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Abstract. High-speed cameras explore more details than normal cameras in the time sequence, while the con-
ventional video sampling suffers from the trade-off between temporal and spatial resolutions due to the sensor’s
physical limitation. Compressive sensing overcomes this obstacle by combining the sampling and compression
procedures together. A single-pixel-based real-time video acquisition is proposed to record dynamic scenes, and
a fast nonconvex algorithm for the nonconvex sorted l1 regularization is applied to reconstruct frame differences
using few numbers of measurements. Then, an edge-detection-based denoising method is employed to reduce
the error in the frame difference image. The experimental results show that the proposed algorithm together with
the single-pixel imaging system makes compressive video cameras available.© 2016 SPIE and IS&T [DOI: 10.1117/1.
JEI.25.6.063003]
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1 Introduction
Video acquisition captures time-dependent natural scenes
and brings real-time images directly to screens for immediate
observation. It not only serves for the live television (TV)
production, but also for security, military, and industrial
operations including professional video cameras, camcor-
ders, closed circuit TV, webcams, camera phones, and spe-
cial camera systems. In traditional video acquisition, e.g.,
H.261, H.265, and MPEG series, the sampling and compres-
sion procedures are implemented in sequential order. The
Nyquist–Shannon sampling theorem requires the sampling
rate to be at least twice that of the signal frequency for
guaranteed exact recovery. The compression procedure is
implemented by video compression chipsets1 or separate
software.2

Although state-of-the-art video cameras can record most
nature scenes, they do not work for very high-resolution
images or high fps videos because the growth in data storage,
communication, and processing is far behind the growth in
data generation. In space exploration, an image of the shuttle
discovery flight deck could be 2.74 gigapixels,3 and a bubble
dynamics research needs a 500-fps video microscopy.4 More
importantly, commercialized high-performance video cam-
eras are extremely expensive, e.g., the price of a basic
model with 7500 fps, one-megapixel resolution, and 12-bit
color depth (FASTCAM SA5 from Photron) is around
$100,000.

The limitation comes from weak light irradiation and the
readout bandwidth when capturing high-speed objects at a
high resolution. As shown in Fig. 1 and Eq. (1), the reflected
illumination is collected by sensor arrays in a limited space–
time volume

EQ-TARGET;temp:intralink-;e001;63;115J ¼ 1015 F−2tIsrcRqΔ2: (1)

The number of electrons (J) accumulated on each pixel is
reversely proportional to the square of the ratio of the
focal length to the aperture of the lens (F), but proportional
to exposure time (t), incident illumination (Isrc), scene
reflectivity (R), quantum efficiency (q), and the pixel size
(Δ2).5 In video sensing, the exposure time (t) corresponds
to the temporal resolution and the pixel size (Δ2) is related
to the spatial resolution. In other words, the temporal and
spatial resolutions are mutual restraint in conventional
video cameras due to the imaging sensors’ requirement on
the minimum number of accumulated electrons and the
fixed number of total electrons. The spatial resolution will
decrease when the temporal resolution increases. Another
limitation is the sensor’s readout speed. The readout timing
includes an analog-to-digital conversion, clear charge from
the parallel register, and shutter delay, e.g., a one-megapixel,
1000 fps, and 16-bit color camera will need a 4-GB∕s read-
out circuit.

To obtain high-resolution images and high fps videos, the
sampling rate has to be reduced, and compressive sensing
technique can be applied. Compressive sensing6 allows com-
bining both sampling and compression procedures together.
This paradigm directly samples the signal in a compressed
form such that the sampling rate can be significantly
reduced. Compressive sensing has attracted extreme interest
in imaging,7 geophysical data analysis,8 control and robotics,9

communication,10 and medical imaging processing.11

Compressive sensing has been applied in compressive
video sensing since 2006, when the single-pixel camera
setup was first used for video sampling.12 In this first
approach, the three-dimensional (3-D) video was recon-
structed with all the measurements together using 3-D wave-
lets as a sparse representation. This method cannot be used
for real-time video streaming without incurring latency and

*Address all correspondence to: Liangliang Chen, E-mail: chenlia5@msu.edu 1017-9909/2016/$25.00 © 2016 SPIE and IS&T

Journal of Electronic Imaging 063003-1 Nov∕Dec 2016 • Vol. 25(6)

Journal of Electronic Imaging 25(6), 063003 (Nov∕Dec 2016)

http://dx.doi.org/10.1117/1.JEI.25.6.063003
http://dx.doi.org/10.1117/1.JEI.25.6.063003
http://dx.doi.org/10.1117/1.JEI.25.6.063003
http://dx.doi.org/10.1117/1.JEI.25.6.063003
http://dx.doi.org/10.1117/1.JEI.25.6.063003
http://dx.doi.org/10.1117/1.JEI.25.6.063003
http://dx.doi.org/10.1117/1.JEI.25.6.063003
mailto:chenlia5@msu.edu
mailto:chenlia5@msu.edu


delay because all the measurements have to be obtained
before the reconstruction starts. Since then, in order to recon-
struct the frames one by one for the purpose of real-time
streaming, most approaches reconstruct or sample reference
frames with more measurements and find the differences
between two consecutive frames with fewer measurements.
There are mainly two types of strategies: sampling the frame
and sampling the difference between frames. In the first sam-
pling method, in order to obtain a continuous video, motion
estimation techniques are applied to recover frames from
reference frames. For example, the evolution of dynamic tex-
tured scenes was modeled as a linear dynamical system.13 A
multiframe motion estimation algorithm was proposed.14

The latest compressive video sensing research learned a lin-
ear mapping between video sequences and corresponding
measured frames.15 In addition, the correlation between con-
secutive frames in the frequency domain16 and other trans-
form domains17 was also used.

There are also several approaches in sampling the differ-
ence between two frames. For example, Stankovic et al.18

split the video frame into nonoverlapping blocks of equal
size, and compressive sampling was performed on sparse
blocks determined by predicting sparsities based on previous
reference frames, which were sampled conventionally. The
remaining blocks were sampled fully. It would be time-con-
suming to determine the sparse blocks because every block
has to be tested. In addition, directly sampling the difference
between two consecutive frames was employed19 to save the
sampling time.

Though compressive sensing techniques are used in video
sensing, most of the approaches use the convex l1 minimi-
zation to approximate the nonconvex l0 minimization,
which is a nondeterministic polynomial-time (NP)-hard
and difficult to solve. The compressive sensing theorem
can reduce the number of measurements using the l1 min-
imization. However, with nonconvex regularizations, it can
reduce the number of measurements and thus the sampling
rate further so as to achieve real-time video capturing.
Recently, there are many nonconvex regularizations pro-
posed to obtain better performance than the l1 norm in com-
pressive sensing.20,21,22

In this paper, a single-pixel compressive video sensing
framework based on the nonconvex sorted l1 regularization
is proposed for fast and super resolution video. In this frame-
work, we sample reference frames using the spatial sparsity
(individual image sparsity) and the difference between two
frames using the temporal sparsity. In Sec. 2, we first give a
short review about compressive sensing and nonconvex solv-
ers. Then, we propose our nonconvex compressive video
sensing framework. The experimental results are depicted
in Sec. 3.

2 Compressive Video Sensing

2.1 Compressive Sensing
The core of compressive sensing is recovering the sparse
vector x ∈ Rn from a small number of linear measurements
y ¼ Φx, where Φ ∈ Rm×n is the measurement matrix
(m ≪ n). There are many solutions for the underdetermined
linear system if y is in the range ofΦ, and we are interested in
finding the sparsest one among all the solutions. However,
finding the sparsest solution is NP-hard. Therefore, instead
of solving the NP-hard problem, people are looking into
alternative approaches. Convex approaches are of great inter-
est because there are lots of algorithms for solving these con-
vex problems and it is easy to analyze the solutions of the
convex problems. If x is sparse and Φ satisfies some condi-
tions such as the null space property,23 the incoherence con-
dition,24 and the restricted isometry property,25 the following
problem is equivalent for finding the sparest solution:

EQ-TARGET;temp:intralink-;e002;326;553x̃ ¼ arg min
x

kxk1 subject to Φx ¼ y: (2)

When there is noise in the measurements, i.e., Φxþ n ¼ y
with n being the white Gaussian noise, we solve the follow-
ing problem instead:

EQ-TARGET;temp:intralink-;e003;326;483x̃ ¼ arg min
x

kxk1 þ
λ

2
kΦx − yk2; (3)

where λ is a parameter for balancing the data fitting term and
the regularization term. In order to solve these convex l1

problems, many algorithms are proposed.26,27

Although the l1 minimization is fully understood and sta-
ble with theoretical guarantee, the number of required mea-
surements is still high, and the performance is not good in
many applications with a small number of measurements.
For example, radiologists want to reduce more projections
and thus radiation than that required for l1 minimization
in computed tomography. For the difference between two
frames in a video, we want to decrease the number of mea-
surements further such that it can realize higher fps videos
than current cameras can produce. In order to recover signals
from even fewer measurements, nonconvex regularizations
are applied, and a short review will be given in Sec. 2.2.

2.2 Nonconvex Optimization Problems for
Compressive Sensing

In this section, we review several nonconvex regularizations
for compressive sensing and their corresponding algorithms.
Denote x ¼ ðx1; x2; : : : ; xnÞ ∈ Rn, the truth sparse signal as
x0, and xl as the l’th iteration.

The lp (0 ≤ p ≤ 1) term is commonly used,28 and it has
l0 and l1 as special cases. Because of the nonconvexity,
it recovers sparse signals with even fewer measurements
than the convex counterpart, l1. To solve the nonconvex
problems, there are several approaches. We describe three
of them on both the noise-free and noisy cases. First, two
reweighted algorithms for the following noise-free case are
presented:

Fig. 1 Light illumination in single-lens reflex cameras.
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EQ-TARGET;temp:intralink-;e004;63;752x̃ ¼ arg min
x

kxkp subject to Φx ¼ y: (4)

The iteratively reweighted l1 minimization (IRL1)20

replaces the lp term using a weighted l1 term with the
weights depending on the previous iteration. The iteration
is expressed as

EQ-TARGET;temp:intralink-;e005;63;680xlþ1 ¼ arg min
x

Xn
i¼1

1

ðjxlij þ εÞ1−p jxij subject to Φx ¼ y:

(5)

For every iteration, a weighted l1 minimization problem has
to be solved and iterative algorithms are applied.

Similarly, the iteratively reweighted least squares21,22

replace the lp term using a weighted least squares term
with the weights depending on the previous iteration. The
iteration is expressed as

EQ-TARGET;temp:intralink-;e006;63;552xlþ1 ¼ arg min
x

Xn
i¼1

1

ðjxlij2 þ εÞ1−p∕2 jxij
2

subject to Φx ¼ y:

(6)

In this case, there is an analytical solution for the weighted l2

minimization problem, since it is equivalent to a least squares
problem.

Except for these two reweighted algorithms for solving lp
minimization problems, some algorithms for solving convex
optimization problems are applied to solve nonconvex prob-
lems with general nonconvex regularizations.29 One example
is the forward–backward iteration. In each forward–back-
ward iteration, for solving

EQ-TARGET;temp:intralink-;e007;63;387x̃ ¼ arg min
x

rðxÞ þ λ

2
kΦx − yk2; (7)

where rðxÞ is a nonconvex regularization term including
kxkp and the following mentioned nonconvex sorted l1

as special cases, a proximal mapping of the nonconvex regu-
larization term follows a gradient descent on the data fidelity
term, i.e.,

EQ-TARGET;temp:intralink-;e008;63;288xlþ1 ¼ arg min
x

τrðxÞ þ 1

2
kx − ðxl − τλΦTðΦxl − yÞk2:

(8)

However, for lp minimization, there are only analytical sol-
utions when p ¼ 0, 1∕2, 2∕3, and 1.30

The success of lp minimization and both iterative algo-
rithms for solving lp minimization problems depicts that it is
better to assign small weights for components with large
absolute values and large weights for zero components
and components with small absolute values. A nonconvex
sorted l1 that assigns weights based on the ranking of abso-
lute values was developed by Huang et al.31 Let the coeffi-
cients fωigni¼1 be a nondecreasing sequence of nonnegative
real numbers, i.e., 0 ≤ ω1 ≤ · · ·≤ ωn ≠ 0. The nonconvex
sorted l1 regularization is defined as

EQ-TARGET;temp:intralink-;e009;63;99rωðx1; x2; : : : ; xnÞ ¼ ω1jx½1�j þ ω2jx½2�jþ · · · þωnjx½n�j;
(9)

where jx½1�j ≥ · · ·≥ jx½n�j are the absolute values of the com-
ponents in x ranked in decreasing order. Two special cases
of nonconvex sorted l1 are 2-level l1 with w1 ¼
w2 ¼ · · ·¼ wk ¼ a1 < 1 ¼ wkþ1 ¼ · · ·¼ wn and iterative
support detection (ISD) with w1 ¼ w2 ¼ · · ·¼ wk ¼ 0 < 1 ¼
wkþ1 ¼ · · ·¼ wn. In addition, Huang et al. suggested a way
for adaptively changing the weights during the iteration
instead of having a fixed set of weights for better perfor-
mance. The proposed update rule is

EQ-TARGET;temp:intralink-;e010;326;653 ωl
i ¼

�
1; if i > Kl;

e−rðKl−iÞ∕Kl
; otherwise;

(10)

where r controls the rate of decreasing ωi from 1 to 0 and Kl

is the smallest i such that jxl½iþ1� − xl½i�j > kxlk∞∕β with some
positive β.32

2.3 Video Compressive Sampling
Avideo can be considered as a series of images, as shown in
Fig. 2 (left), where the coordinate space ðx; y; tÞ consists both
the spatial domain ðx; yÞ and the temporal domain ðtÞ. Each
frame could be realized as a static natural image that is
redundant because natural images are intrinsically sparse
in a specific domain.24,33 Another redundancy happens
between similar frames in the temporal domain. As shown
in Fig. 3, more than 85% of the pixels have no significant
changes. Therefore, difference coding34 in MPEG and
H.265 series reuses existing frames and updates only the pix-
els with significant changes.

As discussed in Sec. 1, the objective of compressive video
sensing is to combine both compression and sampling pro-
cedures to achieve the signal compression in hardware. In
our proposed compressive video sensing, there are two
types of image frames: intraframes (I-frames in H.264 or
reference frames) and interframes (P-frames in H.264),
shown in Fig. 4. The compressive sampling is applied on
both I-frames and P-frames, where P-frames are recon-
structed by the difference between P-frames and their pre-
vious frames.

Since I-frames are considered as static images and the
image compressive sampling has already been studied for
single-pixel cameras,7,35 a total variation algorithm36 is
applied to recover intraframes from the I-frame sampling.
For the P-frames, because the difference between similar
frames is sparse, a nonconvex regularization is adopted to
reduce the number of samples and thus increase the compres-
sion ratio. We compare the performance of four different

Fig. 2 Sparsity in videos.
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nonconvex regularizations numerically and choose the best
in the experiment. The four regularizations are: lp with
IRL1, ISD, 2-level, and the nonconvex sorted l1 (m-level).
In IRL1, the weights are updated by

EQ-TARGET;temp:intralink-;e011;63;403

ωl
i ¼ 1

jxijþmaxð0.5l−1;0.88Þ : (11)

For 2-level, we choose a ¼ 0.6. For m-level, we choose β ¼
7 and r ¼ 0.1.

We compare the runtimes, root-mean-square error
(RMSE), and the peak signal-to-noise ratio (PSNR) for
these four algorithms on the difference between two con-
secutive frames (64 × 64) in Fig. 5. The difference between
the left and the middle images in Fig. 5 is shown on the right.
We choose the measurement matrices to be randomized
Bernoulli matrices with �1 entries. The sampling rate (the
number of measurements/the number of pixels) is changed

from 6% to 35%. The comparison result is shown in Fig. 6,
where the x-axis represents the sampling rate. When the
number of measurements is small, nonconvex algorithms
are unstable because they can easily be trapped at stationary
points and the strategy for adaptively updating weights may
not work so well. Overall, m-level is the most efficient
and effective algorithm among all these four algorithms.
Therefore, we choose m-level in our experiments in Sec. 3.

Though nonconvex algorithms are able to recover sparse
signals accurately from a small number of linear measure-
ments, there is still error due to the hardware noise and
the modeling error. For example, there is noise in the mea-
surements and the algorithms cannot recover the sparse sig-
nals exactly. In Fig. 7, we show the exact difference image
between two frames on the left and compare it with that
recovered using the nonconvex sorted l1 on the middle. It
is noticed that there are many isolated pixels with small non-
zero values in the recovered difference image, and these pix-
els are supposed to have zero values. In order to improve this,
we develop a simple and effective method to remove these
pixels and update only the pixels in the areas with significant
changes.

We apply the Sobel operator with a pair of 3 × 3 convo-
lution masks on the recovered difference image to find the
edges since the Sobel kernels compute the gradient with
smoothing in both the horizontal and vertical directions.
Then a threshold is selected to obtain a binary mask that indi-
cates the pixels with large gradient values. However, it does
not delineate the outline of the changing area of interest.
Then the binary gradient mask is dilated using the vertical
structuring element followed by the horizontal structuring

Frame 1                                      Frame 2 Difference between frame 2 and 1

Fig. 3 Difference between two consecutive frames. The difference between the left and middle images is
shown on the right. We can see that most pixels are unchanged in these two figures.

I P P P P P PI I

Fig. 4 A frame sequence with one I-frame (reference frame) and
three P-frames.

Fig. 5 Difference image of two consecutive frames; the difference between the left and middle images is
shown in the right.
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element for a better outline. Because the mask shows only
the edges of the difference image and the areas with signifi-
cant changes are inside the edges, the whole areas with sig-
nificant changes are obtained via filling the holes inside the
edges using a flood fill operation via the MATLAB® function
“imfill.” This method keeps the most significant changes and
removes error on the difference image so as to reduce the

reconstruction error in P-frames. Figure 7(c) shows the per-
formance of this postprocessing (denoising) procedure. The
flow chart for this procedure is described in Fig. 8.

Due to the frame difference sensing mechanism, the
reconstruction error accumulates because every time we
reconstruct P-frames using the difference between two con-
secutive frames. The error in the first P-frame is accumulated
to the second P-frame. Therefore, the reconstruction of
the first P-frame after I-frames is very important, and an
improvement on this frame also improves following P-frames.

Fig. 6 Comparison of four nonconvex algorithms for signal recovery at different sampling rates. Overall,
the m-level is the most efficient and effective algorithm.

Fig. 7 Frame difference recovery comparison: (a) ground truth, (b) recovery by nonconvex algorithm,
and (c) after denoising.

Difference recovery image 
using nonconvex algorithms 

Edge detection on difference 
recovery image

Dilate the image

Fill interior gaps

Frame difference detection 
using image segmentation

Fig. 8 Flow chart of denoising using image segmentation.

Table 1 PSNR values for the five reconstructed P-frames with four
methods: difference images between two consecutive images without
the denoising step (m-level); difference images between two con-
secutive images with the denoising step (denoising); difference
images between P-frames and the I-frame without the denoising
step (m-level*); and difference images between P-frames and the
I-frame with the denoising step (denoising*).

P01 P02 P03 P04 P05

m-level 40.8987 37.4587 36.2745 35.6323 35.0012

Denoising 42.3382 37.5839 36.6928 35.9371 35.0856

m-level* 40.8987 39.5386 40.2128 39.3341 39.5685

Denoising* 42.3382 40.5984 41.5240 40.7008 41.0858
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On the other hand, if the number of P-frames between two
consecutive I-frames is small, we can compute the difference
image between the P-frame and the previous I-frame instead
to avoid the accumulated error from previous P-frames.

The next numerical experiment shows that we can apply
the simple denoising procedure to improve the reconstruc-
tion results of the first P-frame and all the P-frames after
that. In this numerical experiment, there are five P-frames
after one I-frame. In Fig. 9, all five P-frames are plotted.
The first row has five ground true frames (P01 to P05). For
the second and third rows, we show the reconstruction results
using the difference image between two consecutive frames,
and the reconstruction results using the difference image
between P-frames and the I-frame are shown in the fourth
and fifth rows. The reconstruction results usingm-level with-
out the denoising step are shown in the second row (P11 to
P15) and the fourth row (P31 to P35). The reconstruction
results with the denoising step are shown in the third row

Table 2 PSNR values for the five reconstructed P-frames with four
methods: difference images between two consecutive images without
the denoising step (m-level); difference images between two con-
secutive images with the denoising step (denoising); difference
images between P-frames and the I-frame without the denoising
step (m-level*); and difference images between P-frames and the
I-frame with the denoising step (denoising*).

P01 P02 P03 P04 P05

m-level 2.2994 3.4167 3.9157 4.2163 4.5340

Denoising 1.9482 3.3678 3.7317 4.0709 4.4901

m-level* 2.2994 2.6891 2.4883 2.7532 2.6799

Denoising* 1.9482 2.3802 2.1396 2.3523 2.2504

P31 P32 P33 P34 P35

P41 P42 P43 P44 P45

P01 P02 P03 P04 P05

P11 P12 P13 P14 P15

P21 P22 P23 P24 P25

Fig. 9 Accumulation error, ground true frames (P01 to P05), m-level without the denoising (P11 to P15),
m-level with the denoising (P21 to P25), m-level directly to I-frame without the denoising (P31 to P35),
m-level directly to I-frame with the denoising (P41 to P45).

Journal of Electronic Imaging 063003-6 Nov∕Dec 2016 • Vol. 25(6)

Chen et al.: Nonconvex compressive video sensing



(P21 to P25) and the fifth row (P41 to P45). The PSNR and
RMSE values are shown in Tables 1 and 2. From both tables,
we can see that the PSNR value is decreasing and the RMSE
value is increasing for the five P-frames, if the difference
images between two consecutive frames are used and the
denoising step improves all P-frames, especially the first
P-frame. However, if all the P-frames are compared with
the I-frame, the improvement of the denoising step is
large for all five P-frames. This numerical experiment sug-
gests that we may choose to compare P-frames with the pre-
vious I-frame instead of the previous frame because the error
in the previous P-frames will be accumulated.

The whole algorithm for P-frames reconstruction is
depicted in Table 3. The steps (a) to (c) show the nonconvex
sorted l1 calculation process, while steps (d) to (e) demonstrate

the edge-detection denoising procedure to reduce the error in
the compressive video sensing.

3 Experiments
The projection measurement matrices can be implemented
by spatial light modulators such as the digital micromirror
device (DMD) and the liquid crystal on silicon. The DMD
runs as fast as 32,000 Hz, and we use a DMD with 6000 Hz
in the experiments. A DMD chip has several thousand micro-
scopic mirrors arranged in a rectangular array on its surface.
These mirrors correspond to the pixels in the image to
be reconstructed. The mirrors can be individually rotated
�12 deg to an on or off state. These two states correspond
to �1 in the Bernoulli matrix. During the sampling process,
the measurement matrix is sent to the DMD controller row
by row. The matrices for P-frames are selected from the rear
end of the matrix for the previous I-frame, e.g., if the pre-
vious I-frame measurement matrix is Φ ∈ Rm×n, then the
P-frame measurement matrix will be Φðm − pþ 1∶m; ∶Þ ∈
Rp×n with p ≪ m. During the experiments, the irradiator
(THORLABS LIU850A) is 850 nm near the IR source,
and a silicon photodiode (THORLABS FDS1010) is chosen
as the receiver sensor.

We validate the proposed nonconvex compressive video
sensing system using two experiments: a linear moving
object and a rotating object. In the first experiment with a
linear moving airplane in Fig. 10, the frame rate is 10 fps.
There is only one P-frame between two consecutive I-frames,
i.e., t00; t02; : : : ; t16 are I-frames, while t01; t03; · · · ; t17 are
P-frames. The sampling ratios are 18% and 8.5% for I-
frames and P-frames, respectively. The proposed system
records the whole scene in real time.

The second experiment is to capture the rotation of a fan.
As shown in Fig. 11, each blade is designed with a different
length for easy identification. There are three P-frames
between two consecutive I-frames, and each row in Fig. 11

Table 3 P-frames reconstruction algorithm.

Algorithm

Initialize x0, β, r and τ

for l = 1: maxit

a. Compute K l

b. Update ωl

c. Apply one forward–backward iteration and check stopping
rules.

end

d. Find the areas with significant changes

e. Reconstruct the P-frame by updating only the pixels values in the
areas identified in the previous step.

t00 t01 t02 t03 t04 t05

t06 t07 t08 t09 t10 t11

t12 t13 t14 t15 t16 t17

Fig. 10 Moving object video recording.
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shows one I-frame on the first column and three P-frames
after the I-frame on the last three columns. The frame rate
is 18 fps, and the sampling ratios are 20% and 9% for I-
frames and P-frames, respectively.

4 Conclusions
Nonconvex compressive sensing algorithms require a fewer
number of linear measurements to reconstruct a sparse signal
than convex algorithms. In this work, the nonconvex sorted
l1 approach is employed to reconstruct the difference
images, which are sparse, and decrease the sampling rate.
Furthermore, an edge-detection-based denoising step is
applied to reduce the error on the difference image. Thus,
it requires a smaller number of measurements compared
to the conventional compressive video sensing. We tested
our algorithm on the real-time video reconstruction in the
experiments. Though the frame rate in the experiments is
only 18 fps, it can reach up to 105 fps based on current
DMD mirror speed (maximum 32,000 Hz).
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