both readers. For the joint
rating, an image was considered positive if at least one artifact
was detected concordantly by both readers. All other cases
were considered “negative” and hence usable for diagnostics.
Throughout this report, “positive” and “negative” only refer to
the rating of the image quality and are not correlated to any diag-
nostic findings, i.e., tumors or lesions.

4.2 Relative Nipple Position

Repeated cross-validation yielded an AUC of 0.99 [see Fig. 6(a)].
Different operating points on the ROC curve can be chosen for
the final application by varying the decision threshold for the
classifier. Depending on the intended purpose, the user may
give more weight to specificity or sensitivity. As summarized in
Table 3, at a specificity of 0.99, the sensitivity was 0.36. The
point closest to the upper left corner of the plot (“best operating
point”) represents a specificity of 0.905� 0.009 (mean� 95%
confidence interval) and a sensitivity of 0.93� 0.01. For com-
parison, the performance of each reader when compared to the
other, respectively, is displayed in the plots. It can be seen that
the automatic classification performed very similarly to the read-
ers. This is a general trend that also accounts for the other con-
sidered quality aspects. In Fig. 7, extreme outlier cases are
shown. A false positive case is shown in Fig. 7(a), where the
breast is very large and not completely visible in the image.
In this case, the breast mask fails to describe the true contour
of the breast. The breast in Fig. 7(b) is small and skinny, which
impedes proper ultrasound coupling. As a consequence, a bright
rectangle caused by reflections is visible in the upper right cor-
ner of the image, and breast mask segmentation using the Otsu
filter fails. Figure 7(c) shows a false negative case caused by the
irregular breast contour shape of the breast, which in turn pro-
duces an erroneous breast mask. The average computing time
for all nine features was 3 s� 2 s per volumetric image,
whereas the computing time for the classification was in the
order of milliseconds (also for the other quality aspects) and thus
negligible.

4.3 Nipple Shadow

Automatic classification yielded an AUC of 0.84 [see Fig. 6(b)].
At a specificity of over 0.99, sensitivity was 0.24. The best
operating point was described by a specificity of 0.82�
0.02 and a sensitivity of 0.73� 0.02. Figure 8 shows three
sample outlier cases. The false positive case in Fig. 8(a) is

Table 2 Training and test dataset properties.

Dataset Clinic
Device

manufacturer Readers
Number of
women

Patient age
(mean� stdev)

Nipple position
known

Nipple not
visible

A

1 Siemens 1 & 2 23 49� 11 312 19

1 U-Systems 1 & 2 14 56� 9 28 9

B 2 Siemens 2 & 3 67 47� 12 394 53

Fig. 5 (a) Incidence of the three considered artifacts in the training dataset. “Positive” and “negative”
describe the cases with and without artifacts. (b) Distribution and overlap of artifacts in all positive cases.

Table 1 Size and resolution of the ABUS volumes used in this study.

Device
manufacturer Max. image size (cm3) Min. voxel size (mm3)

Siemens 15.4 × 16.8 × 6.00 0.21 × 0.52 × 0.07

U-systems 14.6 × 16.8 × 4.86 0.29 × 0.60 × 0.13
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a small and skinny breast with a clearly visible nipple shadow
close to the breast contour line. However, it was rated as
negative by the readers since it is hardly possible to get better
images of such a small breast in the present view and a repeated
scan probably would not enhance the image. Figure 8(b) shows
a false negative case, where the dark region is not directly
below the nipple but rather in a half ring around it. In
Fig. 8(c), the false negative classification was caused by a
relatively bright and fuzzy shadow. However, the algorithm
was designed to detect very prominent, low-intensity nipple
shadows, as shown in Figs. 3(a) and 3(b). On average, it took
5 s� 2 s per ABUS image to compute all possibly relevant
features.

4.4 Breast Contour Shape

The classification of irregular breast contour shapes achieved an
AUC of 0.89 [see Fig. 6(c)]. At a specificity of 0.99, the sensi-
tivity was 0.15. At the best operating point, specificity was
0.82� 0.04 and sensitivity was 0.79� 0.04. Figure 9(a) shows
a sample false positive case. The breast as such is imaged cor-
rectly, but parts of the axilla and the arm cause atypical contour
lines, which are misinterpreted by the classifier. Figures 9(b) and
9(c) show false negative cases, where parts of the breast are
not imaged correctly. Nevertheless, the breast mask has smooth
contours, obscuring missing parts and misleading the classifier.
The average computing time was 6 s� 4 s.

Fig. 6 ROC curve plots (a) for the relative nipple position, (b) for the nipple shadow, (c) for the breast
contour shape, and (d) for the joint approach.

Table 3 Summary of classification results. AUC is the mean of 10 repetitions of 10-fold stratified cross-validation. The confidence intervals (CI) are
computed from the 10 repetitions as well. p-values describe the Bonferroni-corrected (multiplied by 3) significance of difference between the AUC of
the single classifiers when compared to the joint approach.

AUC 95% CI p-value Sensitivity 95% CI Specificity 95% CI TP/all positives FP/all negatives

Nipple position 0.987 0.002 0.008 0.363 0.064 0.990 0.002 32/88 2/252

Nipple shadow 0.842 0.004 0.004 0.240 0.040 0.991 0 28/116 2/224

Breast contour 0.885 0.003 0.475 0.149 0.025 0.990 9E-14 7/48 3/320

Joint 0.935 0.003 n/a 0.554 0.036 0.990 1E-18 79/143 2/197
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4.5 Joint Classification

In this approach, the manual ratings for the three distinct arti-
facts were combined to a joint quality measure. If, according to
both readers, at least one artifact was present, an image was
assigned the positive class. Random forest classification was
based on all computed features at once and achieved an AUC of
0.94 [see Fig. 6(d)]. At a specificity of 0.99, the sensitivity was
0.55. The best operating point had a specificity of 0.91� 0.01
and sensitivity of 0.81� 0.01. According to the Bonferroni-
corrected (multiplied by 3) p-values of Table 3, the AUC of
the joint approach was significantly (p < 0.05) smaller than
that of the nipple position classification and significantly larger
than that of the nipple shadow classification. The difference

between the AUCs of the joint approach and the breast contour
shape classification was not significant.

4.6 Additional Performance Tests

Applying classifiers trained on dataset A to the independent test
dataset B resulted in the values shown in Table 4. Here we also
show the results of a simple combination of classifier outputs
(named “combination” in the table) compared to using all fea-
tures in one single classifier (named “joint”). The “combination”
approach combined the outputs of the three distinct classifiers
(nipple position, nipple shadow, breast contour) into one rating
in the same way as the manual ground truth annotation was com-
bined for the global quality rating: If at least one of the three

Fig. 7 Examples for outliers of the nipple position classification. (a) A false positive case, where a sig-
nificant part of the breast is not visible on the scan. (b) A false negative due to an erroneous breast mask
caused by intense reflections within the coupling layers of the transducer. (c) A false negative case
caused by the irregular breast contour shape.

Fig. 8 Incorrectly classified cases of the nipple shadow. (a) A false positive case caused by the nipple
being very close to the breast contour line. (b) A false negative with a structured, ring-like nipple shadow.
(c) A false negative case with fuzzy and bright nipple shadow.

Fig. 9 Examples for outliers of the breast contour classification. (a) A false positive case where parts of
the axilla and the arm are visible on the image. The false negative cases in (b) and (c) show relatively
smooth contours, obscuring the fact that parts of the breast are not imaged correctly.
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artifacts was detected by the distinct classifier, the image was
rated positive.

5 Discussion
In this work, we presented automatic techniques to assess the
quality of ABUS images. The algorithms have short run times
and can be applied to the images right after acquisition such that
impeded scans could be repeated while the patient is still in the
examination room. The focus of the proposed algorithms was
on high specificity in order to avoid unnecessary rescans, but
depending on the preferred application, other classifier settings
could be chosen.

The algorithm to rate the nipple position performed very
well. Based on measures such as the distance between nipple
and breast contour line, this algorithm had a high specificity
and sensitivity at the same time. The good performance may
be correlated to the fact that the manual rating of the nipple posi-
tion was essentially driven by the same parameters as the auto-
matic classification. This means that the clinicians marked the
nipple being “too close to the edge of the breast” if the distance
between nipple and breast contour line was very small. Exactly
the same distance measure, dmin, was used as feature for clas-
sifier training; i.e., the semantic gap between human perception
and computed attributes was very small in this case. Outliers
were generally caused by an erroneous breast mask due to
irregular breast contour shapes. In some other cases, the algo-
rithm was not able to reproduce the complex decision process
that a human reader performs. Even if the above described fea-
tures were determined as expected, the reader might have antici-
pated and considered other aspects, e.g., parts of the breast that
were not visible in the image, as shown in Fig. 7(a).

The proposed algorithms to detect prominent nipple shadows
and irregular breast contour shapes had a similar performance
with an AUC slightly smaller than that of the nipple position
classification. This might be due to the larger variance in the
physical appearance of an acoustic nipple shadow and an irregu-
lar breast contour when compared to the relative nipple position.
This variance might also be correlated to the larger disagreement
between the readers, making this classification an “ill-posed”
problem.

Evaluations on independent test data resulted in slightly
lower sensitivities and specificities than estimated from repeated
cross-validation. Nevertheless, an overall good performance
showed that the classifiers were not overfitting in the training
step. Note that the images of the test dataset had been acquired
in a different clinic and that one of the readers was different than
for the training data.

Finally, the joint evaluation of all three artifacts yielded a
sensitivity and a specificity of 0.55 and 0.99 in the training data-
set as well as 0.82 and 0.81 in the test dataset, respectively,
which is promising and justifies the next step toward clinical
application. Even if the sensitivity is only moderate, the pro-
posed method has high potential to improve the current stan-
dard, as outlined in Sec. 2. As a reasonable number of corrupt
images were detected while the specificity of the automatic
image quality rating was very high, the technicians could
rely on the rating without the risk of producing too many unnec-
essary rescans. It will be evaluated in clinical practice whether
precise information on the kind of the detected artifact is rel-
evant. As shown in Table 4, the inter-rater agreement of R2 ver-
sus R3 is in all cases higher than for AQUA versus R2&R3.
Nevertheless, the trend of both measures is similar; i.e., if the
agreement of both readers is high, the agreement of AQUA ver-
sus R2&R3 is also high, showing the classifiers’ dependency on
the clarity of the manual ground truth annotation. Thus, more
readers as well as a clearer definition and separation of the single
artifacts might be beneficial. Note that the joint classification
approach (κ ¼ 0.58,AUC ¼ 0.91) slightly outperforms the sim-
ple combination of single classifiers (κ ¼ 0.44) as well as the
single classification alone (AUC of 0.86 to 0.91). Although
the effect is not as pronounced as expected, the joint approach
can provide a higher sensitivity and specificity than the single
classifiers, however, at the expense of detailed information on
a specific quality aspect.

About 28 cases of the training dataset were excluded from
the analysis of the first two algorithms because the nipple
was not visible at all in the images. In some rare cases, e.g., for
very large breasts, this is inevitable. It is, however, unclear how
to handle these cases in clinical practice. One possibility is to
use an automatic nipple detection algorithm16 to determine
whether the nipple is visible or not. Another option is to find
an agreement with the technicians on how to handle the cases
where they do not see the nipple in the image. So far, this case is
not covered by the standard acquisition protocol.

Apart from the computations described in this work, we also
tested the classifier performance by only using those cases that
were given the same class by both readers. For all considered
artifacts, the sensitivity, specificity, and AUC of the algorithms
were slightly higher, showing that the presented approach partly
relies on the used image data and the manual annotations. For
the nipple position classification, e.g., the AUC was raised to
0.99 leading to a sensitivity of 0.46 at a specificity of more
than 0.99. Nevertheless, we decided to include the cases with
disagreement as negatives, in order not to bias the data base

Table 4 Rating results retrieved from test dataset. “Combination” refers to the simple combination of the three single rating results, whereas “joint”
describes the classifier that was trained on all features at once. R2 and R3 refer to Readers 2 and 3. κ refers to Cohen’s inter-rater agreement.
Given values are mean (stdev) from 100 times bootstrapping.

AUC Specificity Sensitivity κ (R2 versus R3) κ (AQUA versus R2&R3)

Nipple position 0.91 (0.02) 0.91 (0.02) 0.55 (0.08) 0.66 (0.04) 0.41 (0.07)

Nipple shadow 0.86 (0.03) 0.83 (0.02) 0.78 (0.06) 0.75 (0.03) 0.48 (0.05)

Breast contour 0.86 (0.03) 0.94 (0.01) 0.14 (0.10) 0.33 (0.08) 0.06 (0.07)

Combination n/a 0.78 (0.02) 0.79 (0.05) 0.66 (0.04) 0.44 (0.05)

Joint 0.91 (0.02) 0.81 (0.02) 0.82 (0.04) n/a 0.50 (0.05)
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by excluding the difficult cases. In another experiment (not
explicitly shown in this manuscript), the classifiers were trained
only on the clear, i.e., concordantly annotated, cases of dataset A
and tested on the unclear cases. The classifier accuracies (sum of
true positives and true negatives divided by all cases) when com-
pared to Reader 1 and Reader 2, respectively, were 0.52 and 0.48
for the nipple position, 0.27 and 0.73 for the nipple shadow, as
well as 0.45 and 0.55 for the breast contour shape. Thus, for all
considered quality aspects, the trained classifiers were consis-
tently more in line with Reader 2 than with Reader 1.

Beneath the random forests, other classifiers like the K* in-
stance-based learner using an entropic distance measure24 or the
J48 decision tree were tested. The latter is an open-source Java
implementation of the C4.5 decision tree,25 which uses normal-
ized information gain (difference in entropy) as a splitting cri-
terion. However, they were outperformed by the random forests
yielding the best results in terms of AUC and correlated mea-
sures while still being fast enough for the planned application.
Furthermore, random forests are robust against overfitting,
which was observed in single decision tree classification, and
against dependent features.

The average total computing time was determined to be
14 s� 5 s per image. Since a typical ABUS examination takes
several minutes, the algorithms are fast enough for the planned
online feedback application. To our knowledge, there is no pre-
vious work that our results could be directly compared to.

According to the manual rating and considering the three
discussed image quality aspects, in 40 out of all 83 provided
examinations, there was no or only one corrupt image, while in
43 examinations, there were two or more corrupt images. This
means that early feedback to the technician after the first scan
that showed problems might have helped to avoid another image
with incorrect settings. However, throughout this work, the
ABUS volumes were considered as independent images. Their
correlation to the other images of one examination and the con-
sequences for the usefulness of this examination were not inves-
tigated in detail and will be subject to further studies.

Concerning patient age and breast density, no direct influ-
ence on the image processing routines or on the image quality
rating were detected during this work. Evaluating a first clinical
installation of a prototype, it turned out, however, that the breast
size has an essential impact on the reliability of the rating of the
relative nipple position: in large breasts, transducer positioning
often has to be performed such that the nipple is pushed toward
the edges of the breast in order to capture the whole breast vol-
ume with the available views (AP, MED, LAT, and so on).
Therefore, the breast volume is an important additional feature,
but computing the actual 3-D volume of the breast based on an
ABUS scan is not trivial and, to the authors’ knowledge, has not
yet been performed completely automatically by any other
group. First steps like fully automatic chest wall segmentation
have been presented by Tan et al.,26 who approximated the chest
wall by a cylinder. However, computing time was reported to be
6 min and 30 s per breast image, which would be too slow for
the application we were aiming at. Thus, extracting information
from 3-D images by projecting them to 2-D was more reliable,
i.e., reproducible, and reduced complexity and computational
costs.

6 Conclusion
In this work, a computerized approach for image quality assess-
ment in ABUS imaging was presented. We have shown that the

proposed algorithms have the potential to detect up to 55% of
images (at a specificity of 99%) that are currently accepted but
present diminished diagnostic value. Apart from the potential to
train and support the technicians and to save time and money for
patient recalls, the presented algorithms will also help to filter
and prepare data for further computer-assisted detection.26

Although the sensitivity for the single quality aspects is only
moderate, the described algorithms are fast and accurate enough
to be tested in clinical practice, as the specificity is high, pre-
venting too many false positive cases and unnecessary rescans.
In conclusion, by using classifiers, expert knowledge was turned
into algorithms that can be used in clinical practice. The con-
tribution of this work is not only to provide a full working appli-
cation for ABUS but also to test the methodology and the
general concept of AQUA software development based on clini-
cal image data. More image quality assessment algorithms for
ABUS and other imaging devices such as MRI will be devel-
oped in the future in order to complement and upgrade the pre-
sented pipeline.
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