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Abstract. A deep learning algorithm for Gaussian noise removal from both grayscale and color
images is developed. As opposed to most existing discriminative methods that train a specific
model for each noise level, the proposed method can handle a wide range of noise levels using
only two trained models, one for low noise levels and the other for high noise levels. In the
proposed algorithm, the training process consists of three successive steps. In the first step,
a classifier is trained to classify the noisy and clean images. In the second step, a denoiser net-
work aims to remove the noise in the image features that are extracted by the trained classifier.
Finally, a decoder is utilized to map back the denoised images features into images pixels.
To evaluate the performance of the model, the Berkeley segmentation dataset of 68 images
(BSDS68) and 12 widely used images are used, and the denoising performance for additive
white Gaussian noise is compared with several state-of-the-art methods in terms of peak
signal-to-noise ratio (PSNR) and visual quality. For grayscale image denoising of BSDS68,
our method gives the highest PSNR on all noise levels (significant mean improvement of 0.99).
For color image denoising of BSDS68, except for one low noise level, the proposed method
gives the highest PSNR on all other noise levels (mean improvement of 0.3). © 2020 SPIE and
IS&T [DOI: 10.1117/1.JEI.29.4.043005]
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1 Introduction

Image denoising is a fundamental image restoration task that has stimulated considerable atten-
tion in both academic and industrial research.1–3 The goal of image denoising is to recover a
clean noise-free image x from a corrupted noisy image y that follows an image degradation
model y ¼ xþ N, where N is measurement noise. One common assumption in the literature,
which we also adopt in this work, is that N is additive white Gaussian noise (AWGN) with zero
mean and standard deviation σ. Numerous and diverse algorithms have been proposed for the
Gaussian noise removal problem. The most effective image denoising algorithms can be gen-
erally categorized into two main categories: nonlocal methods [e.g., block matching three-
dimensional (BM3D),4 weighted nuclear norm minimization (WNNM),5 expected patch log
likelihood (EPLL),6 and multilayer perceptron (MLP)7] and local methods [e.g., feed-forward
denoising convolutional neural network (DnCNN),8 trainable nonlinear reaction diffusion
(TNRD),9 and the method proposed by Lefkimmiatis.10]. The self-similarities and image priors
are widely exploited by effective methods such as BM3D and its modified version for color
images (CBM3D).4 The BM3D method, proposed by Dabov et al.,4 is based on an enhanced
sparse representation in the transform domain; it groups similar two-dimensional (2-D) image
fragments into 3-D data arrays and then uses collaborative filtering to deal with these 3-D data
arrays. Gu et al.5 studied standard nuclear norm minimization and proposed theWNNM in which
the singular values are assigned different weights. They applied the proposed WNNM algorithm
to image denoising by exploiting the image nonlocal self-similarity. As Zoran and Weiss6

showed, image priors that give high likelihood to data perform better in patch restoration.
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Motivated by the idea that patches in the restored image should be likely under the prior, they
proposed the EPLL method that uses patch models for whole image restoration. Burger et al.7

proposed a plain MLP model that attempts to learn the mapping from a noisy image to a noise-
free image. They showed that, by training on large image datasets, MLP is able to compete with
other image denoising methods.

However, during the past decade, nonlocal image denoising methods started to converge, and
there has been little progress in improving the state-of-the-art denoising performance. Levin
et al.11,12 derived a statistical measure for the best possible denoising results using a fixed support
around a denoised pixel and generic natural image prior. They showed that, for small windows,
state-of-the-art denoising methods cannot be further improved beyond fractional decibel (dB)
values. Moreover, nonlocal image denoising methods give an inferior performance on pseudor-
andom textures or singular features, where the images have weak self-similarities.13

Recently, due to the advent of deep learning algorithms, several effective image denoising
methods that could improve the state-of-the-art denoising performance have been proposed.10,14–16

Nevertheless, most of the existing denoising algorithms usually train a specific model for a cer-
tain noise level, so their denoising performance deteriorates dramatically when the noise deviates
from the level for which the model was trained.

In this paper, we propose a deep learning algorithm that removes Gaussian noise from both
grayscale and color images. As opposed to most of the existing denoising algorithms, which aim
to remove the noise by learning the dense mapping from clean to noisy images, the proposed
method aims to explicitly remove the noise from images features and then map the denoised
features back into images pixels. Moreover, our method is able to handle a wide range of noise
levels using only two trained models, one for low noise levels and the other for high noise levels.

The outline of this paper is as follows: Sec. 2 provides a brief survey of related work. The
proposed method is described in Sec. 3. Section 4 presents the experimental results and draws a
comparison with other state-of-the-art image denoising methods. Finally, Sec. 5 provides the
conclusion.

2 Related Work

Recently, deep learning algorithms, particularly convolutional neural networks (CNNs), have
shown great success in image restoration tasks. Jain and Seung17 introduced an approach that
combined the use of CNNs as an image processing architecture and an unsupervised learning
procedure that synthesized training samples from specific noise models. They achieved com-
parable performance to wavelet and Markov random field (MRF) methods. They also showed
how CNNs are mathematically related to MRF approaches while CNNs avoid computational
difficulties in MRF approaches that arise from probabilistic learning and inference. Schmidt and
Roth18 proposed a deep network that offered both computational efficiency and high restoration
quality for a certain noise level. They proposed a cascade of shrinkage fields (CSF), a random
field-based architecture that combines the image model and the optimization algorithm in a sin-
gle unit. Chen and Pock9 proposed a discriminative training-based method (TNRD) that uses a
dynamic nonlinear reaction-diffusion model with time-dependent parameters. In their proposed
method, all of the parameters are simultaneously learned from training data through a loss-based
approach. Although CSF and TNRD achieve promising denoising results, their priors are based
on the analysis model, which is limited in capturing the full characteristics of image structures,
and, therefore, their performance is inherently restricted to the specified forms of prior.
Moreover, many parameters that need to be learned are involved. Another limitation of these
methods is that they train a specific model for a known noise level, so their performance dete-
riorates dramatically when the noise deviates from the levels for which the models are trained.8

Zhang et al.8 proposed deep CNN models that were able to handle Gaussian denoising with
known and unknown noise levels. Their model for Gaussian denoising with known specific noise
level is called DnCNN-S while the model for blind Gaussian denoising tasks is called DnCNN-
B. They utilized batch normalization and residual learning to speed up the training process and
boost the denoising performance. Lefkimmiatis10 presented a novel network architecture appli-
cable to a wide range of noise levels for grayscale and color image denoising. Inspired by local
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and nonlocal variational methods, he utilized both convolutional layers and nonlocal filtering
layers. His model has a local operator that uses convolutional layers as a core component and is
referred to as UNet5; the second model that relies on nonlocal filtering layers is referred to as
UNLNet5. The architecture was considerably shallower than state-of-the-art deep CNN-based
networks and achieved excellent results under AWGN. Zhang et al.16 proposed a fast and flexible
denoising network (FFDNet) with a tunable noise level map as the input. The proposed FFDNet
is able to deal with different noise levels and spatially variant noise.

3 Proposed Network

The input of the network is a noisy observation y ¼ xþ N. Discriminative denoising methods
aim to learn a mapping function FðyÞ ¼ x to predict the latent clean image. The residual learning
strategy, on the other hand, implicitly removes the latent clean image in the hidden layers by
learning a residual mapping RðyÞ ∼ N, and then the clean image is obtained by x ¼ y − RðyÞ. In
this work, the network removes the noise in the hidden layers explicitly. The training process of
the network consists of three successive steps that are explained in detail in the following
sections.

3.1 Classifier

In the first step, a CNN classifier is used to classify the noisy and clean images. It is worth noting
that the main purpose of this step is not classification per se but rather training a classifier that is
able to extract discriminative image features. The extracted features (i.e., noisy and clean images
features) are used as the training and test data in the next step in which the denoiser removes the
noise from the image features. Figure 1 shows the architecture of the CNN classifier. The acti-
vation function of all convolution layers is rectified linear unit (ReLU)19 except for the last con-
volution layer, which is followed by the sigmoid activation function. The third layer consists of
two parallel convolution layers,20 each of which has 64 convolution filters of different sizes
(3 × 3 versus 5 × 5). Using 5 × 5 convolution filters, the size of the receptive fields of the con-
volution filters is increased, so convolution filters are connected to larger local regions. The
parallel convolution layers are concatenated and fed into a batch normalization (BN) layer21

that is used to speed up the training process. The reason for using two separate max-pooling
layers in series is that the output of the first max-pooling layer (with pooling filter of size 2 × 2

and stride of 2) is used as the extracted image features that are fed into the next step (i.e., deno-
iser) while the output of the second max-pooling layer (with pooling filter of size 8 × 8 and stride
of 8) is used for the classification purpose. Three extracted image features from clean and noisy
images are shown for the visualization purpose in Fig. 2. It is worth noting that the width and
height of the extracted images features are half of the width and height of the input images
because of the first max-pooling layer. Since these extracted image features with reduced size
are fed into the next step (i.e., denoiser), the number of operations in the next step is decreased.
Unlike most CNN classifiers that use fully connected layers as the last layers, we use just one
convolution layer instead. Since the input of the last convolution layer is of size 20 × 30, the size
of the last convolution filter is chosen to be 20 × 30. By replacing the fully connected layers by
the convolution layer, the number of parameters decreases dramatically while still achieving very
high classification accuracies. The number of parameters in the last convolution layer is 601
½20 × 30þ 1ðbiasÞ�. If only one FC layer containing 512 neurons is used, the number of param-
eters in the FC layer (not counting biases) would be as follows: the number of parameters using
only one FC layer ¼ 20 × 30 × 190 × 512 ¼ 58;368;000 parameters. Moreover, the local infor-
mation of the activation maps is preserved, which would not be the case for fully connected
layers due to vectorization.

3.2 Denoiser

As opposed to most of the existing denoising approaches, which aim to remove the noise by
learning the dense mapping from clean to noisy images, the denoiser aims to explicitly remove
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the noise from image features that are extracted by the trained classifier. The architecture of the
denoiser is illustrated in Fig. 3. The denoiser consists of two convolution layers, each of which
has 190 convolution filters of size 3 × 3. The activation function of the first and second layers is
ReLU and sigmoid, respectively. It is worth noting that the input and output of the denoiser are
the noisy and clean image features of the same size, respectively. In other words, the training set
for the denoiser consists of the noisy and clean image features that are extracted by the trained
CNN classifier. Since there are 190 convolution filters in the convolution layer right before the
first max-pooling layer in the classifier, 190 images features are extracted for clean and noisy
images.

3.3 Decoder

In the last step of the training process, a decoder is trained to map back the denoised image
features into the image pixels. In other words, the input of the decoder is denoised image features
while its output is clean images. Figure 4 shows the architecture of the proposed decoder. Since

Fig. 1 Classifier architecture.
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the extracted image features are the output of the first max-pooling layer of the classifier, one
upsampling layer is used in the decoder to map the size of the features back to the original size.
Because there are three channels in color images, the last layer must have three convolution
filters to match the color images. Likewise, the last layer of the decoder for grayscale images
has one convolution filter. The pixel intensities of input images are normalized so that they have
values between zero and one, so the activation function of the last convolution layer is chosen to
be sigmoid. To rescale the normalized pixel intensities, they are multiplied by 255 and rounded
to the nearest integer number. Figure 5 shows how the three trained networks (i.e., the classifier,
denoiser, and decoder) work together.

4 Experimental Results

In this work, the Berkeley segmentation dataset (BSDS),22 which consists of 500 natural images,
was used to train and test our model. The training and validation data contained 400 and 100

Fig. 3 Denoiser architecture.

Fig. 2 Clean and noisy image features extracted by the trained classifier: (a) clean image, (b) clean
image feature extracted by convolution filter #1, (c) clean image feature extracted by convolution
filter #100, (d) clean image feature extracted by convolution filter #190, (e) noisy image, (f) noisy
image feature extracted by convolution filter #1, (g) noisy image feature extracted by convolution
filter #100, and (h) noisy image feature extracted by convolution filter #190.

Aghajarian, McInroy, and Muknahallipatna: Deep learning algorithm for Gaussian noise removal. . .

Journal of Electronic Imaging 043005-5 Jul∕Aug 2020 • Vol. 29(4)



images of size 320 × 480, respectively. For low noise levels, images were corrupted with AWGN
with a standard deviation that varied from σ ¼ 15 to σ ¼ 25 with increments of 5 while for high
noise levels, the standard deviation varied from σ ¼ 35 to σ ¼ 55 with increments of 10.
Although we use the same networks architecture for both high and low noise levels, the networks
are trained separately for each case. By doing so, its denoising performance is better than a single
network trained for the entire noise densities. The reason for this could be that the optimal
weights for denoising images corrupted by high and low noise might be different. By training
a single model for both cases, some weights might be overwritten, which could deteriorate the
denoising performance.

To draw a comparison with other state-of-the-art algorithms, two widely used datasets were
utilized. The first one was the standard evaluation dataset of 68 images (BSDS68),23 and the
other dataset contained 12 widely used grayscale images (Set12 dataset). It is worth mentioning
that the BSDS68 images of Ref. 23 were strictly excluded from the training data and were only
used in the validation data. Our model was trained on an NVIDIA Quadro RTX 6000 GPU. We
used the Keras neural network library to train and test the model. To train the classifier and
decoder, we used Adam optimizer24 with a learning rate of 0.00015 and default parameters while
for the denoiser, we used the default learning rate of 0.001.

Table 1 shows the classification accuracies for color and grayscale images corrupted by low
and high noise levels. It is worth noting that the main purpose of the classifier is not classification
per se but rather extracting discriminative image features that are fed into the denoiser. The very
high classification accuracies show that the extracted images features are discriminative.

Fig. 4 Decoder architecture.
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Fig. 5 The three trained networks together.
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4.1 Compared Denoising Methods

In this work, we made a detailed comparison with several state-of-the-art denoising algorithms,
including two nonlocal similarity-based methods (BM3D4 andWNNM5), one generative method
(EPLL6), three discriminative training-based methods (MLP,7 CSF,18 and TNRD9), and five
CNN-based methods (UNet5,

10 UNLNet5,
10 DnCNN-S,8 DnCNN-B,8 and FFDNet16). All meth-

ods are described in either in Secs. 1 or 2. Implementation codes of the methods with default
parameter settings are downloaded from the authors’ websites for visual comparison. The peak
signal-to-noise ratio (PSNR) results of other methods are taken from Refs. 8 and 10.

4.2 BSDS68 Grayscale Images Denoising

Table 2 demonstrates the average PSNR results of different methods on the BSDS68 test images,
where the best PSNR result for each noise level is highlighted in bold. As can be seen, our model
achieved the highest PSNR on all noise levels with large margins. The proposed method out-
performed DnCNN, the current state-of-the-art method, by 0.99 in terms of average PSNR (dB),
which is a dramatic improvement.

4.3 BSDS68 Color Images Denoising

The PSNR results of different methods for color image denoising are shown in Table 3. Except
for one low noise level with σ ¼ 15, our method achieved the highest PSNR on all other noise
levels. Like grayscale images denoising, our method outperformed the current state-of-the-art
method (CDnCNN) by 0.12 in terms of average PSNR. Figure 6 shows the average PSNR
improvement of our method over DnCNN-S and CDnCNN-B for grayscale and color image
denoising, respectively.

Figures 7 and 8 show the visual comparison of our method’s color image denoising results
with CBM3D and CDnCNN-B for σ ¼ 20 and σ ¼ 45, respectively. It can be seen that our
method can recover corrupted images with natural colors that yield visually pleasant results
while preserving sharp edges and fine details of the images. It is worth noting that the visual

Table 2 Grayscale denoising comparison for different noise levels over the BSDS68 images in
terms of average PSNR (dB).

Noise level (standard deviation σ)

Method 15 20 25 35 45 55 Average

BM3D 31.06 29.60 28.55 27.07 25.99 25.26 27.92

EPLL 31.18 29.73 28.67 27.16 26.09 25.34 28.03

WNNM 31.31 29.83 28.73 27.28 26.26 25.49 28.15

DnCNN-B 31.60 30.19 29.15 27.66 26.62 25.80 28.50

UNet5 31.38 29.93 28.84 27.38 26.38 25.53 28.24

UNLNet5 31.47 30.04 28.96 27.50 26.48 25.64 28.35

Our method 32.20 31.45 30.25 28.64 27.68 26.70 29.49

Table 1 Classification accuracies for grayscale and color images.

Color images Grayscale images

Low noise High noise Low noise High noise

Classification accuracy 97% 99.5% 99% 99.5%
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comparison of denoising methods might not be useful in some cases because the human eye is
more sensitive to edges compared to smooth regions of images. Taking this into account, some
denoising methods might do a slightly better job at the edges of images, but it does not nec-
essarily mean that they do a better job for the entire image including smooth regions containing
no edges. That is why the quantitative criteria (e.g., PSNR) have been used in the literature to
compare the performance of different denoising algorithms.

Fig. 6 Average PSNR improvement of our method over DnCNN-S and CDnCNN-B methods.

Fig. 7 Color image denoising results of one image from the BSDS68 dataset corrupted by AWGN
of σ ¼ 20. (a) Clear, (b) noisy (25.09 dB), (c) CBM3D (32.88 dB), (d) CDnCNN-B (33.51 dB), and
(e) our method (33.04 dB).

Table 3 Color image denoising comparison for different noise levels over the BSDS68 images in
terms of average PSNR (dB).

Noise level (standard deviation σ)

Method 15 20 25 35 45 55 Average

CBM3D 33.49 31.88 30.68 28.86 27.82 26.95 29.95

CDnCNN-B 33.88 32.36 31.22 29.57 28.39 27.45 30.48

CUNet5 33.78 32.21 31.03 29.37 28.23 27.27 30.32

CUNLNet5 33.90 32.34 31.17 29.53 28.37 27.44 30.46

Our method 33.11 32.39 31.47 29.67 28.94 28.03 30.60
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4.4 Blind Denoising

To further show the capacity of our model, we evaluated its performance for denoising BSDS68
images corrupted by the noise levels for which our model was never trained (i.e., Gaussian noise
with a standard deviation of 30, 40, and 50). For σ ¼ 30, the trained model for low noise level
was used while for σ ¼ 40 and σ ¼ 50, the trained model for high noise level was utilized. The
average PSNR results for grayscale and color image denoising are shown in Tables 4 and 5,
respectively. Surprisingly, for all three noise levels of grayscale image denoising, our model
outperformed all other methods, some of which were specifically trained for that known noise
level. Compared to the current state-of-the-art method (DnCNN), our model led to an average
PSNR increase of 0.82 dB, which is a noticeable improvement.

4.5 Set12 Grayscale Denoising

The 12 widely used test images (i.e., Set12), used in Ref. 8, are utilized to draw a comparison
with other methods. The PSNR results of different denoising algorithms on the Set12 images

Fig. 8 Color image denoising results of one image from the BSDS68 dataset corrupted by AWGN
of σ ¼ 45. (a) Clear, (b) noisy (15.07 dB), (c) CBM3D (26.97 dB), (d) CDnCNN-B (27.87 dB), and
(e) our method (28.36 dB).

Table 4 Grayscale BSDS68 images denoising comparison for noise levels for which our model
was never trained.

Noise level (standard deviation σ)

Method 30 40 50 Average

BM3D 27.74 26.45 25.60 26.60

EPLL 27.84 26.58 25.71 26.71

WNNM 27.94 26.72 25.85 26.84

DnCNN-B 28.33 27.10 26.21 27.21

UNet5 28.01 26.85 25.95 26.94

UNLNet5 28.13 26.96 26.04 27.04

Our method 28.74 28.10 27.24 28.03
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Table 5 Color BSDS68 images denoising comparison for noise levels for which our model was
never trained.

Noise level (standard deviation σ)

Method 30 40 50 Average

CBM3D 29.71 28.06 27.36 28.38

CDnCNN-B 30.31 28.94 27.91 29.05

CUNet5 30.06 28.77 27.74 28.86

CUNLNet5 30.24 28.91 27.89 29.01

Our method 30.22 29.32 28.51 29.35

Table 7 The PSNR (dB) results of different methods on the Set12 images corrupted by AWGN
of σ ¼ 50. The best PSNR result for each noise level is highlighted in bold.

Noise level: σ ¼ 50

C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

BM3D 26.13 29.69 26.68 25.04 25.82 25.10 25.9 29.05 27.22 26.78 26.81 26.46 26.72

WNNM 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.05

EPLL 26.10 29.12 26.8 25.12 25.94 25.31 25.95 28.68 24.83 26.74 26.79 26.30 26.47

MLP 26.37 29.64 26.68 25.43 26.26 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.78

TNRD 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.81

DnCNN-S 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.18

DnCNN-B 27.03 30.02 27.39 25.72 26.83 25.89 26.48 29.38 26.38 27.23 27.23 26.91 27.21

FFDNet 27.03 30.43 27.43 25.77 26.88 25.90 26.58 29.68 26.48 27.32 27.30 27.07 27.32

Our
method

26.66 30.48 27.16 26.35 27.17 25.97 26.01 29.94 25.10 27.37 27.49 27.04 27.23

Table 6 The PSNR (dB) results of different methods on the Set12 images corrupted by AWGN
of σ ¼ 25. The best PSNR result for each noise level is highlighted in bold.

Noise level: σ ¼ 25

C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

BM3D 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.9 29.61 29.71 29.97

WNNM 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.26

EPLL 29.26 32.17 30.17 28.51 29.39 28.61 28.95 31.73 28.61 29.74 29.66 29.53 29.69

MLP 29.61 32.56 30.30 28.82 29.61 28.82 29.25 32.25 29.54 29.97 29.88 29.73 30.03

CSF 29.48 32.39 30.32 28.8 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.84

TNRD 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.06

DnCNN-S 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.1 30.12 30.44

DnCNN-B 29.94 33.05 30.84 29.34 30.25 29.09 29.35 32.42 29.69 30.20 30.09 30.10 30.36

FFDNet 30.06 33.27 30.79 29.33 30.14 29.05 29.43 32.59 29.98 30.23 30.10 30.18 30.43

Our
method

29.20 33.02 30.29 29.82 30.68 28.98 28.77 32.98 28.96 30.45 30.44 30.33 30.33
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corrupted by AWGN with a standard deviation of 25 and 50 are given in Tables 6 and 7, respec-
tively. The best PSNR result for each noise level is highlighted in bold. For σ ¼ 25, our model
achieved the highest PSNR on half of the images, while for the other half it yielded comparable
results to other methods. On average, the proposed method outperformed all other algorithms
except for DnCNN-S and DnCNN-B. Our achieved average PSNR on all 12 images is 0.11 and
0.03 dB lower than those of DnCNN-S and DnCNN-B, respectively.

For σ ¼ 50, the proposed method yielded the highest PSNR on six images. On average, the
proposed method outperformed all other algorithms except for FFDNet. Our achieved average
PSNR on all 12 images is 0.09 lower than that of FFDNet. It should be noted that our model was
never trained for σ ¼ 50 and yet outperformed other methods, some of which were specifically
trained for that noise level. It is also worth mentioning that for image “house,” which is domi-
nated by repetitive structures, our method outperformed nonlocal similarity-based methods such
as BM3D and WNNM that usually work better on images with regular and repetitive structures.
Figure 9 shows the visual comparisons between our method and the BM3D, DnCNN-S, TNRD,
and WNNM methods.

5 Conclusion

In this paper, we proposed a deep learning algorithm for grayscale and color image denoising.
Unlike most existing discriminative models that train a specific model for each noise level, our
model can handle a wide range of noise levels using two trained models only, one for low noise
levels (i.e., AWGNwith a standard deviation of 15, 20, and 25) and the other for high noise levels
(i.e., AWGN with a standard deviation of 35, 45, and 55). To evaluate the performance of our
model, the BSDS of 68 images (BSDS68) and 12 widely used images were used and the denois-
ing performance was compared with other state-of-the-art methods in terms of PSNR and visual
quality. In the vast majority of the cases, our proposed method gave the highest PSNR and out-
performed other state-of-the-art models. The results clearly verify the validity of both the design
of the networks (e.g., number of convolutional filters and types of layers) and the idea behind
the algorithm (i.e., removing noise from image features instead of image pixels).

Fig. 9 Denoising results of the image “monarch” corrupted by AWGN of σ ¼ 25: (a) original
image, (b) noisy image, (c) denoised image using BM3D (PSNR ¼ 29.25), (d) denoised image
using DnCNN-S (PSNR ¼ 30.23), (e) denoised image using TNRD (PSNR ¼ 29.86), (f) denoised
image using WNNM (PSNR ¼ 29.84), and (g) denoised image using our method (PSNR ¼
30.68).
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