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Abstract. Randomly encoded compressive sensing (CS) has poten-
tial in fast acquisition of magnetic resonance imaging (MRI) data in
most naturally compressible images. However, there is no guaranteed
good performance for general applications by any of the traditional
CS-MRI theoretical schemes developed so far. On the other hand,
recent research demonstrates that adaptive sampling exploiting the
tree structure of nonzero wavelet coefficients of signals allows
more control over the sensing procedure in the form of feedback
and improve the CS performance significantly. Following recent
research strategies in CS-MRI, well-known adaptive sampling strate-
gies in the wavelet domain, as used in image compression, to encode
the MRI data yielding good reconstruction quality are introduced.
Based on this underlying characteristic, adaptive k -space trajectories
are designed with tailored spatially selective RF excitation pulses cre-
ated by Battle-Lemarie wavelet functions. The input vectors formed
from these significant samples of multilevel wavelet decomposed
images are used in a CS framework for reconstruction of MR images.
This MR image reconstruction uses a CS algorithm based on the
minimization of total-variation regularized signal to provide stable
results. The simulated results show that this approach can reduce
almost 70% of MR image acquisition time and achieve good recon-
structed image quality. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JEI.22
.2.021009]

1 Introduction
In conventional magnetic resonance imaging (MRI), scan-
ners acquire samples of the encoded image in a spatial fre-
quency (Fourier) domain, which is called k-space. The MR
image of the object in the spatial domain can be recon-
structed through inverse Fourier transform of the k-space
data.1 A well-known problem in MRI is its long scan time
that depends on the required number of acquired samples
determined through Shannon-Nyquist sampling theory.
Potential reconstruction of MR images from a reduced num-
ber of acquired samples without degrading the image quality
would offer an effective method to reduce scan time while

improving the resolution of current MR imagers.
However, insufficient sampling of k-space data violates the
Shannon-Nyquist criterion and produces aliasing artifacts
and noise in reconstructed MR images. Several common
approaches to alleviate these artifacts and noise are to exploit
redundancies in k-space and to use temporal filtering, such as
partial-Fourier, variable-density sampling, unaliasing by
Fourier-encoding the overlaps using the temporal dimension
(UNFOLD), etc.2–5 However, these methods still do not over-
come low sampling rate artifacts. Investigations on the fea-
sibility of wavelet encoding in MRI demonstrated better
flexibility and adaptability in MR data acquisition than
Fourier encoding.6–8 Unfortunately, the practicality of wave-
let encoding in faster acquisition of MRI data has not been
demonstrated in the above efforts.

Through recent developments in the theory of compres-
sive sensing (CS), MR images with a sparse representation in
some transform domain, under the constraint of incoherent
measurement, can be recovered from “randomly” under
sampled k-space.9,10 CS theory here exploits such sparsity
of MRI data and reconstructs an MR image from very
few incoherent measurements through a nonlinear pro-
cedure. Several methods have applied CS to Fourier-encoded
MRI to reduce scan time.10–17 These methods are based on
two characteristics of conventional MRI: MR images are nat-
urally compressible in certain transform domains, and the
sampling pattern is incoherent with respect to some sparsify-
ing transformations. The natural fit of CS to MRI is dis-
cussed10 by reviewing the constraints required for successful
reconstruction. Lustig et al.11 have applied CS to recover MR
images from a subset of Fourier-encoded k-space acquired
by pseudo-random variable-density under sampling of
phase-encoding to achieve fast imaging. The discrete cosine
transforms (DCT), wavelet transform and finite-difference
transform were used to exploit the sparsity of brain and
angiogramMR images. The incoherence between these spar-
sifying transforms and Fourier operator were measured by
the point spread function (PSF), and transform PSF
(TPSF), whereas variable density random under sampling
was used to improve the degree of incoherence. As their
results showed, this CS approach achieved high reduction
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of imaging time in three-dimensional (3-D) Fourier-encoded
imaging with good reconstruction performance. However, in
two-dimensional (2-D) Fourier-encoded MRI, this approach
does not achieve such benefit because only one-dimensioanl
(1-D) sparsity was exploited.

In mathematical CS theory, Fourier basis is maximally
incoherent with the canonical basis.9,18 In traditional MRI,
because the k-space data are encoded by Fourier basis, the
incoherent measurement constraint is only satisfied when the
MR signal is sparse in the spatial domain. Consequently, it
can be seen11 that CS-MRI is more suitable for angiogram
imaging than for brain imaging because angiograms are
sparse in their pixel representation. Therefore, Fourier-
encoded MRI is not a good encoding scheme for stable and
accurate CS reconstruction in most scenarios where MR sig-
nals are not sparse in the spatial domain. In addition, some
existing crucial limitations remain unresolved in Fourier-
encoded MRI, such as optimization of sampling trajectories
and the computation time of reconstruction algorithms.

Several studies have also investigated non-Fourier MRI
and CS schemes to reduce the image acquisition time while
improving the reconstruction quality.19–21 Random encoding
of k-space is achieved by tailoring spatially selective RF
pulses to satisfy CS constraints in non-Fourier domains,19

achieving impressive reconstruction results. The CS con-
straints are satisfied better by making the energy of k-
space spread out in non-Fourier domain and pseudo 2-D
random sampling.20,21 Despite the potential of the CS
approaches in non-Fourier MRI to outperform traditional
Fourier MRI, no general CS approach has yet been devel-
oped with strict theoretical justification.

Recent research on application of CS to fast MRI suggests
that there is no theoretical performance guarantee for CS-
MRI with or without random encoding, and new CS based
methods should be developed for specific applications.19

In recently published CS papers, adaptive sampling in the
wavelet domain has been proposed to improve the signal
recovery performance.22,23 Adaptive sampling schemes
exploiting the tree structure of nonzero wavelet signal coeffi-
cients have been used to replace the ‘universal’ acquisition of
random or pseudo-random sampling in traditional CS meth-
odology.22,23 These schemes use nonrandom sampling and
allow more control over the sensing procedure in the form
of feedback to improve the CS performance significantly
with fewer measurements and higher reconstruction quality.
Haupt et al., have demonstrated that the adaptive sampling
in CS, called compressive distilled sensing, has the advantage
of significantly improving the error bounds compared to tradi-
tional CS schemes without adaptive sampling.24 These adap-
tive strategies have the potential to achieve more accurate and
robust signal recovery in some practical applications.25

Therefore, if adaptive sampling is used in wavelet-encoded
CS-MRI, it is possible to improve the reconstruction quality
of images. We introduced well-known adaptive sampling in
the wavelet domain, as used in image compression,26–28 to
encode the MRI data yielding good reconstruction quality.

In this paper, an efficient implementation of a specific CS
approach in a simulator that allows good MRI reconstruction
from a sparse wavelet-encoded k-space following the well-
known embedded zero-tree structure for image coding is pre-
sented.26–28 With this approach, sparsity of image data in the
spatial domain is not required. In wavelet-encoded MRI, the

k-space data are encoded in multiple levels in the wavelet
domain.6 The multilevel decomposed image is then trans-
formed into a vector of sparse wavelet coefficients, and
these few significant coefficients are encoded to reconstruct
the image with high fidelity.26 Therefore, it is possible to re-
present the k-space data with only a few significant samples
and still reconstruct an MR image with a reduced scan time.
Additionally, the reconstruction quality of such under sampled
k-space may be guaranteed by using the input vector of sparse
wavelet coefficients in a specific CS framework. The follow-
ing sections will discuss the proposed CS-MRI approach in
the wavelet domain to achieve fast imaging and assess the
reconstruction performance at different sampling rates,
noise and sparsity levels. Section 2 introduces the procedure
of sparse acquisition in wavelet-encoded MRI through the
description of RF pulse definition, pulse sequence implemen-
tation and adaptive k-space trajectories in a simulator.
Section 3 presents an efficient CS algorithm based on the min-
imization of total-variation regularization and a least squares
measurement of signal to reconstruct MR image from these
sparsely encoded k-space samples in the wavelet domain.
Section 4 discusses the simulation results and reconstruction
performance for phantom and brain images. Section 5
describes feasibility of future applications of our work.

2 Implementation of Sparse Data Acquisition in
Wavelet-Encoded k-Space

2.1 Sparsity of Image/Signal in Wavelet Domain
The wavelet transform of natural images produces a large
number of coefficients of values with zero or near-zero mag-
nitudes and a small number of significant values (e.g., the
ones with larger magnitude than a determined threshold
T). If we localize and encode these significant values, it
is possible to reconstruct images with high fidelity. In addi-
tion, wavelet transform provides a compact multiresolution
representation of the image, and the significant wavelet coef-
ficients are well-organized in hierarchical trees. Thus, the
high-resolution detail tends to be significant only if signifi-
cant details can be found at all resolutions from the lowest
level. This property is also commonly used to predict the
positions of significant information across scales in wave-
let-based compression algorithms.26–28 Therefore, for many
natural or medical images, it is possible to represent the
wavelet-encoded k-space using only a few tree structured
significant samples. These samples capture most of the
signal information and can be used to reconstruct the MR
image with insignificant distortion. This sparse acquisition
of wavelet-encoded k-space data is achieved by designing
spatially selective RF excitation pulses for generating adap-
tive k-space trajectories with reduced scan time.

2.2 Wavelet-Encoded MRI
Acquisition of MRI data in the wavelet domain has been
investigatedbyanumberof researchers7,8 toprovidemore flex-
ibility and adaptivity than traditional Fourier-encoded MRI.
Wavelet-encoding is used to replace phase-encoding, and
thewavelet-encoded k-space is represented in multiple levels.
The low-resolution approximation subspace V−j is spanned
by a family of scaling functions, and the high-resolution detail
subspace W−j is spanned by a family of wavelet functions.
The k-space can be reconstructed through these subspaces,
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S ≈ V0 ¼ V−1 ∪ W−1 ¼ V−2 ∪ W−1 ∪ W−2 ¼ : : :

¼ V−J ∪ W−1 ∪ : : : ∪ W−J: (1)

In particular, assume that x-axis is the wavelet encoding
direction and y-axis is the frequency encoding direction. In
each subspace, the resolution of the y-axis is constant, and
the resolution of the x-axis is varied with the decomposition
level j. In the j-level subspace, the resolution along the
x-axis can be calculated by nj ¼ N · 2−j, where N is the
highest resolution when j ¼ 0. In order to simplify the dis-
cussion, we use ρ̄ðxÞ to represent one line of fully sampled
frequency encoding at the location x, e.g., ρ̄ðxÞ ¼P

y ρðx; yÞ expð−i2πky · yÞ. Therefore, the wavelet-encoded
MRI can be considered as wavelet transform of one dimen-
sion signal ρ̄ðxÞ. For level J, each subspace is constructed by
wavelet coefficients as follows:

V−J∶
�
Ā−Jjā−J;l ¼

X
x

φ−J;lðxÞρ̄ðxÞ; l ¼ 0; 1; : : : ; N2−J
�
;

(2)

and

W−j∶
�
D̄−jjd̄−j;k ¼

X
x

ψ−j;kðxÞρ̄ðxÞ; k ¼ 0; 1; : : : ; N2−j
�
:

(3)

Here, φ−J;lðxÞ ¼ 2−J∕2φ0;0ð2−Jx − lÞ, and ψ−j;k ¼ 2−j∕2

ψ0;0ð2−jx − kÞ, j ¼ 1; 2; : : : ; J. The coefficient set Ā−J in
V−J in terms of the scaling function φ−J;lðxÞ represents a
coarse approximation of the signal. The coefficient sets
{D̄−j, j ¼ 1; 2; : : : ; J} in terms of the wavelet function
{ψ−j;kðxÞ, j ¼ 1; 2; : : : ; J} represent the detail or difference
between the coarse approximation and a finer resolution
approximation. From Eqs. (2) and (3), we observe that
the sparse acquisition of a signal can be achieved by tailoring
spatially selective RF excitation pulses.

A hierarchical binary tree structure exists in the wavelet
coefficients set, where all wavelet coefficients can be
arranged by a “parent–child” relationship.28,29 The coeffi-
cient in D̄−J is called “parent,” and all coefficients corre-
sponding to the same spatial location in {D̄−j, j ¼
1; 2; : : : ; J − 1} are called “child.” If the “parent” is insignifi-
cant, all its “children” are insignificant. All “parents” are
tested first for significance, and then the positions of all sig-
nificant “children” are contained in their trees. It is proposed
that the wavelet-encoded MRI data be acquired starting with
the lowest resolution k-space W−J and then the next finer
scale k-space {W−j, j ¼ 1; 2; : : : ; J − 1} be undersampled
based on the tested results inW−J to acquire only significant
samples. The support of coefficient set D̄−J is defined to be
the positions where its coefficients d̄−J;k are larger in mag-
nitude than an application dependent threshold T. The sup-
port of D̄−J is thus represented by

suppðD̄−JÞ ¼ fk����d̄−J;k�� ≥ Tg ⊆ ½1; N2−J�: (4)

Here, T ≥ 0 determines the number of samples in k-space.
According to the support of D̄−J, we could calculate the sup-
port of coefficients {D̄−j, j ¼ 1; 2; : : : ; J − 1} corresponding
to the tree structure, denoted as {suppðD̄−jÞ, j ¼
1; 2; : : : ; J − 1}.

2.3 Simulation of Sparse MR Data Acquisition
in the Wavelet Domain

Most MRI simulators are developed based on the solutions of
the Bloch equation, and the generated MR signal is encoded in
Fourier domain.30,31 Wavelet domain simulators were devel-
oped in earlier years but did not demonstrate any advantage
in MRI scanning time.6–8 In this paper, a simulator generating
MR signal in wavelet domain using adaptive sampling in a CS
framework has been developed by designing RF excitation
pulses and pulse sequences as described in detail in the fol-
lowing sections. This simulator generating MR signals in the
wavelet domain is developed for sparse data acquisition as
shown in Fig. 1. The executable code in MATLAB for our
simulator can be accessed from the following link: http://
www2.ece.ttu.edu/CVIAL/simulators/WaveletCSMRISim.exe.
Our simulator is a modified version of a Fourier domain MRI
simulator developed by Yoder et al. in 2004.30

2.3.1 Simulator overview

An overview of the proposed MRI simulator to acquire
sparse wavelet-encoded k-space data is shown in Fig. 1.
In the proposed data acquisition scheme, we do not need
the information from fully sampled data. We actually
acquire the wavelet-encoded MRI data starting with the
lowest resolution k-space W−J by designing spatially local-
ized wavelet shaped RF excitation pulses for generating k-
space trajectory by replacing the traditional phase encoding
trajectory. Only the lowest resolution trajectory is fully
sampled (requiring a small number of RF excitation pulses
and the least data acquisition time) to identify for the
significant parent wavelet coefficients and to allow full
sampling across the levels if desired. The subsequent
finer scale k-space {W−j, j ¼ 1; 2; : : : ; J − 1} data are gen-
erated by a multiple (e.g., two to eight for four level wavelet
encoding based on the parent–child tree structure of wave-
let coefficients) of RF excitation pulses as shown in the
encoding overview in Fig. 1 (see Sec. 4.2 for details of
implementation). Using a virtual object, scanning parame-
ters, such as B0, Gx, Gy (magnetic gradient along x and y
axis), flip angle, TE (time echo), TR (time repetition), are
initialized first. This simulator generates k-space data in
multiple levels. For J-level imaging, the level j of k-space
acquisition starts from J to 1. When j equals to J, two RF
excitation pulses, which are designed, respectively by
the J’th-level scaling and wavelet functions, are used to
generate spin echo signals. After wavelet-encoding and fre-
quency-encoding, the subspaces V−J andW−J are acquired,
and then significant samples are tested in W−J to construct
{suppðD̄−jÞ, j ¼ 1; 2; : : : ; J − 1}. When level j is from J −
1 to 1, RF excitation pulses are designed by j’th-level wave-
let function and indexed by supp (D̄−j) to acquire under
sampled k-space W-j. Finally, the sparse-encoded k-space
S is constructed by these subspaces V−J, and W−J to
W−1 to contain all significant samples. To simulate realistic
images, noise is added to the k-space.

2.3.2 Design of RF excitation pulses

Excitation profiles in this wavelet-encoded MRI simulator
are varied and shaped by functions of wavelet transform.
At small flip angles (less than 30 deg), RF pulses are shaped
by Fourier transform of excitation profiles. Here, we utilize
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the Battle-Lemarie wavelet basis functions as shown in
Fig. 2 to design RF pulses. Figure 2(a) shows the wavelet
scaling and basic functions φ0;0ðxÞ and ψ0;0ðxÞ in the spatial
domain. The major reason to choose this specific basis func-
tion set is that their Fourier transforms are smooth and rap-
idly decay to zero as shown in Fig. 2(b). This basis set
provides short RF pulses with relatively precise spatial exci-
tation profiles.6

For J-level wavelet encoding, assume that the gradient
strength along x-axis is Gx, the FOV along x-axis is X cen-
timeters, and the highest resolution is N. According to
Eqs. (1)-(3), we combine one set of scaling functions
{φ−J;kðxÞ, k ¼ 0; 1; : : : ; N2−J − 1} and J sets of wavelets
{ψ−j;kðxÞ, j ¼ 1; : : : J; k ¼ 0; 1; : : : ; N2−J − 1} required to
shape the excitation profiles. Therefore, (J þ 1) RF pulse
profiles Φ−J;k and {Ψ−j;k, j ¼ 1; : : : ; J} are required to gen-
erate k-spaces V−J and {W−j, j ¼ 1; : : : J}, where Φ−J;k
and {Ψ−j;k, j ¼ 1; : : : ; J} are Fourier transforms of
φ−J;kðxÞ and {ψ−j;kðxÞ, j ¼ 1; : : : ; J}, respectively. The
excited location along x-axis is determined by the center car-
rier frequency of the RF pulse. In order to cover the entire
FOV, the fundamental size Δx of translation step is X∕N.
According to the Bloch equation, there is a linear mapping

of the resonant frequency ωx of the spins and the spatial loca-
tion x, i.e., ωx ¼ γGxx, and the fundamental frequency step
Δωx ¼ γGxΔx, where γ is gyromagnetic ratio (approxi-
mately 42.58 MHz∕T for hydrogen). For small-flip-angle
excitation, the carrier frequencies of each pulse in {Φ−J;k}
and {Ψ−j;k} are offset by {k · 2JΔωx} and {k · 2jΔωx} cor-
respondingly to excite each of the locations {k · 2JΔx} and

Virtual object 

Build RF pulse 
designed by Jth-level 

scaling function 

Generate Spin Echo 
signals 

Wavelet encoding 

Frequency encoding 

Acquire the lowest 
resolution 

approximation 
subspace V-J 

Initialize scanning 
parameters: B0, Gx, Gy, 
flip angle, TE, TR, etc. 

Build RF pulse 
designed by Jth-level 

wavelet function  

Generate Spin Echo 
signals 

Acquire the high-
resolution detail 

subspace W-j 

Test significant 
samples in W-J and 
construct supp (D-

J+1), ..., supp (D- 1)  

j == J? 

Start wavelet encoding 
level j from J to 1 

Yes 

No 

Build RF pulse designed 
by j-level wavelet 

function selected by supp 
(D-j) 

Wavelet encoding 

Frequency encoding 

If j == 
J 

k-space construction by 

S = V-J W-J ... W-1
 

 

Noise 

Fig. 1 An overview of wavelet-encoded MRI simulator for sparse data acquisition.

(a) (b)

Scaling function 

Wavelet Fourier transforms of scaling 
function and wavelet 

Fig. 2 Battle-Lemarie functions. (a) Scaling and wavelet basis func-
tions in time domain; (b) Fourier transforms of scaling and wavelet
functions.
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{k · 2jΔx}. The duration time Δt of pulse {Φ−J;k} is com-
puted by Δt ¼ 1∕ð2JΔωxÞ and used to compute the half-
power width of {Φ−J;k}. For example, in 4-level wavelet
encoding (e.g., J ¼ 4), Gx ¼ 1 G∕cm, X ¼ 25.6 cm, and
N ¼ 256. Five types of pulse profiles, labeled RF-V4,
RF-W4, RF-W3, RF-W2 and RF-W1, are required to pro-
duce these RF pulses Φ−4;k and {Ψ−j;k, j ¼ 1; : : : ; 4}.
The fundamental frequency step Δωx is 426 Hz, and the
duration time Δt of pulse RF-V4 is approximately
0.15 ms, as shown in Fig. 3. After reconstruction of MR
images in the spatial domain, the imaging resolution of
1 mm can be achieved.

Any deviation of Gx (e.g., B1 inhomogeneity along x-
axis) would result in a distortion of excitation profiles,
especially occurring in high static field (B0 ≥ 3T) and
with tailored RF pulses. In practice, this distortion can be
corrected using a prescan with the same sequence. A fully
sampled image acquired for each spatially selective pulse
is used as a standard to compute compensation parameters
for each excitation profiles.19 The inhomogeneity maps gen-
erated from 3-D images are acquired by prescans and the
carrier frequency and amplitude of pulses are adjusted to
excite a uniform slice.32 In this paper, if the inhomogeneity
maps (e.g., G 0

x) is acquired using prescans, the distortion of
excitation profiles can be calibrated by adjusting the carrier
frequency of each pulses. In the simplified version of this
simulator, we neglect the inhomogeneity in Gx and there
is no distortion of excitation profiles.

2.3.3 Pulse sequences

During MR imaging, the timing of pulse sequences deter-
mines the RF signal acquisition and k-space trajectories.
Pulse sequences contain RF pulses and magnetic field gra-
dients. In wavelet-encoded MRI simulator, the timing of
pulse sequences is defined with spatially selective RF exci-
tation and adaptive k-space trajectories to yield a sparse
encoding scheme.

As shown in Fig. 1, at the beginning, RF pulses {Φ−J;k,
k ¼ 1; 2; : : : ; N · 2−J} and {Ψ−J;k, k ¼ 1; 2; : : : ; N · 2−J}
with the carrier frequency offset by {k · 2JΔωx} are used
to generate J-level wavelet-shaped excitation profiles
along x axis. In the following step, a precession with appli-
cation of magnetic gradient along y axis is specified by its
duration and the gradient magnitude to fill the k’th line of

frequency-encoding in k-space. After N · 2−J RF pulses
and lines of frequency-encoding, the k-space V−J and
W−J are fully sampled. In W−J, the positions of significant
samples, suppðD̄−JÞ, are tested by Eq. (4) and then
{suppðD̄−jÞ, j ¼ 1; 2; : : : ; J − 1} are constructed. When j
is from J − 1 to 1, RF pulses {Ψ−j;k, k ∈ suppðD̄−jÞ}
with the carrier frequency offset by {k · 2jΔωx} and mag-
netic gradient are applied to achieve the trajectory consisting
only of significant samples in W−j. Finally, the sparsely
encoded k-space S constructed by these subspaces V−J,
W−J to W−1 contains the significant samples.

2.3.4 Noise

In real MRI scanners, the acquired raw k-space data are con-
sidered to be corrupted by complex white Gaussian noise
with the same variance in the real and imaginary parts.
After reconstruction of MR images from the corrupted k-
space data, the noise embedded in the image intensity has
Rayleigh statistics in the background and Rician statistics
in the signal regions.33,34 Therefore, this noise model is
used in this simulator with different signal to noise ratio
(SNR), with SNR is defined as

SNR ¼ 20 log10
Asignal

Anoise

; (5)

where Asignal is the average root mean square (RMS) ampli-
tude of the signal, and Anoise is the average RMS amplitude of
the noise.

3 CS Reconstruction of MR images

3.1 CS Scheme in Wavelet-Encoded MRI
In the proposed wavelet-encoded MRI simulator, if k-space
data are fully sampled based on Shannon-Nyquist sampling
theory, an MR image could be reconstructed by inverse
wavelet transform along the wavelet-encoding direction
and inverse Fourier transform along the frequency-encoding
direction. If k-space data are undersampled, this method
cannot reconstruct MR images accurately. CS theory
offers a potential to reconstruct a compressible signal
from far fewer samples than that required by Shannon-
Nyquist sampling theory and provides a new approach to
overcome conventional limitations in signal sampling.9,18

Therefore, CS may be applied to reconstruct MR image
from under sampled k-space. The reconstruction quality
of such under sampled k-space is guaranteed by using the
input vector of sparse wavelet coefficients in a specific
CS framework.

Because the frequency encoding is fully sampled, if ρ̄
is recovered, MR image ρ can be reconstructed by inverse
Fourier transform of ρ̄. The main task of CS reconstruction
is to reconstruct ρ̄ from the sparse wavelet-encoded k-space
replacing the traditional phase encoding direction.
According to Eq. (2) and (3), Ā−J and D̄−j can be represented
as

Ā−J ¼ Φ−Jρ̄ (6)

and

D̄−j ¼ Ψ−jρ̄; (7)

0 0.5 1 1.5 2 2.5

Time(ms)

RF-W1

RF-V4

RF-W4

RF-W3

RF-W2

Fig. 3 RF pulse profiles for 4-level wavelet encoding.
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where Φ−J is the N2−J × N matrix whose rows are φ−J;lðxÞ
for l ¼ 1; 2; : : : ; N2−J, and Ψ−j is the N2−j × N matrix
whose rows are ψ−j;kðxÞ for k ¼ 1; 2; : : : N2−j. We denote
Ā ¼ Ā−J,D̄ ¼ ½D̄−J; D̄−Jþ1; : : : ; D̄−1�, Φ ¼ Φ−J and Ψ ¼
½Ψ−J;Ψ−Jþ1; : : : ;Ψ−1�. Therefore, the measurement y of
wavelet-encoded k-space can be represented as

y ¼ Eρ̄ ¼
�
I 0
0 F

��
Ā
D̄

�
¼

�
I 0
0 F

��
Φ
Ψ

�
ρ̄; (8)

where E is the sensing matrix, I is the identity matrix, F ∈
RM×ðN−N2−JÞ is a rectangular matrix that selects M elements
of any (N − N2−J)-dimensional vector (M < N − N2−J) and
is determined by {supp suppðD̄−jÞ, j ¼ 1; 2; : : : ; J}. We
consider the global sensing matrix A and the sparse wavelet
coefficients set α in Eq. (8) to be

A ¼
�
I 0
0 F

�
and α ¼

�
Ā
D̄

�
: (9)

Because the sensing matrix E involves partial wavelet trans-
form, it is not suitable to exploit the sparsity of ρ̄ by wavelet
coefficient set α due to the “incoherent” constraint in the CS
framework. Most real MR signals are approximately piece-
wise smooth and have a small total variation (TV),11,19

which is defined as TVðxÞ¼P
i;j ½ðxiþ1−xi;jÞ2þðxi;jþ1−

xi;jÞ2�1∕2. The use ofTV regularization could promote sparsity
of finite differences in MR images and reduce ringing artifacts
near edges that are caused by tailoring of the wavelet coeffi-
cients.8 Therefore, the reconstruction of ρ̄, denoted as ρ̂, can
be computed by solving the following problem:35

ρ̂ ¼ argmin TVðρ̂Þ s:t: kAα − ykl2 ≤ ε2; (10)

wherel2-norm is defined askxkl2
¼ ðPi jxij2Þ1∕2 and param-

eter ε2 controls the fidelity of ρ̂ to the measurements y and is
determined by estimating the noise variance. Nesterov’s algo-
rithm can be used to solve the Lagrangian form of (10) to
achieve the reconstruction by 36

minimize λTVðρ̂Þ þ ��Aα − y
��
l2
; (11)

whereλ > 0 isused tobalanceTV regularization, and themeas-
urement consistency isexperimentally set.Largeλ leads tostair-
case effect. To solve the CS problems in Eq. (11), the CVX
software package by Grant, Boyd, and Ye was used (http://
www.stanford.edu/~boyd/cvx). Although the CVX package
is a slow code, we can acquire the raw k-space data first and
then implement reconstruction off-line. This procedure still
reduces the scanning time and provides the potential to achieve
fast imaging.

3.2 Reconstruction Stability
In order to guarantee the performance of reconstruction by
Eq. (10), the global sensing matrix A in Eq. (9) must satisfy
the restricted isometry property (RIP).37,38 If A satisfies the
RIP of order k, for all k-sparse vectors α,

ð1 − δkÞkαkl2 ≤ kAαkl2
≤ ð1þ δkÞkαkl2

; 0 ≤ δk < 1;

(12)

where δk is the isometry constant, which should be a small
number to satisfy RIP constraint. Because the degree of

coherence may be considered as isometry constant of
order 2, the RIP-based guarantees are generally stronger
than incoherence-based guarantees for stable and accurate
reconstruction.39 The reconstruction performance is
improved as δk is made smaller. For example, from recent
CS papers,38–40 if δ2k <

ffiffiffi
2

p
− 1 in a noiseless environment,

the k-sparse vector α can be reconstructed exactly by Eq. (11)
with ε2 ¼ 0 with fewer than k nonzero entries. However,
given any matrix A, it is often infeasible to compute practi-
cally useful RIP-based guarantees for all sparse vectors α due
to computational problems. Therefore, we investigate the
RIP guarantees for A, which is designed adaptively based
on a sparse vector α.

In Eq. (8), the measurement y is divided into two parts y0
and y1, where y0 ¼ Ā is the fully sampled scaling coefficient
set and y1 ¼ FD̄ is the under sampled wavelet coefficient set
D̄. Therefore, the measurement consistence constraint
kAα − ykl2

≤ ε2 equals to kFD̄ − y1kl2 ≤ ε2, and the RIP
condition in Eq. (12) can be rewritten as

ð1 − δkÞkD̄kl2 ≤ kFD̄kl2 ≤ ð1þ δkÞkD̄kl2
: (13)

Larger values of kFD̄kl2
result in smaller δk. For example,

if kFD̄kl2
¼ kD̄kl2

, δk ¼ 0. Thus, all nonzero entries in D̄
are contained in the under sampled k-space y, and ρ̄ can be
recovered exactly. Therefore, sparse acquisition of wavelet-
encoded k-space data can result in a smaller value of δk than
other encoding methods by including as many significant
samples as possible in such under sampled k-space. In addi-
tion, for each MR image, specific global sensing matrix A is
constructed adaptively by investigation of sparsity in wave-
let-encoded k-space.

3.3 CS Reconstruction Experiment
The numerical experiments for CS reconstruction of 1D
piecewise smooth signal {x½n�, n ¼ 1; 2; : : : ; 256} are per-
formed by 4-level sparse wavelet encoding. The proposed
CS reconstruction result from significant wavelet coefficients
only, denoted as x�, is compared with the best sparse
approximation result, denoted as x 0, which includes the
zero-filled insignificant coefficients as well.

Figure 4 shows the reconstruction results x� and x 0 with
different measurement number M ¼ 60, 88, 116 and 144.
The measurement y at each sampling number is acquired
by sparse encoding in the wavelet domain. CS reconstruction
performs better than the best sparse approximation
reconstruction does with x� approaching the original signal
x closely under all conditions. Table 1 shows RIP constants
and reconstruction SNRs at different measurement number
M. Larger values of M result in smaller values of δk and
higher reconstruction SNRs by CS with better sparse
approximation results.

4 Experimental Results
The Shepp-Logan phantom and a 3-D digital brain phantom
from the McConnell Brain Imaging Center, Montreal
Neurological Institute, McGill University are used as virtual
objects in the MRI simulator to investigate the properties of
the proposed wavelet-encoded CS-MRI scheme (WCS-
MRI).41,42 The digital brain phantom has a spatial resolution
of 1 mm3 and contains most of the relevant tissue types.
Based on these phantoms, we first simulate the fully sampled
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wavelet-encoded MRI, and then we simulate the sparse
acquisition of k-space data at different sampling rates and
reconstruct MR images by CS. These simulation results
are compared with the results of the commonly used
Fourier-encoded CS-MRI scheme (FCS-MRI). In Fourier-
encoded k-space, most of the energy is concentrated close
to the center and rapidly decays toward the periphery.
Therefore, a variable-density sampling scheme is imple-
mented in FCS-MRI, where the phase encoding locations
are randomly spaced but cover the low-frequency portion
near the center of k-pace, matching the energy distribution
in k-space. The CS reconstruction of MR image is performed
from the undersampled k-space data.

4.1 Implementation of Wavelet-Encoded MRI
Simulation

Data are collected for MR image reconstruction on a
256 × 256 voxel grid using the Shepp-Logan phantom and

two different brain slices (slice 1 and slice 2) from the brain
phantom. Figures 5 and 6 show fully sampled Fourier-
encoded and 4-level wavelet-encoded MRI results, respec-
tively. These results are generated with zero noise and homo-
geneous magnetic field (B0 ¼ 3T). The imaging parameters
are TE∕TR ¼ 25∕500 ms, read out time ¼ 10 ms and
flip angle ¼ 30 deg. For each image, there are 256 RF exci-
tation pulses required, and its spatial resolution is 256 × 256.
It is seen visually that wavelet-encoded MRI acquires images
with the same quality and resolution as Fourier-encoded MRI
does. The quantitative assessment of the quality of the recon-
structed images has been computed by peak signal to noise
ratio (PSNR) and structural similarity (SSIM) as shown
in Sec. 4.2.

Figure 7 shows the energy of k-spaces acquired by
Fourier- and wavelet-encoded MRI for brain image 1,
respectively. In Fig. 7(a), most of the energy in Fourier-
encoded k-space is concentrated close to the center of

(a) (b)

(c) (d)

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

 

 

x
x*
x'

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

 

 

x
x*
x'

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

 

 

x
x*
x'

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

 

 

x
x*
x'

Fig. 4 The reconstruction results with (a) M ¼ 60, (b) M ¼ 88, (c) M ¼ 116 and (d) M ¼ 144.

Table 1 The RIP constants and SNRs for each sampling number.

M 46 60 74 88 102 116 130 144

δk 0.0248 0.0175 0.0119 0.0056 0.0048 0.0008 0.0006 0.0005

SNR(dB) in x� 28.80 30.13 30.73 37.47 39.35 42.45 44.09 44.21

SNR(dB) in x 0 12.95 14.55 16.30 17.79 20.16 27.78 28.99 29.88
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k-space, at low spatial frequencies. However, in Fig. 7(b), the
wavelet-encoded k-space is represented in multiple levels
with a high degree predictability between levels. The coarse
scale subspace V−4 has its spectrum localized in the low fre-
quency band, while these fine scale subspaces W−1 to W−4
have their energy widely dispersed in the high frequency
band and well-organized in trees along wavelet encoding
direction.

4.2 Simulation of CS-MRI
The proposed WCS-MRI scheme has been simulated with
the phantoms shown in Fig. 5 with different sampling
rates. The implementations of sampling patterns
reported22–24 are not the same as our approach. Our data
acquisition time is reduced by sparse acquisition of only
significant samples across multiple levels by designing
appropriate RF excitation pulses at each level. Such wave-
let-encoded MRI provides the flexibility and adaptivity to

represent the k-space data, especially in multiple levels.
According to the wavelet decomposition theory, it is possible
to achieve the sparse acquisition of k-space data by exploit-
ing the hierarchical binary tree structure in the wavelet coef-
ficients set.6–8,28 Our implementation is based on the
structural characteristics of wavelet coefficients and uses a
desired percentage of the full samples in our proposed
CS-MRI making the acquisition time directly proportional
to the sampling rate. Our data acquisition time is reduced
by sparse acquisition of only significant samples across
multiple levels by designing appropriate RF excitation pulses
at each level. For 4-level wavelet-encoded MRI, there are 16

 
(a) (b) (c)

Fig. 5 Fully sampled Fourier-encoded MR images of (a) the Shepp-Logan phantom, (b) brain image 1 and (c) brain image 2.

  
(a) (b) (c)

Fig. 6 Fully sampled 4-level wavelet-encoded MR images of (a) the Shepp-Logan phantom, (b) brain image 1 and (c) brain image 2.

(a) (b)

Fig. 7 Comparison of Fourier and wavelet-encoded k -spaces for
brain image 1. (a) Fourier-encoded k -space; (b) wavelet-encoded
k -spaces (L to R), V−4, W −4, W −3, W −2, and W−1.

  
(a)

   
(b)

Fig. 8 Reconstruction results of the Shepp-Logan phantom by
(a) WCS-MRI and (b) FCS-MRI. The sampling rates are 23%,
40%, and 56% from left to right, respectively.
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RF excitation pulses required to generate W−4 and V−4,
respectively. If significant samples in W−4 are generated
by only m RF pulses (m ≤ 16), the corresponding number
of RF pulses in W−3, W−2 and W−1 are 2m, 4m and 8m,
respectively. Therefore, the total sampling rate (SR) can
be calculated by ð32þ 14mÞ∕256, including 32 samples
from W−4 and V−4. In this simulation, if m ¼ f1; 2; : : : ; 8g,
the corresponding sampling rate SR ¼ f18%; 23%; 29%;
34%; 40%; 45%; 51%; 56%g. The scan time is determined
by SR· T total, where T total is the imaging time in fully
encoded MRI with the same resolution. Finally, MR images
are reconstructed from these under sampled k-spaces through
CS. In order to compare with WCS-MRI, the same number

of RF pulses is used to acquire k-space data in FCS-MRI. To
make the simulation close to real MRI acquisition, Gaussian
noise is added.

4.2.1 Simulations under ideal conditions

Figures 8 and 9 show the reconstruction of test images by
WCS- and FCS-MRI schemes without noise; sampling
rates are 23%, 40%, and 56% (e.g., 60, 102 and 144 RF exci-
tation pulses used), respectively. Large-scale ringing artifacts
are apparent at low sampling rate (e.g., SR ¼ 23%) in the
FCS-MRI results. However, artifacts in WCS-MRI are
much less than those in FCS-MRI, and more detail and
high frequency components are kept in WCS-MRI than in
FCS-MRI. When the sampling rate is 40%, no artifacts
are apparent in WCS-MRI, while artifacts are still visible
in FCS-MRI. When the sampling rate is 56%, both
reconstruction schemes perform well without apparent arti-
facts. Because the Shepp-Logan phantom image is much
sparser in pixels than brain images, CS reconstruction of
the Shepp-Logan phantom image can achieve a much better
performance.

4.2.2 Simulations under noisy conditions

Simulations are also performed to illustrate reconstruction
performance with noise. Figures 10 and 11 show low-
SNR simulation results (e.g., SNR ¼ 10 dB) of the Shepp-
Logan phantom reconstruction and high-SNR simulation
results (e.g., SNR ¼ 30 dB) of brain image 2 reconstruction
by WCS- and FCS-MRI schemes with sampling rates 23%,
40%, and 56%. In Fig. 10, FCS-MRI scheme is unable to
reconstruct MR images exactly at low sampling rate.
However, the performance of MR images by WCS-MRI
is better than that by FCS-MRI. In Fig. 11, WCS-MRI
can reconstruct MR images without apparent artifacts and

   
(a)

   

(b)

Fig. 9 Reconstruction results of brain image 1 by (a) WCS-MRI and
(b) FCS-MRI. The sampling rates are 23%, 40% and 56% from left to
right, respectively.

  
(a)

  

(b)

Fig. 10 Reconstruction results of the Shepp-Logan phantom with SNR ¼ 10 dB by (a) WCS-MRI and (b) FCS-MRI. The sampling rates are 23%,
40%, and 56% from left to right, respectively.
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loss of high-resolution components, while in FCS-MRI,
there are much apparent artifacts and loss of high-resolution
components in reconstruction results. As expected, improved
SNR leads to improved reconstruction quality for these two
schemes. These figures indicate that WCS-MRI performs
better than FCS-MRI regardless of noise level.

4.2.3 Quantitative evaluation of image reconstruction
performance

The fully sampled 256 × 256 Fourier-encoded MR images in
Fig. 4 are used as the gold standards to evaluate the image
reconstruction performance. In order to measure the similar-
ity between the reconstructed image ρ̂ and the gold-standard
image ρref , the PSNR and SSIM index are used.43,44 PSNR is
the most widely used image quality assessment metric and
has clear physical meaning The SSIM metric is used to mea-
sure visual reconstruction quality by capturing the similarity
between the original image and the reconstructed image.
SSIM models any distortion as a combination of three

different factors: loss of correlation, luminance distortion,
and contrast distortion. The dynamic range of SSIM is
½−1; 1�. SSIM represents the degree of similarity between
ρref and ρ̂. The higher the SSIM is, the more similar ρref
and ρ̂ are. The maximum value of 1 is achieved only if
ρ̂ ¼ ρref . Figures 12 and 13 show PSNR and SSIM as func-
tions of data sampling rate in the ideal condition,
respectively.

As shown in Figs. 12 and 13, with SR ¼ 29%, WCS-MRI
can achieve very good imaging quality with PSNR > 30dB
and SSIM > 0.975 in all tested images. In low sampling
rates (i.e., SR < 29%), WCS-MRI outperform FCS-MRI
with higher PSNRs and SSIMs. Even with SR ¼ 18%,
PSNR in WCS-MRI can reach more than 25 dB and SSIM
more than 0.9. With all tested sampling rates and images,
PSNRs and SSIMs are higher in WCS-MRI than in FCS-
MRI. Figures 14 and 15 show the median PSNR and
SSIM as functions of noise levels (SNR ¼ 10 dB, 20 dB,
30 dB and 40 dB) when sampling rate is 34%. WCS-MRI

   
(a)

   
(b)

Fig. 11 Reconstruction results of brain image 2 with SNR ¼ 30 dB by (a) WCS-MRI and (b) FCS-MRI. The sampling rates are 23%, 40%, and 56%
from left to right, respectively.
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Fig. 12 PSNRs of reconstruction results at different sampling rates (a) phantom, (b) brain image 1 and (c) brain image 2.
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scheme achieves a better reconstruction performance with
higher value of PSNR and SSIM than FCS-MRI scheme
at each noise level.

4.2.4 Improvement in CS reconstruction

The use of sparse-encoding in wavelet-encoded k-space in
this work was motivated by the desire to improve RIP con-
stants to achieve good CS reconstruction. It is difficult to
compute RIP constants for all signal construction, but we
can calculate them in the FCS-MRI scheme by Eq. (12)
and in WCS-MRI scheme by Eq. (13) for each tested MR
image. Table 2 shows the value of RIP constant δK (K is
determined by SR) for each test image. When the value

of δK is smaller, the reconstruction performance is better
in the corresponding image. The value of δK in WCS-
MRI is less than that in FCS-MRI for most conditions.
This implies that WCS-MRI provides better reconstruction
stability and accuracy than FCS-MRI.

5 Discussion
Simulated dataset have been used to assess CS
reconstruction performance in wavelet domain and Fourier
domain for different sampling rates, noise and sparsity levels.
CS reconstruction of MR image in wavelet domain achieved
better quality than in Fourier domain, especially ringing arti-
fact reduction in the region of edges. Based on the simulation
results, PSNR and SSIM indices were computed to evaluate
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Fig. 14 PSNRs of reconstruction results at different noisy levels when SR ¼ 34% for (a) phantom, (b) brain image 1 and (c) brain image 2.
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Fig. 15 SSIMs of reconstruction results at different noisy levels when SR ¼ 34% for (a) phantom, (b) brain image 1 and (c) brain image 2.
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Fig. 13 SSIMs of reconstruction results at different sampling rates for (a) phantom, (b) brain image 1 and (c) brain image 2.
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the performance of MR image reconstruction in ideal and
noisy conditions. In the case of low-SNR and low sampling
rate, WCS-MRI achieved much higher values of PSNR and
SSIM than FCS-MRI. In the case of high-SNR and high sam-
pling rate, FCS-MRI and WCS-MRI both achieved similar
values. That means WCS-MRI has advantages in reduction
of scan time. When the sampling rate is more than 30%,
WCS-MRI reconstruction achieves SNR ≥ 30 dB. The
acquisition time of MR images can be reduced significantly
(by almost 70%) without much distortion when the proposed
WCS-MRI method is applied.

6 Conclusions
This work describes the development of a simulator for MRI
with a wavelet-encoding scheme for stable and accurate MR
image reconstruction by acquiring subsampled data below
the Nyquist sampling rate following the embedded hierarchi-
cal tree structure of significant wavelet coefficients within a
CS framework. According to our simulation results, the pro-
posed scheme improves the existing Fourier-encoded CS-
MRI method by introducing this specific wavelet encoding
instead of commonly used random encoding in the k-space
data acquisition. The hierarchical wavelet tree structure is
applied to select sparse encodings in order to improve the
precision of the CS reconstruction by satisfying the require-
ment of RIP. The acquired under sampled k-space contains
many significant samples and the reconstruction quality of
such under sampled k-space is guaranteed by using the
input vector of sparse wavelet coefficients in a specific CS
framework, which is based on the minimization of total-
variation (TV) regularization signal and a least squares meas-
urement. Based on the flexibility and adaptivity in wavelet-
encoded MR data acquisition, it is feasible to implement
sparse encoding of k-space data with tailored spatially selec-
tive RF excitation pulses without much modification of MRI
machinery. Therefore, this proposed encoding scheme may
provide a practical method for shortening the patient scan
time by reducing the required number of RF excitation

pulses without decreasing the resolution of reconstructed
MR images. In addition, this work may be applied in future
to functional MRI (fMRI), where the three- and four-dimen-
sional data would be even more compressible than the two
dimensional data used in the wavelet transform domain. For
example in echo planar imaging (EPI), using wavelet-shaped
slice-selection excitation pulse with sparse encoding of slice
data may accelerate fMRI with improved CS reconstruction.
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